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Metabolic network analysis predicts efficacy of
FDA-approved drugs targeting the causative
agent of a neglected tropical disease
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Abstract

Background: Systems biology holds promise as a new approach to drug target identification and drug discovery
against neglected tropical diseases. Genome-scale metabolic reconstructions, assembled from annotated genomes
and a vast array of bioinformatics/biochemical resources, provide a framework for the interrogation of human
pathogens and serve as a platform for generation of future experimental hypotheses. In this article, with the
application of selection criteria for both Leishmania major targets (e.g. in silico gene lethality) and drugs (e.g.
toxicity), a method (MetDP) to rationally focus on a subset of low-toxic Food and Drug Administration (FDA)-
approved drugs is introduced.

Results: This metabolic network-driven approach identified 15 L. major genes as high-priority targets, 8 high-
priority synthetic lethal targets, and 254 FDA-approved drugs. Results were compared to previous literature findings
and existing high-throughput screens. Halofantrine, an antimalarial agent that was prioritized using MetDP, showed
noticeable antileishmanial activity when experimentally evaluated in vitro against L. major promastigotes.
Furthermore, synthetic lethality predictions also aided in the prediction of superadditive drug combinations. For
proof-of-concept, double-drug combinations were evaluated in vitro against L. major and four combinations
involving the drug disulfiram that showed superadditivity are presented.

Conclusions: A direct metabolic network-driven method that incorporates single gene essentiality and synthetic
lethality predictions is proposed that generates a set of high-priority L. major targets, which are in turn associated
with a select number of FDA-approved drugs that are candidate antileishmanials. Additionally, selection of high-
priority double-drug combinations might provide for an attractive and alternative avenue for drug discovery
against leishmaniasis.

Background
Over one billion people are infected by one or more
neglected tropical diseases (NTDs) [1,2]. These diseases
comprise a group of parasitic and bacterial infections that
affect some of the poorest and most marginalized popula-
tions around the world, many who live on less than 1.25
USD a day [2]. Leishmaniasis is one such NTD that is ende-
mic in 88 countries with a total of 350 million people at
risk. The disease is associated with a global prevalence of
12 million cases, a yearly incidence of 1.5 to 2 million cases,
and an annual mortality rate of over 59,000 deaths [3].

Caused by Leishmania species, the disease can manifest
itself in varying clinical pathologies including visceral, cuta-
neous or mucocutaneous forms [3,4]. These parasites tran-
sition through different morphological stages - from
flagellated promastigotes within a female phlebotomine
sandfly (vector) gut to non-flagellated amastigotes in host
macrophages [5]. Leishmaniasis and other NTDs tend to be
overshadowed by research that is focused on malaria,
tuberculosis and HIV/AIDS [6]. There may also be a lack of
interest by pharmaceutical companies in pursuing drug
development against NTDs due to a complicated profit
motive [7]. Issues with high toxicity, life-threatening side-
effects, cost, parenteral administration and emergence of
resistance are drawbacks common to existing antileishma-
nial drugs such as sodium stibogluconate, meglumine
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antimoniate, pentamidine and amphotericin B [4,8]. There-
fore, with limited viable treatment options and few alterna-
tives on the pipeline, there exists an obvious need to
develop radically new strategies and conceptual frameworks
to identify compounds with novel antileishmanial activity.
Computational metabolic networks have been recon-

structed for several pathogenic organisms [9,10], including
Leishmania major, an agent of cutaneous leishmaniasis
[11]. Implementing constraint-based modeling techniques,
such as flux balance analysis (FBA), on network recon-
structions has yielded valuable insight into gene essential-
ity and enzyme robustness under varying environmental
conditions [11,12]. Accordingly, analysis of pathogen intra-
cellular processes can be used to predict critical protein
targets that when perturbed singly or in combination have
adverse effects on virulence and/or growth. Here, a direct
metabolic network-driven method that incorporates single
gene essentiality and synthetic lethality predictions is pro-
posed that generates a set of high-priority L. major targets,
which are in turn associated with a select number of Food
and Drug Administration (FDA)-approved drugs that are
candidate antileishmanials. Subsequently, candidate drugs,
which are already in clinical use for other indications, can
begin to be investigated for clinical use against leishmania-
sis. In addition, the selection of high-priority double-drug
combinations that demonstrate superadditivity might pro-
vide for an attractive and alternative avenue for drug dis-
covery against leishmaniasis. By integrating publicly
available resources using a direct and efficient method, the
approach presented here offers significant implications to
future drug discovery and drug repurposing strategies
against leishmaniasis and other NTDs.

Results
Conceptual platform of MetDP: A pipeline for
prioritization of targets and FDA-approved drugs
The flowchart and conceptual framework for the prioriti-
zation of drug and drug targets against L. major (hence-
forth titled MetDP for Metabolic network guided Drug
Pipeline) is presented in Figure 1. The specific datasets,
tools and cutoffs used in the process of prioritizing effec-
tive drugs and drug targets against L. major are depicted
in the diagram presented in Figure 2. The previously pub-
lished metabolic reconstruction of L. major accounted for
the function of 560 genes [11]. Using bioinformatics tools,
a mapping was created between these 560 genes and drugs
in publicly available DrugBank and STITCH databases.
Using BLAST-based sequence similarity, an association
was made between L. major genes and known targets and
then transitively to drugs. Deliberately implementing an E-
value cutoff and a STITCH confidence metric as well as
selecting for only approved drugs resulted in 538 L. major
genes being linked to 926 FDA-approved drugs (see
Methods).

Subsequently, a set of criteria was imposed to select for
those approved drugs that might demonstrate effective
antileishmanial activity. Constraints were applied to both
L. major genes (to select for high-priority targets) and
drugs (to select for those with high tolerance in terms of
toxicity). To arrive at suitable cutoff values, the sensitivity
associated with various cutoffs used in MetDP was
explored (see Additional file 1: Figures S1 and S2). In the
selection of high-priority L. major targets, the first metric
applied was a druggability score for L. major genes ran-
ging from 0 (not druggable) to 1 (highly druggable).
Druggability indices were obtained from the TDR Targets
database. The imposition of a moderate druggability con-
straint of 0.6 selected for 88 L. major genes associated
with 638 drugs (see Figure 2A). Next, computational pre-
dictions of abnormal growth phenotype (lethal or
growth-reducing in silico gene deletions) from perform-
ing FBA on the metabolic reconstruction were also
applied for the selection of priority L. major genes.
Following sensitivity analysis (see Additional file 1: Figure
S1), only those genes that when knocked out from the
metabolic model yielded greater than 30% growth defect
were selected. At this cutoff, 22 L. major genes linked to
372 drugs remained (see Figure 2A). Further, flux varia-
bility analysis (FVA) was performed on the metabolic
network of L. major to determine flux ranges for gene-
associated (or enzyme-catalyzed) reactions. The motiva-
tion to use an FVA score for genes was based on an
assumption that genes linked to reactions with little
variability in flux might be good targets to disrupt in the
metabolic network. To elaborate, it was assumed that
enzymatic reactions inflexible to take on a wide range of
flux values may not necessarily be robust to network per-
turbations. Hence, an FVA score for genes was computed
(see Methods) and used as a metric alongside the drugg-
ability index and in silico gene essentiality analysis to
prioritize L. major targets. With the FVA cutoff of 1 (see
Additional file 1: Figure S1 for sensitivity associated with
various FVA cutoffs), the number of L. major genes
reduced to 15 with only 332 FDA-approved drugs passing
the cutoff (see Table 1 for list of targets).
In parallel, high-priority synthetic lethal targets were also
selected as part of the MetDP framework. The motivation
for investigating synthetic lethal targets was that there
may be other drugs that act on multiple L. major targets
whose simultaneous perturbation results in growth inhibi-
tion of the parasite. Using this rationale, a synthetic lethal-
ity constraint was introduced into MetDP in order to
account for those FDA-approved drugs that target genes
involved in a ‘non-trivial lethal’ double combination (i.e.
genes in the combination are individually non-essential
even though the combination is essential). Using the meta-
bolic network reconstruction of L. major, 56 double gene
deletions (out of a total of 156,520 combinations) were
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previously identified as non-trivial lethal [11]. Once again,
a moderate druggability constraint within the 0.3 to 0.6
range was considered: gene combinations with an average

druggability index greater than or equal to 0.5. In addition,
both genes in the combination needed to have moderate
druggability indices of 0.5 or higher (see Figure 2B). A
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Figure 1 MetDP concept. The flowchart illustrates the conceptual framework (MetDP) for the prioritization of drug and drug targets against L.
major. The first step deals with the association of L. major genes and drugs. The second step includes the prioritization of L. major targets and
drugs using constraints such as druggability, gene essentiality and flux variability. The final step allows for the removal of toxic compounds from
the prioritized list of drugs to yield a set of low-toxic candidate antileishmanials.
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total of 8 non-trivial lethal double gene combinations
satisfied this criterion (see Table 2 for list of synthetic
lethal targets). With the synthetic lethality and druggability
constraints together yielding only 8 double gene deletions,
an FVA constraint was not applied in the search for high-
priority synthetic lethal targets.
The final step in MetDP involved considerations of

tolerance and toxicity in order to place emphasis on
drugs that have potential clinical relevance against leish-
maniasis. Drugs that are known common metabolites or
chemical elements (e.g. NADH, adenine, ATP, amino
acids, ethanol, iron and zinc) and present in the meta-
bolic reconstruction were removed from further analysis.
Also, any illicit drugs and controlled substances (Sche-
dule I through V) were also removed. Second, lethal
dose 50 (LD50) data were culled from DrugBank data-
base and material safety data sheets available online, and
a toxicity rating based on the Hodge and Sterner scale
(see Additional file 1: Table S1) was applied. Following
tolerance and toxicity analysis, the 15 single drug targets
were associated with 240 drugs with a toxicity rating
greater than or equal to 3 (’moderately toxic’ on the
Hodge and Sterner scale). Meanwhile, a total of 107
drugs were associated with the 8 non-trivial lethal gene
combinations. Of these, 37 drugs were mapped to both
genes involved in any one combination and 14 of them
were unique when compared to the list of 240 drugs
(see Figure 2B).

Consequently, upon implementation of MetDP by
means of iterating through the pipeline (presented in
Figures 2A and 2B), the prioritized list of single L. major
targets included 15 metabolic genes (out of 560 genes in
the metabolic reconstruction; 2.7%) while the prioritized
list of synthetic lethal targets included 8 double-gene
combinations (out of 156,520; 0.005%). Collectively, these
lists of high-priority targets were associated with 254
FDA-approved drugs (out of 4329 drugs in DrugBank;
5.9%). The list of prioritized L. major targets is presented
in Tables 1 and 2, the list of 254 FDA-approved drugs
(henceforth referred to as ‘Lm254’) is presented in Addi-
tional file 1: Table S2, and the list of all drugs associated
with the 8 synthetic lethal targets is presented in Addi-
tional file 1: Table S3.
In summary, MetDP is a direct and rational method of

prioritizing drugs and drug targets with a metabolic net-
work as an underlying framework all the while providing
for a possible mechanism of action for many of the drugs
selected (see Figure 3).

Target validation: Comparison of target predictions with
observations from previous literature
As an initial validation, several of the genes in Table 1
were identified as proven drug targets in the literature
and some have previously identified inhibitors in Leish-
mania or other related species. A particularly interesting
target is LmjF05.0350 encoding for trypanothione
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reductase. In trypanosomatids, trypanothione reductase
takes the place of glutathione reductase for the mainte-
nance of intracellular redox balance [13]. Trypanothione
reductase is required for the survival of Leishmania sp.
and one important physiological role of this enzyme is
defense against oxidative damage when parasites are resi-
dent inside macrophages [13]. Host glutathione reductase
and parasite trypanothione reductase have mutually

exclusive substrate specificities conferring an advantage
for the purposes of drug targeting against the parasite
enzyme [13]. Many inhibitors have been identified for
trypanothione reductase, including trivalent antimony
(Sb (III)) ions as recently demonstrated [14]. Also, two
nitrofuran derivative compounds were experimentally
shown to be effective non-competitive inhibitors of try-
panothione reductase in Trypanosoma cruzi, a

Table 1 The list of prioritized L. major targets

L. major
targets

Enzyme name E.C. Metabolic pathway(s) Sub-cellular
localization(s)†

Druggability Growth
defect*

No. of
drugs

LmjF04.0580 spermidine synthase 2.5.1.16 methionine metabolism cytosol 0.8 100% (L) 3

LmjF05.0350 trypanothione reductase 1.8.1.12 trypanothione metabolism glycosome 0.9 100% (L) 45

LmjF05.0830 methylthioadenosine
phosphorylase

2.4.2.28 methionine metabolism cytosol 0.8 100% (L) 15

LmjF06.0650 lanosterol synthase 5.4.99.7 steroid biosynthesis ER 0.6 100% (L) 3

LmjF11.1100 sterol 14-demethylase 1.14.13.70 steroid biosynthesis ER 0.8 100% (L) 133

LmjF12.0280 ornithine decarboxylase 4.1.1.17 urea cycle and metabolism of
amino groups

cytosol 1 100% (L) 40

LmjF13.1620 squalene monooxygenase 1.14.99.7 steroid biosynthesis ER 0.8 100% (L) 14

LmjF18.0020 diphosphomevalonate
decarboxylase

4.1.1.33 steroid biosynthesis glycosome/cytosol 0.6 100% (L) 5

LmjF22.1360 dimethylallyltranstransferase
geranyltranstransferase

2.5.1.1
2.5.1.10

steroid biosynthesis glycosome/cytosol 0.8 100% (L) 11

LmjF25.1120 aldehyde dehydrogenase 1.2.1.3 many pathways mitochondria 1 > 30% (GR) 28

LmjF30.3190 hydroxymethylglutaryl CoA
reductase

1.1.1.34 steroid biosynthesis glycosome/
mitochondria

0.8 100% (L) 29

LmjF31.2940 squalene synthase 2.5.1.21 steroid biosynthesis glycosome/cytosol 0.8 100% (L) 9

LmjF32.1580 phosphomannose isomerase 5.3.1.8 fructose and mannose
metabolism

cytosol 0.6 100% (L) 5

LmjF33.2720 beta-ketoacyl-acyl-carrier-
protein synthase I

2.3.1.41 fatty acid biosynthesis mitochondria 0.7 100% (L) 5

LmjF35.3340 phosphogluconate
dehydrogenase

1.1.1.44 pentose phosphate pathway cytosol 0.8 100% (L) 13

* (L) Lethal, (GR) Growth-reducing; † (ER) Endoplasmic Reticulum

Table 2 The list of prioritized synthetic lethal targets

Gene#1 Enzyme name Druggability No. of
drugs

Gene#2 Enzyme name Druggability No. of
drugs

Avg.
druggability

LmjF27.2050 ribonucleoside-
diphosphate reductase

small chain

1 13 LmjF22.1290 ribonucleoside-
diphosphate reductase

small chain

1 13 1

LmjF06.0860 dihydrofolate reductase-
thymidylate synthase

1 76 LmjF21.1210 thymidine kinase 0.8 10 0.9

LmjF20.0100 phosphoglycerate kinase 0.8 7 LmjF24.0850 triose-phosphate isomerase 0.8 7 0.8

LmjF24.0850 triose-phosphate isomerase 0.8 7 LmjF30.3380 phosphoglycerate kinase 0.5 7 0.65

LmjF04.0960 adenylate kinase 0.5 5 LmjF34.0110 adenylate kinase 0.8 4 0.65

LmjF30.3520 S-adenosylmethionine
synthetase

0.6 17 LmjF30.3500 S-adenosylmethionine
synthetase

0.6 17 0.6

LmjF05.0510 F-type H+-transporting
ATPase alpha chain

0.5 2 LmjF05.0500 F-type H+-transporting
ATPase alpha chain

0.5 2 0.5

LmjF25.1180 F-type H+-transporting
ATPase beta chain

0.5 3 LmjF25.1170 F-type H+-transporting
ATPase beta chain

0.5 3 0.5
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trypanosomatid organism and causative agent for Chagas
disease [15]. MetDP predicted the efficacy of two nitro-
furans associated with LmjF05.0350 namely, nitrofura-
zone and nitrofurantoin (see Figure 3). Other interesting
targets in the prioritized list include LmjF12.0280 and
LmjF04.0580 encoding for ornithine decarboxylase and
spermidine synthase, respectively. Similarly to trypa-
nothione reductase, both genes are essential to Leishma-
nia sp. and model predictions are consistent with
experimental observations [11]. Ornithine decarboxylase
is also an important target in Trypanosoma brucei,
another trypanosomatid organism and causative agent
for human African trypanosomiasis, with a well-estab-
lished inhibitor (eflornithine) [16]. See also a discussion
on false negative target predictions in Additional file 1.

Drug validation: Comparison of drug predictions to
literature findings and existing high-throughput screens
As additional preliminary validation, the literature was
mined to consider drugs that have been evaluated clini-
cally against leishmaniasis (see Additional file 1: Table S4).
There were nine positives in Lm254: amphotericin B
[17-20], ketoconazole [17,21], fluconazole [17,22], clotri-
mazole [23], itraconazole [19,24], miconazole [23], terbina-
fine [25], metronidazole [19,26] and allopurinol [17-19].
Note that for some of these drugs, the literature is contro-
versial with regards to their efficacy in treating leishmania-
sis. From the computational network analysis, seven of the
positive candidates are predicted to exclusively target
L. major enzymes involved in steroid biosynthesis, with
exceptions being ketoconazole and allopurinol. The anti-

Leishmania major metabolic network Leishmania major metabolic network

Nitrofurazone 

Nitrofurantoin 

Disulfiram 

Ketoconazole 

Halofantrine 

Amoxicillin 

Figure 3 Metabolic network analysis and the prediction of high-priority targets and drugs. The pipeline for the prioritization of drug and
drug targets against L. major (MetDP) is based on an underlying metabolic network. This framework enables the hypothesized description of a
mechanism of action for the drugs identified. The figure highlights specific prioritized targets (singly lethal or lethal in combination) and
associated drugs. Compound structures were obtained from PubChem database.
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fungal ketoconazole is predicted to be associated with four
L. major enzymes: three involved with steroid biosynthesis
and one participating in fructose and mannose metabo-
lism. And, allopurinol is associated with an enzyme
involved in methionine metabolism (see Additional file 1:
Table S4; see also a note on ‘Dependency on confidence of
interactions in DrugBank and STITCH’ in Additional file
1). Previous research has identified the azole drugs ketoco-
nazole, itraconazole, miconazole and fluconazole to be
sterol 14-demethylase inhibitors that have been evaluated
in vitro against T. cruzi parasites or in mouse models of
T. cruzi infection [27]. Additionally, in the fungal species
Candida albicans, clotrimazole and terbinafine have been
shown to be inhibitors of sterol 14-demethylase and squa-
lene monooxygenase, respectively [28,29]. These refer-
ences from other organisms serve as a check for some of
the computationally predicted links in MetDP between
L. major genes and drugs.
There were also four false negative results: imiquimod

[20], paromomycin [17,19,20], pentamidine [17-20] and
sodium stibogluconate [17-21]. Imiquimod is a modulator
of the innate immune response [30], and paromomycin is
an aminoglycoside antibiotic that binds to the aminoacyl
decoding site of the ribosomal 16S RNA [31,32]. Since
both imiquimod and paromomycin do not primarily target
L. major proteins, their exclusion from Lm254 was
obvious. However, the reasons for exclusion of all four
drugs from Lm254 were examined in further detail (see
Additional file 1). Hence, nine out of thirteen (69.2%)
clinically relevant drugs for leishmaniasis were present in
Lm254. Three other drugs used clinically against leishma-
niasis (meglumine antimoniate [17-20], miltefosine [20,33]
and sitamaquine [19,20,34]) were not considered in the
analysis as they were not present in DrugBank.
Additionally, several high-throughput drugs screens

against in vitro growth of Leishmania and Trypanosoma
species have been recently published [35-38]. In particular,
one study by Sharlow et al. screened 196,146 compounds
at 10 μM against L. major promastigotes [37]. A total of
187 FDA-approved drugs that were also in DrugBank
database overlapped with the set of 196,146 compounds;
68 out of 187 were present in Lm254. Of these 68 drugs,
seven (pimozide, furazolidone, perphenazine, bifonazole,
disulfiram, clotrimazole and floxuridine) were active as
primary hits in the high-throughput screen, and the
remaining 61 were classified as inactive as they did not
meet the 50% inhibition threshold when evaluated at 10
μM. Furthermore, during assay optimization and valida-
tion screening in the same study, two additional drugs not
included in the list of 68, tamoxifen and mycophenolic
acid, were also deemed to be primary hits [37]. These two
drugs were also included in Lm254. A second high-
throughput screening (HTS) study for inhibitors cytotoxic
to bloodstream form T. brucei tested 2,160 FDA-approved

drugs, bioactive compounds and natural products and pro-
duced 35 hits when assayed at a concentration of 1 μM
[38]. One drug, paclitaxel, which was included in the list
of 35 hits was also present in Lm254. Paclitaxel was not
included in the set of 68 drugs evaluated in the Sharlow et
al. study. In previous literature, paclitaxel along with IFNg
was shown to induce killing of L. major infected murine
macrophages [39]. In summary, from comparison to HTS
data, 10 out of 71 (14.1%) drugs from Lm254 that were
experimentally evaluated via HTS were classified to be
potential antileishmanial hits.
Taken together, the inclusion of all clinically relevant

candidates and existing HTS data yields a total of 18
drugs (7.1% of Lm254) as having potential for antileish-
manial activity (see Additional file 1: Table S2 for the list
of 18 drugs). The HTS data and data on drugs that have
been used clinically against leishmaniasis account for
only 83 out of 254 drugs. Any drugs in Lm254 not pre-
viously evaluated against L. major parasites (in vitro and/
or in vivo) serve as prime candidates for future investiga-
tion into the discovery of antileishmanial compounds.

In vitro experimental evaluation of halofantrine
The next step involved the in vitro evaluation of candidate
antileishmanials as prioritized using MetDP. Halofantrine,
an antimalarial agent, was one of 14 drugs that was
selected via synthetic lethality analysis (see Figure 4A), and
was experimentally evaluated for antileishmanial activity
against L. major promastigotes. This drug was not included
in the HTS data that were used to validate the selection of
high-priority drugs. Halofantrine showed noticeable antil-
eishmanial activity in a concentration response assay (see
Figure 4B). When compared to the ‘No Drug’ control, the
effect of halofantrine at 3 μM and higher concentrations
was statistically significant (p < 0.05). The IC50 for halofan-
trine against L. major promastigotes was calculated to be
approximately 9.5 μM (Figure 4C).
Originally, from the DrugBank database, halofantrine

was associated with vacuolar ATP synthase catalytic
subunit A from Plasmodium falciparum. Upon imple-
mentation of the MetDP pipeline, halofantrine was asso-
ciated with the following synthetic lethal pairs:
LmjF05.0500 &LmjF05.0510, genes encoding for F-type
H+-transporting ATPase alpha chain, and LmjF25.1170
&LmjF25.1180, genes encoding F-type H+-transporting
ATPase beta chain. While the exact mechanism of
action for halofantrine in L. major requires further
investigation, the model predictions for halofantrine
represent testable hypotheses. Towards that end, an
ATP bioluminescence assay was performed to further
investigate the effect of halofantrine on ATP levels in L.
major promastigotes.
As Figure 4D demonstrates, parasites were incubated

with or without 10 μM halofantrine in various
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Figure 4 Synthetic lethality and experimental evaluation of halofantrine against L. major promastigotes. Synthetic lethality analysis
highlights an interaction between genes in the combination; a simultaneous knockout of genes in the combination causes a perturbation in the
functioning of associated reactions in the network, thereby leading to an adverse effect on biomass production. A similar effect on biomass
would not occur if the genes in the combination were knocked out individually. Panel A illustrates the concept of a drug acting on multiple
targets (that are synthetically lethal) in order to inhibit growth of L. major. The effect of halofantrine evaluated at different concentrations against
L. major promastigotes is presented in Panel B. The y-axis indicates alamarBlue fluorescence normalized to the ‘No Drug’ control. AMP-B refers to
Amphotericin B, which is used as a positive control in the assay. In Panel C, a four-parameter log-logistic regression was performed on the
concentration response data to compute the IC50 for halofantrine against L. major promastigotes. Panel D provides a setup for the experimental
conditions and corresponding reagents used for the ATP bioluminescence assay to determine the effects of halofantrine on ATP levels in L.
major. The results of the ATP bioluminescence assay are presented in Panel E. Parasites were incubated with or without halofantrine at 10 μM
and in the presence of mitochondrial and/or glycolytic ATP blocks for 2 hours. The absorbance was monitored at 18 hours and the results are
shown in Panel F. All error bars indicate standard error. Statistical significance in panels B and E was determined using a one-tailed Student’s t-
test, while statistical significance in panel F was determined using a two-tailed Student’s t-test. As an additional note, the absorbance
measurements in panel F between parasites incubated with and without halofantrine are significant for two conditions. However, this
significance is attributable to the precision of the microplate reader rather than any meaningful biological implications regarding variations in
absorbance. In Panels E and F, the condition where parasites are incubated with both mitochondrial and glycolytic ATP blocks is displayed with
a dashed bar as it serves as a reference. In this particular case, halofantrine was not added.
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conditions as follows: (a) media, (b) HEPES-buffered sal-
ine (HBS) for ‘No inhibition’, (c) HBS with sodium azide
for ‘Inhibition of F1-ATPase and cytochrome c oxidase’,
(d) HBS without glucose, but supplemented with 2-
deoxy-D-glucose and sodium pyruvate for ‘Inhibition of
glycolysis’, and (e) HBS without glucose, but supplemen-
ted with sodium azide, 2-deoxy-D-glucose and sodium
pyruvate for ‘Inhibition of both’. In the assay, sodium
azide was used to inhibit mitochondrial oxidative ATP
generation [40]. Further, 2-deoxy-D-glucose (a glucose
analog and competing substrate for hexokinase) was
used along with sodium pyruvate in glucose-free buffer
to inhibit glycolytic ATP synthesis [40]. In Figure 4E,
when the parasites were subject to ‘No inhibition,’ halo-
fantrine caused a significant reduction in ATP levels.
Figure 4E also shows that ATP levels in parasites under
‘Inhibition of F1-ATPase and cytochrome c oxidase’
dropped significantly when halofantrine was added.
Likewise, ATP levels in parasites under ‘Inhibition of
glycolysis’ dropped significantly when halofantrine was
added. In both these instances, ATP levels dropped to a
level comparable to parasites subject to the simulta-
neous inhibition of glycolysis and F1-ATPase/cyto-
chrome c oxidase (’Inhibition of both’). Hence, the ATP
bioluminescence assay suggests that halofantrine has an
effect on either one or both of glycolytic and mitochon-
drial oxidative ATP generation mechanisms. Future
experimental efforts can be directed at more precise
characterization of the underlying mechanism of action
of the drug and elucidating other potential metabolic
targets of halofantrine in L. major. Correspondingly,
absorbance was monitored to make certain that the
effects that were seen with regard to ATP levels were
not a function of variations in cell count across the var-
ious conditions (Figure 4F). Finally, although halofan-
trine is known to be associated with cardiotoxicity [41],
its potential as an antileishmanial agent should be inves-
tigated in more detail.

Model-guided drug combinations as an alternative
strategy against leishmaniasis
With the ability to computationally simulate synthetically
lethal gene deletions, there exists an opportunity to predict
and prioritize multiple combination drug therapies that
may be superadditive/synergistic. A potential advantage of
superadditive drug combinations is overcoming toxicity or
side-effects linked to high doses of individual drugs needed
to establish the same inhibitory effect as the combination
[42]. One strategy of prioritizing for clinically-relevant
drug combinations was to selectively focus on one drug
that demonstrated excellent antileishmanial activity in
vitro and was associated with low-toxicity. All combina-
tions involving that particular drug could be prioritized for
experimental analysis. Selection of such high-priority drug

combinations through the power of network analysis can
augment single compound discovery strategies.
Since disulfiram was previously shown to have a sub-

micromolar IC50 [37] (see also dose response data for dis-
ulfiram in Additional file 1: Figure S7), the goal was to
identify superadditive drug combinations that involve dis-
ulfiram. Marketed as Antabuse, disulfiram has an LD50 of
8600 mg/kg (rat; oral) and is used in the treatment of alco-
holism. At a moderate STITCH confidence of greater than
0.4, none of the 8 high-priority synthetic lethal gene pre-
dictions were associated with disulfiram. Therefore, the
search criterion was expanded to include gene-drug inter-
actions at a lower STITCH confidence (greater than 0.15;
see Methods for mapping between L. major genes and
drugs; see also Additional file 2 for a list of initial gene-
drug associations).
With the relaxation of the STITCH confidence con-

straint, one pair of high-priority synthetic lethals was
associated with disulfiram: LmjF25.1170 &LmjF25.1180,
genes encoding F-type H+-transporting ATPase beta
chain. After tolerance and toxicity analysis, both genes
were associated with the same 16 drugs (one of them
being disulfiram; see Additional file 1: Table S5). Since
the 16 drugs are predicted to act on both genes in a syn-
thetic lethal pair, they are consequently predicted to be
effective individually as well. All possible drug combina-
tions involving disulfiram (a total of 15) were then
selected. Combinations of disulfiram with six other drugs
(kanamycin, clozapine, amoxicillin, chlorpromazine, dox-
ycycline and isoniazid) were experimentally evaluated
against L. major promastigotes using the alamarBlue
assay. Figure 5 demonstrates the superadditive nature of
the experimental combinations of disulfiram with kana-
mycin, clozapine, amoxicillin, and chlorpromazine. In all
four cases, the experimental combinations had a signifi-
cantly greater inhibitory effect on parasite growth as
compared to the calculated additive results (see Methods
for calculations on additivity; only one representative
concentration profile is displayed in Figure 5; see also
Additional file 1: Figures S8, S9, S10 and S11 for data on
other concentrations tested). Combinations of disulfiram
with doxycycline and isoniazid did not show statistically
significant superadditivity (data not shown).
Two of the combinations that demonstrated superaddi-

tivity involved antibiotics - kanamycin is an aminoglycoside
antibiotic and amoxicillin is a common b-lactam antibiotic.
The other two combinations involved antipsychotics - clo-
zapine and chlorpromazine are used in the treatment of
symptoms associated with schizophrenia. Of the four com-
binations, disulfiram + amoxicillin had the best overall
toxicity rating. Moreover, only clozapine and chlorproma-
zine demonstrated inhibitory effects on L. major promasti-
gotes when tested individually (see Additional file 1:
Figures S9 and S11). Kanamycin and amoxicillin did not
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demonstrate any inhibitory effect at the concentrations
tested (see Additional file 1: Figures S8 and S10).
Interestingly, along with disulfiram, kanamycin and

chlorpromazine are also present in Lm254. In the future,
evaluating two-drug combinations where both drugs are
predicted to be effective individually by acting on single
lethal or growth-reducing targets may have certain
advantages. Based solely on synthetic lethality analysis, in
the event that the parasite develops resistance to one of
the drugs (in a combination) due to mutations in an
enzyme/gene product encoded by a single gene in a syn-
thetic lethal deletion, the overall drug combination would
be predicted to be ineffective. However, by considering

only those drug combinations where the individual drugs
involved are also independently effective antileishmanial
agents, this limitation can be potentially overcome. If the
organism becomes resistant to one of the drugs during
infection, there is a potential compensatory mechanism
in place for the other drug to inhibit growth. This redun-
dancy may serve to prevent or delay the onset of resis-
tance [43].

Discussion
Recent literature has described the applicability of meta-
bolic network analysis towards target identification and
drug discovery in general. One study (targetTB) used a
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Figure 5 Drug combinations involving disulfiram. Disulfiram along with kanamycin, clozapine, amoxicillin and chlorpromazine are all
predicted to be individually effective antileishmanial agents because they all act on both genes in a synthetic lethal pair. However, they also
have the potential to act synergistically to produce growth inhibition in L. major. Therefore, for predictions of model-guided superadditivity, it is
assumed that the interactive relationship present between genes in a synthetic lethal deletion would translate directly to any associated drug
combinations. In panels A, B, C and D, the results of one concentration profile of disulfiram + kanamycin, disulfiram + clozapine, disulfiram +
amoxicillin and disulfiram + chlorpromazine as evaluated against L. major promastigotes are presented, respectively. The theoretical additivity bar
was computed using the bliss additivity metric upon comparing the effects of the individual drugs. A two-sample t-test comparing two means
was used to determine statistical significance between the theoretical and experimental combinations. Concentrations are provided in
parentheses. Error bars signify standard error. The y-axis indicates fractional experimental effect of inhibition or growth relative to “No Drug”
control (0 equals no inhibition, 1 equals max inhibition). All data were generated at 48 hours post addition of alamarBlue dye.
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variety of network analyses and bioinformatics-based
sequence/structural assessments to predict a list of tar-
gets against Mycobacterium tuberculosis [44]. By priori-
tizing targets using a layered approach, proteins that did
not pass sequential cut-offs were filtered out [44].
Another study implemented network analysis and mole-
cular docking simulations to identify small molecule
inhibitors of type II fatty-acid biosynthesis enzymes in
Escherichia coli and Staphylococcus aureus and experi-
mentally evaluated the computational predictions [45].
FBA was also used to simulate drug synergy effects by
assigning synergy scores to combinations of enzymes
that would inhibit growth of E. coli in various environ-
mental conditions [42]. Network reconstructions of P.
falciparum and Vibrio vulnificus have also guided the
prediction of drug targets, and investigational com-
pounds were experimentally evaluated against these
pathogens [9,46].
Here, a novel pipeline for the prioritization of drugs

and drug targets is presented that is in many ways dis-
tinct from approaches previously developed. Instead of
restricting the search to compounds that may only tar-
get non-human proteins or have computed Tanimoto
similarity to important metabolites, MetDP undertook a
more expansive strategy in making use of protein-com-
pound interactions present in both DrugBank and
STITCH resources. Importantly, a clear majority of the
approved drugs target human proteins as opposed to
proteins in any other single organism (e.g. in DrugBank).
Therefore, rather than avoiding the selection of patho-
gen targets that are similar to human proteins, MetDP
explicitly sought out such targets in order to create a
link between L. major genes and drugs that are already
approved. The side-effects caused by any of the drugs in
the prioritized list that act on related human targets are
relatively well known.
In addition, by restricting the search to only FDA-

approved drugs and eliminating investigational drugs
from the selection process, major regulatory hurdles
that novel compounds are subject to before approval for
widespread clinical use are bypassed. For instance, on
average, it can take more than 15 years and over 800
million USD to bring a single novel drug to market [47].
Moreover, only 20 to 30 new drugs are approved by the
FDA annually [47]. Instead, drugs already approved for
clinical use have known pharmacokinetics and toxicity/
safety profiles (many approved drugs have met superior
safety standards with phase IV post-market safety sur-
veillance) [47]. Therefore, by demonstrating novel antil-
eishmanial activity for a drug already in clinical use for
another indication, a candidate drug or perhaps combi-
nations of drugs can begin to be effectively repurposed
by being evaluated in phase II clinical trials and bypass-
ing approximately 40% of the overall cost that it takes

to bring a novel drug to market [47]. Besides, an FDA-
approved drug with demonstrated antileishmanial activ-
ity can also be prescribed off-label, thus making it acces-
sible to patients urgently in need of an alternative
treatment option.

Conclusions
Ultimately, metabolic reconstructions provide a frame-
work for the interrogation of human pathogens and
serve as a platform for generation of future experimental
hypotheses. This metabolic network-driven approach
identified 15 L. major genes as high-priority targets, 8
high-priority synthetic lethal targets, and 254 FDA-
approved drugs as potential antileishmanial agents. As
experimental validation, the antimalarial drug halofan-
trine was shown to have noticeable antileishmanial
activity. Moreover, through the ATP bioluminescence
assay, halofantrine affected either one or both of glycoly-
tic and mitochondrial ATP generation mechanisms.
Additionally, synthetic lethal predictions from the meta-
bolic network aided in the selection of drug combina-
tions with potential for superadditivity. For proof-of-
concept, double-drug combinations were evaluated in
vitro against L. major and four novel superadditive com-
binations involving the drug disulfiram were discovered.
Selection of such high-priority double-drug combina-
tions guided by metabolic network analysis might pro-
vide for an attractive and alternative avenue for drug
discovery against infectious diseases like leishmaniasis.
A rational method of prioritizing drugs and drug tar-

gets with a metabolic network as an underlying frame-
work also provides for a possible mechanism of action
for many of the drugs selected (e.g., the network model
enables the analysis of what biosynthetic pathways are
inhibited when a particular enzyme’s function is phar-
macologically inhibited). Surely the mechanism of action
is only predicted and needs to be validated with follow-
on experimentation. However, given a drug and poten-
tial target, a starting experimental hypothesis is pro-
vided. A network-driven approach guiding the selection
of prioritized drugs can be immensely advantageous in
terms of cost and efficiency in the beginning phases of
drug discovery and can offer significant implications to
future drug repurposing strategies against a variety of
NTDs.

Methods
Datasets used
L. major reconstruction
The previously published metabolic reconstruction of L.
major was the first of its kind for a protozoan. It
accounted for 560 genes, 1112 reactions, and 1101
metabolites spanning eight unique sub-cellular localiza-
tions [11].
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DrugBank
The DrugBank knowledgebase (version 2.5; http://www.
drugbank.ca/) included 4774 drugs that were classified
into several categories namely, (a) small molecule, (b) bio-
tech, (c) approved, (d) experimental, (e) nutraceutical, (f)
illicit, and (g) withdrawn. These drugs were linked to 4554
peptide/protein and non-peptide/non-protein drug targets.
STITCH
The STITCH database (version 2.0; http://stitch.embl.de/)
comprised over 74000 small molecules and 2.5 million+
proteins in 630 organisms. The STITCH database includes
many potentially important off-targets to particular com-
pounds (derived from experimental data, other curated
databases or text mining) in addition to the primary
known targets, and all protein-compound interactions in
STITCH have an associated confidence metric. It should
be noted that L. major was not present in the list of organ-
isms whose targets are explicitly included in STITCH.
TDR Targets
Druggability indices for L. major genes were downloaded
from the TDR Targets database (version 3; http://tdrtar-
gets.org/). The druggability index was calculated using a
combination of approaches including sequence similarity
to known biological targets associated with FDA-
approved drugs from curated databases (e.g. DrugStore
and StARLITe), and a sequence-based Bayesian learning
algorithm, among other methods [48]. The index ranges
between 0 (not druggable) and 1 (highly druggable). In
all, 1598 L. major genes have a corresponding druggabil-
ity index in the TDR Targets database. Of these, 261 are
accounted for in the metabolic reconstruction.
DEA controlled substances
The list of controlled substances by Schedule was down-
loaded from the Drug Enforcement Administration
(DEA) Office of Diversion Control database (http://
www.deadiversion.usdoj.gov/schedules).

Tools and programs used
BLAST
A BLAST+ v.2.2.24 executable was downloaded from the
NCBI FTP site (ftp://ftp.ncbi.nih.gov/blast/executables/
blast+/). The program makeblastdb was implemented on
both DrugBank and STITCH target protein sequences.
The amino acid sequences for all 560 L. major genes from
the metabolic reconstruction were obtained from GeneDB
(version 2.1; http://www.genedb.org/genedb/leish). Subse-
quently, the program blastp was used to query 560
L. major sequences against both DrugBank and STITCH
target databases.
FBA/FVA/COBRA toolbox
Flux Balance Analysis (FBA) and Flux Variability Analysis
(FVA) were implemented using the COBRA toolbox (ver-
sion 1.3.3; http://opencobra.sourceforge.net/openCOBRA/
Welcome.html) in MATLAB. FBA and FVA have been

extensively implemented on metabolic networks of various
organisms ranging from prokaryotes to eukaryotes [12].

Mapping between L. major genes and drugs in DrugBank
and STITCH
First, a BLASTP search was performed with 560 L. major
genes from the metabolic reconstruction (query
sequences) against 4538 target proteins in DrugBank (tar-
get sequences). An E-value cutoff was set at 0.001, and
repetitious links between L. major genes and DrugBank
target proteins were removed. At this first cutoff, 440
L. major genes were linked to 1116 DrugBank target pro-
teins and transitively to 1129 drugs. The list of drugs was
refined to focus on only FDA-approved drugs by removing
experimental and withdrawn drugs, which resulted in 313
L. major genes being linked to 257 FDA-approved drugs.
In parallel, a similar approach with some variations was

undertaken with the STITCH database. In order to be as
expansive as possible in making initial associations
between L. major genes and drugs, both DrugBank and
STITCH resources were used. A BLASTP search was per-
formed between the 560 L. major genes and 2.5 million+
proteins (2,590,259) to associate L. major genes with the
proteins in STITCH. Protein sequences were derived from
a related STRING database (http://string-db.org/). Again,
an E-value cutoff of 0.001 was chosen and repetitious asso-
ciations between L. major genes and STITCH proteins
were removed. At this cutoff, all 560 genes were associated
with 131,250 protein targets from STITCH.
Subsequently, the STITCH compound-protein interac-

tion dataset was refined to only consider compounds that
were FDA-approved drugs (as classified in the DrugBank
database). PubChem compound identifiers were used to
map drugs in DrugBank with compounds in STITCH.
Only 1337 of the 1466 approved drugs in DrugBank had
readily available PubChem compound identifiers (and a
few had similar PubChem IDs). In all, 1330 drugs with
unique DrugBank IDs mapped to 1305 unique compounds
in the STITCH dataset. Next, the STITCH database was
further reduced to consider protein targets strictly present
in the list of 131,250 unique protein targets that made the
BLAST cut. Finally, the STITCH dataset was also con-
strained to only include medium confidence and higher
interactions (STITCH scores greater than 0.4). The newly
constrained STITCH dataset along with the BLAST results
were used to link 538 L. major genes to 905 FDA-
approved drugs. At this stage, results from DrugBank and
STITCH were merged for further refinement and analysis.
The merged list linked 538 L. major genes to 926 FDA-
approved drugs (see Additional file 2).

Generating an FVA score for genes
Flux variability analysis (FVA) allows for ascertaining the
complete range of numerical values for every flux in the
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biochemical network given an optimal value of the
objective [49]. FBA computes only one possible optimal
reaction network state. Therefore, the flux distribution
resulting from FBA (i.e. the enumeration of all possible
fluxes in the network) is only one of many feasible solu-
tions that can exist for the same optimal value of the
cellular objective. Enzymatic reactions associated with
small ranges of flux values may not necessarily be robust
to various kinds of network perturbations. Therefore, an
FVA score for genes was developed based on an
assumption that genes linked to reactions with little flux
variability might be good targets to disrupt in the meta-
bolic network.
Step 1: Conferring weights on reactions based on FVA

From the FVA output, the computed flux ranges
[MaxFlux - MinFlux] for every reaction in the net-
work were used to generate an FVA reaction score
(r) between 0 (low) and 1 (high).

ri = 1 − MaxFluxi − MinFluxi

2 ∗ max(|MaxFluxi| , |MinFluxi|)

This scoring method gives a high score to reactions
with little variability in flux. For example, reactions
that spanned the entire flux range [-999999, 999999]
would receive a score of 0, while reactions with no
change in flux would receive a score of 1.

Step 2: Evaluating the contributions of genes in gene-
protein-reaction (GPR) relationships

Separately, GPR relationships, formulated as Boolean
logic statements in the published reconstruction of
L. major [11], were used to confer weights on genes
accounted for in the network. The weights were cal-
culated as follows:

cgi,rk =
PTk

i + AFk
i − PFk

i − ATk
i

Nstates

Nstates refers to the number of possible states for a
given GPR, which is calculated as 2n with n being
the number of genes in a GPR. The GPR was evalu-
ated to be TRUE or FALSE for every state. For a
given reaction k with a GPR, the presence (P) or
absence (A) of a particular gene i and the TRUE (T)
or FALSE (F) outcome of the GPR were tabulated as
matches (PTi and AFi) and mis-matches (PFi and
ATi). Explicitly, for a given reaction k, ‘PTi’ refers to
the number of gene states (out of 2n) where a parti-
cular gene i is present, and the GPR is evaluated to
be TRUE. ‘ATi’ refers to the number of gene states

where gene i is absent, and the GPR is evaluated to
be TRUE (e.g. due to the presence of isozymes). ‘PFi’
refers to the number of gene states where a particu-
lar gene i is present, and the GPR is evaluated to be
FALSE (e.g. subunits of a larger protein complex
that need to be present together). Finally, ‘AFi’ refers
to the number of gene states where a particular gene
i is absent, and the GPR is evaluated to be FALSE.
The weights (cg,r) were calculated by totaling up
matches (counted positively) and mis-matches
(counted negatively) and dividing by the number of
possible states for a given GPR. Hence, a gene-reac-
tion matrix (C) was constructed with elements of
the matrix representing weights for genes linked to
corresponding reactions.

Step 3: Conferring weights on genes based on FVA

Next, the FVA reaction scores (ri) were multiplied in
with the gene weights from the GPR (cg,r) to yield
an FVA-gene matrix with the same dimensions as C.
The maximum value for genes across all reactions
was considered as the FVA score for a gene (value
resided between 0 and 1).

Calculations of additive results
The additive results in Figure 5 (i.e. the non-synergistic
expectation of the experimental results of the individual
drugs) were computed based on the bliss additivity
metric [50]:

E(x, y) = E(x) + E(y) − E(x)E(y)

In the equation above, ‘E’ refers to the fractional effect
between 0 and 1, while ‘x’ and ‘y’ are the concentrations
of the two drugs in the experimental combination.
Additionally, error was propagated using the formula
[50]:

δE1,2 = δE1 + δE2 +
(
δE1/E1 + δE2/E2

) ∗ E1(x) ∗ E2(y)

Here, E1±δE1 refers to the effect of drug 1 and E2±δE2
refers to the effect of drug 2.
Subsequently, a two-sample t-test was performed to

compare the additive result and the experimental com-
bination. A t-score test statistic was generated using the
formula:

t =
[x̄1 − x̄2]√
s1

2

n1
+

s2
2

n2

Here, x̄1 and x̄2 refer to the means of the samples, s1
and s2 refer to the standard deviations of the samples,
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and n1 and n2 refer to the number of samples. One-tail
p-value was subsequently determined by referring to a t-
table (degrees of freedom computed as follows: n1 + n2 -
2).

Experimental methods
Materials
Black flat-bottom 96-well microtiter plates were purchased
from Fisher Scientific (http://www.fishersci.com) and used
in all alamarBlue experiments. White flat-bottom 96-well
microtiter plates also purchased from Fisher Scientific
were used in all bioluminescence experiments. alamarBlue
was purchased from Invitrogen (http://www.invitrogen.
com). CellTiter-Glo was purchased from Promega (http://
www.promega.com). All compounds used in this study
were purchased from Sigma-Aldrich (http://www.sigmaal-
drich.com/). Compounds were solubilized in dimethyl
sulfoxide (DMSO) or water.
Parasite cultures
Previously published protocols on culturing L. major [37]
were adhered to in this study. L. major promastigotes
and protocol for preparing media were kindly provided
by Mary E. Wilson and Melissa A. Miller, University of
Iowa. Parasites in complete HOMEM (see Additional file
1) were cultured in 25 cm2 plastic tissue culture flasks
with sealed or vented caps and maintained at 26°C.
alamarBlue assay
The assay was conducted in accordance with previously
established protocols [51-53]. Briefly, promastigotes
were diluted to 1 × 106 cells/mL, and in a black flat-bot-
tom 96-well microtiter plate, 180 μL of suspension was
incubated with varying concentrations of drugs (singly
or in combination) in triplicate. Specifically, 160 μL of
parasite samples were first seeded in triplicate. Next,
sample wells were topped off with 20 μL of media +
drug(s) (ratio altered to achieve specific concentrations
of drug(s)) such that the total volume equaled 180 μL.
Heat-killed parasite samples (incubated at 60°C for 20
minutes) prepared at 1 × 106 cells/mL were also seeded
in triplicate (160 μL of sample + 20 μL of media) to
serve as a positive control. Amphotericin B at 1 μM also
served as another positive control. If DMSO was used to
solubilize the drug(s), three wells with the highest rele-
vant concentration of DMSO were included in the plate
as a negative control. Additionally, three wells were
seeded with 180 μL of media alone. The plate was incu-
bated at 26°C for 24 hours at which time point 20 μL of
alamarBlue dye was added to all control and experimen-
tal wells. Using a Gemini EM Microplate Spectrofluo-
rometer, fluorescence was monitored at excitation/
emission wavelengths of 544 nm/590 nm at 24 and 48
hours post addition of dye to wells. Calibration data for
alamarBlue assay is provided in Additional file 1: Figures
S4, S5 and S6.

Bioluminescence assay
The protocol for the bioluminescence assay was modi-
fied from [40]. Parasites at 8 × 106 cells/mL were incu-
bated in culture medium or various buffers for 2 hours
at 26°C either alone or in the presence of 10 μM halo-
fantrine. Mitochondrial oxidative ATP generation was
inhibited by incubating the parasites in HBS buffer with
glucose plus 20 mM sodium azide, an inhibitor of F1-
ATPase and cytochrome c oxidase from complex IV
[40]. Glycolytic ATP generation was inhibited by incu-
bating the parasites in glucose-free HBS buffer plus 5
mM 2-deoxy-D-glucose, a competitor with glucose for
hexokinase binding, and 5 mM sodium pyruvate [40]. In
a white opaque flat-bottom 96-well microtiter plate, 25
μL of parasite samples from each condition were seeded
in triplicate. Heat-killed parasite samples (incubated at
60°C for at least 20 minutes) prepared at 8 × 106 cells/
mL were also seeded in triplicate. Additionally, three
wells were seeded with 25 μL of media alone. Subse-
quently, 25 μL of CellTiter-Glo was added to all control
and experimental wells. The plate was incubated in the
dark at 26°C for 10 minutes. Luminescence was moni-
tored using a FLUOstar Optima plate reader (BMG Lab-
tech). For absorbance measurements, 100 μL of control
and experimental samples were seeded in triplicate at
the 18 hour time point. The plate was immediately
transferred to a Tecan infinite200 Pro microplate reader,
and absorbance was monitored at 600 nm. Calibration
data for the bioluminescence assay is provided in Addi-
tional file 1: Figures S12 and S13.

Additional material

Additional file 1: In this supplement, additional experimental data,
analysis and network characteristics are presented that are not
already described in the main article [11,17-22,54].

Additional file 2: In this supplement, initial gene-drug associations,
various metric scores for L. major genes, synthetic lethal
predictions, toxicity ratings for drugs, and list of drugs removed
from MetDP analysis are presented.
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