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Controlling phenotypical landscapes is of vital interest to modern biology. This task becomes highly
demanding because cellular decisions involve complex networks engaging in crosstalk interactions.
Previous work on control theory indicates that small sets of compounds can control single phenotypes.
However, a dynamic approach is missing to determine the drivers of the whole network dynamics. By
analyzing 35 biologically motivated Boolean networks, we developed a method to identify small sets
of compounds sufficient to decide on the entire phenotypical landscape. These compounds do not strictly
prefer highly related compounds and show a smaller impact on the stability of the attractor landscape.
The dynamic driver sets include many intervention targets and cellular reprogramming drivers in human
networks. Finally, by using a new comprehensive model of colorectal cancer, we provide a complete
workflow on how to implement our approach to shift from in silico to in vitro guided experiments.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Modern biology has shifted toward investigating complex regu-
latory networks and their dynamic behavior [1]. Hence, network
analysis has emerged as a powerful tool to understand molecular
crosstalk [2]. Here, compounds of the biological system are repre-
sented as nodes in the network models. By this, diseases such as
the development of cancers are rarely a consequence of a mutation
of a single component within a network but rather of its global per-
turbation [2,3]. Thus, to understand any biological process, we
need to capture the network dynamics [4]. In the case of biomolec-
ular regulatory networks, especially Boolean networks, this identi-
fies the stable states of a system [5] that can mathematically be
defined as attractors. Attractors correlate with biological pheno-
types, e.g., cellular proliferation [6-8], death [9,10], or differentia-
tion [11] based on the activity of some compounds or final
phenotypical states. Activity patterns in attractors can also be val-
idated by comparison to experimental results [7,9,10,12]. How-
ever, unraveling the full dynamics is a complex and demanding
task. Therefore, several studies have attempted to identify small
sets of dynamic drivers able to control the shift towards a specific
phenotype based solely on the network structure [13,14]. These
structure-based approaches are quite limited when applied to
biomolecular networks. This is mainly because they assume linear
dynamics and time-varying control of nodes, which are unfeasible
in biological regulatory networks [13,14]. Kim and colleagues [5]
proposed a method to identify ‘kernels’ responsible for shifting
network dynamics toward the primary stable state (attractor)
[15,16]. Even if their work focuses on network dynamics, still the
control of the kernel set determines only single attractors and
not the complete landscape of possible ones [5].

In contrast, one might be interested in knowing whether there
exists a small set of nodes that is sufficient to determine all possi-
ble cellular behaviors described in the network. In this case, the
ability to control a given phenotype is lost for inferring a minimal
set responsible for the entire network dynamics. This would be
advantageous when the network size is too large to allow in-
depth dynamic analyses or when knowledge of desired attractor
patterns is missing. In this context, by knowing this minimal set
of dynamic drivers, it would be possible to reconstruct cellular
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phenotypes. Moreover, in principle, these dynamic drivers could be
targeted independently for a wide range of intervention studies.

In the present work, we investigated whether the whole land-
scape of cellular behaviors can be controlled by a minimal set of
nodes of the underlying biomolecular network. Following previous
studies, we applied logic-based Boolean network models that have
the main advantage of avoiding the use of kinetic parameters that
are often not available in the biological research [17]. We identified
small sets of nodes that alone are sufficient to retrieve the com-
plete phenotypic landscape of the system. We analyzed 35 pub-
lished Boolean networks and developed a heuristic algorithm for
identifying these sets of dynamic driver nodes.

Considering the total number of nodes in the analyzed net-
works, we found that the identified sets cover a small fraction of
the complete network and depend on specific topological features.
We further studied the applicability of targeting these dynamic
drivers independently. An ideal intervention target is expected to
shift dynamic behaviors towards a desired effect on the phenotype
without producing side effects, such as increased instability to the
system or resistant phenotypes. We translated this concept by
extensively studying in silico single node perturbations over all
our selected networks. The identified dynamic drivers significantly
impact shifting dynamics without causing an insurgence of further
attractors. This was confirmed in the analyses of three in silico case
studies concerning both intervention targets and cellular repro-
gramming. Finally, we introduce a new model and provide a com-
plete workflow endowed with in vitro experiments on how to
apply the presented method for drug targeting purposes. Thereby,
we show a complete operative example from simulation to bench
procedure.
2. Materials and methods

2.1. Boolean networks

In Boolean networks, nodes are described as Boolean variables
X ¼ x1; � � � ; xnf g; xi 2 B representing compounds within the system.
Each can be assigned to a state of 1 (expressed/active) or 0 (not
expressed/inactive). Boolean functions represent biochemical reac-
tions F ¼ F1; � � � ; Fnf g; Fi : B

n ! B [18,19]. If the value of Fi depends
on xi1 , xi2 ; � � � ; xik let f i denote the function defined on these inputs,
i.e. Fi xð Þ ¼ f i xi1 ; xi2 ; � � � ; xik

� �
. f i is also called the Boolean function

for the i-th position (e.g. gene) of F. In our modeling approaches;
we model input nodes via the identity function. This ensures the
input is constant once set. To analyze the dynamics of Boolean net-
works over time, the state of the networks x tð Þ ¼ x1 tð Þ; � � � :; xn tð Þð Þ
is defined by the states of all variables xi at a point in time t. In syn-
chronous Boolean network models, all Boolean functions are
updated at the same time to proceed from the state at time t to
its successor state at time t + 1, which is defined by
x t þ 1ð Þ ¼ F1 x tð Þð Þ; � � � ; Fn x tð Þð Þð Þ. x 0ð Þ is the initial state of the net-
work. The dynamics of Boolean network models can be viewed in
a state transition graph linking each state of the state space to its
successor state. The state-space of Boolean networks with n nodes
is finite with 2n possible states. Thus, the model will eventually
enter a recurrent sequence of states called attractors (cycles),
depicting the long-term behavior of the network. A network can
have more than one attractor. In this case the final sequence of
states (attractor) depends on the initial state. In a biological con-
text, attractors are associated with phenotypes.

All Boolean network simulations were performed with R v3.4.4
[20] and the R-package BoolNet [21] v2.1.5.
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2.2. Boolean network model selection

For our analysis, we extracted Boolean functions of Boolean net-
work models from PubMed with the search item ‘‘Boolean network
model” as well as Boolean functions from the Interactive modelling
of Biological Networks database [22] (https://cellcollective.org).
Networks were selected until May 24th, 2017. We excluded net-
works whose dynamics could not be investigated in feasible time,
networks with too many attractors, and networks in which nearly
all nodes are input nodes. Additionally, we excluded non-scale-free
networks and those that could be reduced to their input nodes. We
analyzed 35 networks with sizes ranging from 5 to 40 nodes.

2.3. Test for scale-freeness

If a Boolean network has a scale-free network architecture, it
can be described by the power-law distribution P kð Þ / k�a where
a is the power-law scaling parameter and k is the number of links
in the network. To identify scale-freeness, we tested if the power-
law distribution can plausibly describe the network’s degree distri-
bution by using the R-package poweRlaw v.70.2 [23].

2.4. Determination of the minimal dynamic node-set

Two strategies were applied to determine a minimal set of
nodes determining the dynamics of the complete network. The
heuristic is defined in terms of significance. Here, the importance
of a node is maximal if it is a constant or an input node, which
we modeled using the identity function only depending on its
own value. Otherwise, the significance of node g is equal to the
number of nodes whose transition function depends on g. There-
fore, the heuristic selects a node g with the highest significance
in each iteration until a set of dynamic driver nodes is found
(Appendix Method A.1). For reference, we use an exhaustive search
algorithm to find minimal dynamic driver sets G of size k for
increasing values of k. The algorithm terminates for the smallest
value of k such that some subset G : G ¼ gi1; � � � ; gik is a dynamic
driver set, i.e. for every assignment a network state is observable
(Appendix Method A.2).

2.5. Reducing network size

The complexity of Boolean networks increases rapidly with
each additional node, and exhaustive search methods face some
difficulty in being be applied to more extensive networks. There-
fore, we reduced the search space of large Boolean networks to
accelerate the analysis. This was achieved by iteratively removing
nodes that do not regulate other nodes (outputs). The procedure
was repeated until all superfluous nodes were removed (Appendix
Method A.1). Please note that the network reduction was only
applied to search for dynamic drivers. This is because output
nodes, by definition, have no outgoing links and thus do not influ-
ence the rest of the nodes of the model (see Appendix Methods
A.1–A.2). In contrast, all other performed measures strictly depend
on the network topology. Hence, to avoid alteration of the original
network structures, all further investigations were performed on
the entire network.

2.6. Partial assignments

A partial assignment defines the value of some nodes of the
Boolean network. The value of the other nodes is undefined. The
transition function F ¼ F1; � � � ; Fnf g; Fi : B

n ! B can be applied to

https://cellcollective.org
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a partial assignment as follows: if the value of the transition func-
tion Fi of a node i is uniquely determined from nodes which are
defined under the partial assignment, then the node is set to this
value. The value of all other nodes remains unassigned initially
(Fig. 1). Repeated application of the transition function to a partial
assignment will define the value of not necessarily all nodes. If the
assignment can be extended to all nodes and hence defines a net-
work state, we say that the network state is observable from the
partial assignment. A set of nodes is called a dynamic driver if a
network state is observable for every assignment to the nodes. A
dynamic driver set is minimal if the cardinality of the set is
minimal.
2.7. Connectivity

Their incoming and outgoing edges define the static connectiv-
ity of nodes within a Boolean network. To identify static hub nodes,
we standardized connectivity using the z-transform: Z ¼ Ki�Kn

r
whereby Ki is the number of interactions of component i to any
node in the network, Kn is the average of interactions of all com-
pounds within the network and r is the standard deviation of Kn.
Compounds with a z-score > 2.5 are considered hub nodes [24].
2.8. Analysis of total biological interactions

Protein interaction tables of each organism considered in one of
our analyzed Boolean network models were obtained from Bio-
GRID [25] (Version 3.5.168), and the directed interactions of each
protein were counted with R [20]. In the case of Boolean network
nodes consisting of several proteins or nodes whose proteins can
be several isoforms, the average of all these possible proteins
was taken. Afterward, the z-score was used again to define biolog-
ical hubs.
Fig. 1. Identification of dynamic drivers. The upper part shows a toy model consisting o
scheme is represented as a circuit, and two-time steps are depicted, which are required t
Colors and symbols are explained in the legend. Below is a complete logic workflow of th
shown the heuristic approach. The exhaustive one is depicted on the right in yellow. Fin
flow chart for each approach. (For interpretation of the references to colour in this figur
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2.9. Analysis of essential genes

We used the HEGIAP database [26] to identify essential genes.
Essential genes are organism and context-dependent. For this rea-
son, the database provides information on essentiality in H. sapiens,
M. musculus, S. cerevisiae, D. rerio, S. pombe, and D. melanogaster.
Given that most of the models in our selection deal with human-
related regulatory processes, we extracted essential genes for H.
sapiens, which were included in our selection of Boolean network
models. The number of essential genes was compared to our
dynamic drivers.

2.10. Network diameter

For all networks, we analyzed the changes in network diameter
upon removing single nodes, accounting for the directionality of
edges, using the diameter(graph, directed = TRUE, uncon-
nected = TRUE) function from the R-package igraph v1.2.6 [26].

2.11. Canalyzation

A node is said to canalyze a Boolean function if knowledge of
the state of this node is sufficient to determine the function’s out-
put [27]. For every node in a given Boolean network, we counted
the number of Boolean functions for which it acts as a canalyzing
node, which we call the canalyzation number.

2.12. Comparison to ‘kernel nodes’

Kim and colleagues [5] published a method to identify ‘kernel
nodes’ as dynamic drivers and tested their method on Boolean net-
work models. Given that this approach is attractor-dependent, we
considered the union of kernel nodes for all attractors. We com-
pared the overlap of identified ‘kernel nodes’ to our dynamic
drivers.
f three nodes (x1, x2, x3) and corresponding regulatory logic functions. The update
o determine the entire states of the model based on the predefined driver (here x3).
e two implemented approaches to identify dynamic drivers. On the left, in green, is
ally, operative examples based on the toy model are displayed on both sides of the
e legend, the reader is referred to the web version of this article.)
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2.13. MAPK/Wnt model establishment

Key MAPK-signaling and canonical Wnt-signaling cascade com-
ponents and their crosstalk components were considered for the
model setup.

The model was manually curated based on a literature search
[28]. Here, first main components of the investigated crosstalk
were evaluated and included via a Google Scholar and PubMed
search. Interactions were included, prioritizing results driven from
the CRC context, integrating both in vitro and in vivo information.
When available, also interactions observed in patients-derived
tumoral tissues were included. Different regulatory levels were
also considered, ranging from regulation of expression to protein
alterations. Finally, interactions were refined via screening of
curated databases BioGRID [25] and MetacoreTM (Thomson Reuters
Inc., Carlsbad, CA). A detailed description of the model setup ratio-
nale and dynamic analysis is available in the Appendix Method A.4.

2.14. Mammalian cell line and cell culture

SW480 cells initially derived from a 50 years old male with col-
orectal adenocarcinoma were obtained from the American Type
Culture Collection (ATCC) to ensure authentication. Cells were cul-
tured at 37 �C and 5% (v/v) CO2 in DMEM high glucose (Sigma-
Aldrich) medium containing 10% fetal bovine serum (Life technolo-
gies) and 1% Penicillin-Streptomycin (Life technologies). Cells were
routinely tested for the absence of mycoplasma (GATC).

2.15. Drug treatment

Drug treatments were performed in 6-well plates 24 h after
seeding; cells were treated with 1 mL of medium containing
2 lM BVD-523 (HY-15816, MedChemExpress) or 12 lM TD-52
(SML2145, Sigma-Aldrich) or a combination of BVD-523 and TD-
52. Drugs were dissolved in DMSO (Sigma-Aldrich).

2.16. Proliferation and apoptosis assay

10 lL of cells were mixed with Trypan blue (Invitrogen), loaded
on a cell counting slide (CountessTM, Invitrogen), and counted with
the Counter II (Invitrogen). Here, we also detected the amount of
living viable and dead cells.

2.17. Wound healing assay

Cells were seeded on fibronectin-coated coverslips. After cells
were confluent, they were treated as described before. The wound
was introduced with a 200 lL pipette tip. A series of pictures of
each wound was taken (BIOREVO BZ-9000, KEYENCE, magnifica-
tion 4x) and merged (program BZ analyzer II, KEYENCE) to a com-
plete photo of the wound that was analyzed further. Wound
closing was measured by calculating whole wound border areas
at different time points for each repetition with the ‘MRI wound
healing tool’ implemented in Image-J [29].

2.18. Immunofluorescence staining

SW480 cells were grown on glass coverslips. Cells were fixed
with 4% paraformaldehyde (PFA, Carl Roth) for 15 min and were
permeabilized with 0.1% Triton X-100 (Merck) for 10 min. Cells
were blocked in 0.5% bovine serum albumin Fraction V (BSA,
cytiva) for 45 min, incubated with primary (E-cadherin #610181,
BD Bioscience, 1:200) and secondary antibodies (anti-mouse Alexa
488, dianova, 1:1000) for 2 h and 1 h at RT each, and were mounted
in DAPI mounting medium (Invitrogen). Using LAS AF software,
images were taken with a Leica TCS SP5 II confocal microscope in
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a single plane (63-objective). Same exposure settings were used
in controls and drug-treated samples.

Images of the same experiment were processed equally using
Adobe Photoshop CS6 software.

2.19. Drug target and resistance analysis for the CRC model

The nodes of the CRC model have also been screened for tar-
geted therapeutic approaches in cancer therapy. Here, we focused
on targeted approaches of any kind (small molecules, siRNA, vacci-
nes etc.) that have reached clinical trials (at least one). The screen-
ing was performed by searching the clinicaltrails.gov website and
on the Therapeutic Target Dataset [30], with the results collected
on the 1st of March 2022. Additionally, clinically employed targets
have also been investigated for an insurgence of resistance to ther-
apy in treated patients via a literature-based screening. For this
analysis, some nodes have been excluded since they refer to helper
or output nodes (Destruction complex (DC), Tight Junctions (TJ),
SCF (scaffold)). Finally, for GSK3b, different activities are repre-
sented by nodes in the model, summarized in one node for this
search.

2.20. Quantification and statistical analysis

Analyses and visualization were done with R [20] (https://
www.r-project.org). All statistical tests are two-sided.

Fig. 2B/C: Statistics were performed with Cochran’s Q test and
post-hoc pairwise sign test with Bonferroni correction (R package
RVAideMemoire [31]).

Fig. 2D-F: Effects of interventions and z-scores were analyzed
by Wilcoxon test (dynamic drivers vs hubs/other nodes) with
Bonferroni-correction.

Fig. 4A-C: Experimental data were analyzed by Wilcoxon test
(each treatment vs untreated).
3. Results

In the following, we will use our method to identify a set of
nodes able to determine the entire dynamic behavior. We applied
our approach to a collection of biologically motivated Boolean
models and obtained the dynamic drivers accordingly. Given that
biologically relevant genes have been connected to some network
properties (such as connectivity level), we further investigated our
sets in this regard. Biologically relevant nodes are also supposed to
yield significant effects when perturbed. Hence, we analyzed the
behavior of our sets when perturbed from both a network dynamic
and a biological relevance perspective. Finally, having confirmed
the relevance of our dynamic drivers, we applied our method for
investigating new targeted approaches (both in silico and in vitro)
in a newly established CRC model.

3.1. Identification of dynamic drivers

In biomedical research, Boolean networks generally model bio-
logically relevant compounds and their interactions to capture a
specific process. Given that this modeling approach allows for eval-
uating the system’s dynamic, it is of great interest to develop
methods to identify efficient disease drivers and targets within
the modeled crosstalk. Hence, previous in silico studies already
showed that small sets of compounds are sufficient to control
the shift of the network dynamics towards the desired attractor
independently from the initial starting conditions [5,32]. Exem-
plarily, one might be interested in identifying compounds respon-
sible for the shift from a quiescent to cancer related attractor or
from a young to an aged one (e.g., models from [8,33]). However,
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Table 1
Boolean network models investigated Depicted are the described process and the
organism for which the model was set up.

Network Process Organism

Azpeitia et al. [37] Root stem cell niche Arabidopsis
thaliana

Brandon et al. [38] Oxidative stress response Aspergillus
fumigatus

Calzone et al. [39] Cell-fate decision Homo sapiens
Cohen et al. [40] EMT Homo sapiens
Dahlhaus et al. [6] Cancer signaling in

neuroblastoma
Homo sapiens

Davila-Velderrain et al.
[41]

Early flower development Arabidopsis
thaliana

Enciso et al. [42] Lineage fate decision of
hematopoietic cells

Homo sapiens

Fauré et al. [43] Mammalian cell cycle Homo sapiens
García-Gómez et al.

[44]
Root apical meristem Arabidopsis

thaliana
Giacomantonio and

Goodhill [45]
Cortical area development Homo sapiens

Gupta et al. [46] Neurotransmitter signaling Homo sapiens
Herrmann et al. [11] Cardiac development Homo sapiens
Irons [47] Cell cycle Saccharomyces

cerevisiae
Klamt et al. [48] T-cell receptor signaling Homo sapiens
Krumsiek et al. [49] Hematopoiesis Homo sapiens
MacLean and

Studholme [50]
Type III secretion system Pseudomonas

syringae
Mai and Liu [51] Apoptosis Homo sapiens
Marques-Pita and

Rocha [52]
Body segmentation Drosophila

Melanogaster
Marques-Sanchez et al.

[53]
CD4 + T-cell fate Homo sapiens

Méndez and Mendoza
[54]

B-cell differentiation Homo sapiens

Méndez-López et al.
[33]

Immortalization of epithelial
cells

Homo sapiens

Mendoza and Xenarios
[55]

T-cell signaling Homo sapiens

Meyer et al. [9] Senescence-associated
secretory phenotype

Homo sapiens

Orlando et al. [56] Cell cycle Saccharomyces
cerevisiae

Ortiz-Gutiérrez et al.
[57]

Cell cycle Arabidopsis
thaliana

Ríos et al. [58] Gonadal sex determination Homo sapiens
Saadatpour et al. [59] T-cell large granular

lymphocyte survival
Homo sapiens

Sahin et al. [60] Cell cycle Homo sapiens
Sankar et al. [61] Hormone crosstalk Arabidopsis

thaliana
Siegle et al. [8] Aging of satellite cells Homo sapiens
Sridharan et al. [62] Oxidative stress Homo sapiens
Sun et al. [63] Endomesoderm tissue

specification
Sea urchin

Thakar et al. [64] Immune response Homo sapiens
Todd and Helikar [65] Cell cycle Saccharomyces

cerevisiae
Yousefi and Dougherty

[66]
Metastatic melanoma Homo sapiens
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this strategy implies a previous knowledge of the attractor land-
scape and a potential interpretation of the system’s dynamic
behavior. Here, we want to define the minimal set of compounds
sufficient to determine the full dynamics, thus reaching all attrac-
tors of the examined model. Following prior approaches [34-36],
we used 35 logic-based Boolean network models (Table 1) for
our investigations. This model type belongs to one of the simplest
dynamic models where molecular compounds are represented as
nodes (n), and their interactions are summarized in Boolean func-
tions (f). Nodes can be either active or inactive. These states are
represented by binary values (0 for inactive, 1 for active). Dynamic
simulations are performed by recursively applying Boolean func-
tions for each node until a steady-state is reached. Under the syn-
chronous update assumption, each node is updated by applying its
Boolean function at each discrete step in time. Therefore, the state
of a Boolean network is given by a vector of values (0/1) assigned to
their nodes. Thus, a state change results from applying a Boolean
function for each node [18]. Hence, the state change of a node
depends on the previous state of other nodes. This state change
of previously not encountered states will occur until an attractor
is reached. Keep in mind that attractors can be associated with bio-
logical phenotypes based on the activity of several nodes. In the
following, we always intend phenotypes in terms of attractors
and phenotypical landscape in terms of attractor landscape. Based
on previous results, we assume that not all nodes are involved in
the network’s dynamic behavior. Therefore, we implemented an
approach to identify sets of dynamic drivers from which it is pos-
sible to determine all states of a network.

In other words, by only knowing the state of the set of the
dynamic drivers, it is possible to infer all the other states by just
applying iteratively Boolean functions (see Fig. 1, upper panel).
We implemented two strategies to search for a minimal set of
dynamic drivers k (Fig. 1). The pseudocode is provided in the
Appendix Methods A.1–A.2. The exhaustive approach computes
every possible combination of potential candidate drivers until
the minimal set for dynamic inference is defined (Fig. 1, Exhaustive
approach depicted in yellow and Demo available on the git repos-
itory). This approach is prohibited in large networks due to the
exponential increase of complexity and time with network size

(Oðnk � 2kÞ). Thus, we applied the full search only as a reference to
evaluate our newly established heuristic search algorithm. The lat-
ter computes growing sizes of driver sets until the set is sufficient
to determine all other states of the nodes in the network (Fig. 1,
Heuristic approach depicted in green Demo available on the git
repository). For this purpose, the heuristic approach assigns a
weight to each node. Starting from external inputs, the algorithm
iteratively considers additional potential drivers based on a
descending number of Boolean functions depending on this node
(Fig. 1). In the following, we will analyze and characterize the
resulting dynamic driver sets from our set of logic models
(Table 1).
3.2. The minimal set of dynamic drivers is small, and its size correlates
with neither topological nor dynamic properties

First, we compared the performance of the heuristic and
exhaustive approach applying our method to our set of networks
(Table 1). Comparing the performance of both algorithms, we
found that the heuristic approach identified a minimal set of
dynamic drivers for 54.3% of the networks. Furthermore, in 32
out of the 35 networks considered, the set of dynamic drivers
defined by the heuristic was a superset of the minimal set found
by an exhaustive search. Hence, solutions from the exhaustive
approach are all found also by the heuristic one. This means the
heuristic method correctly identifies the minimal set; however, it
1607
might add further nodes not strictly required. The performance
of the heuristic is comparably favorable considering the required

run times complexity of Oðn2 � k � 2kÞ.
Furthermore, our analyses revealed that the typical size of the

minimal set of dynamic drivers is small (Fig. 2A). The cardinality
of a set of dynamic drivers ranges from 1 to 9 for an average net-
work size of 19 nodes. Here, the exhaustive approach identified a
mean of 4.4 dynamic drivers within a set of nodes and the heuristic
a mean number of 5.1 nodes.

We investigated if the dynamic driver set size is affected by
topological or dynamic features. Only a low correlation between
the network size and the size of dynamic driver sets (Pearson



Fig. 2. Dynamic in silico analyses. (A) The dynamic drivers’ overall set size is small and independent of the network size (best fit with logarithmic fit). (B) Regulatory
interactions of nodes in Boolean network models are comparable to their biological representatives. (C) The majority of dynamic drivers are no hub nodes. Nodes are defined
as hubs if their z-score was > 2.5 [24]. Statistics were performed with Cochran’s Q test with a post-hoc pairwise sign test with Bonferroni correction. (D) Distribution of z-
transformed connectivity among dynamic drivers, hubs, and other nodes. (E) Percentage of missing attractors or (F) additional attractors after interventions (knockouts/
overexpression; Wilcoxon test). We adjust p-values via Bonferroni corrections and assume significant results if p < 0.05. p-values are depicted on top of each comparison bar.
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correlation: rexhaustive = 0.32, rheuristic = 0.39), as well as between the
size of dynamic driver sets and the number of attractors (Pearson
correlation: rexhaustive = 0.58, rheuristic = 0.50) could be found. We
further found a poor correlation between the size of our sets of
dynamic drivers and the number of inhibitory regulations in the
networks (Pearson correlation: rexhaustive = 0.46, rheuristic = 0.55).
Similar results were observed using a linear fit (network size � dy-
namic drivers: R2

exhaustive = 0.10, R2
heurisitic = 0.15;

attractors � dynamic drivers: R2
exhaustive = 0.30, R2

heurisitic = 0.20; inhi-
bitory regulations � dynamic drivers: R2

exhaustive = 0.21, R2
heurisitic =

0.30) indicating that the size of the dynamic driver set does not
increase linearly with the network size, the number of attractors,
or the number of inhibitory interactions in the networks. Instead,
we obtained the best fit using a logarithmic function for what con-
cerns the network size (Fig. 2A).

3.3. The identified set of dynamic drivers is different from the ones
identified by previous approaches

Different studies have suggested dynamic influencing nodes
based on topological or dynamic features [19,67-71]. For this rea-
son, we investigated whether our set of dynamic drivers is univo-
cally identifiable or overlapping with sets suggested by other
authors.
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From a topological perspective, it is well established that highly
connected nodes, defined as hubs, impact the network dynamics
[68]. Therefore, we studied the connectivity of the sets of dynamic
drivers to assess if they are mainly hub nodes. First, we considered
that the number of links found in Boolean networks might repre-
sent only a subset of the real regulatory interactions. This could
in principle alter the identification of hub nodes. Hence, we com-
pare the hubs identified in the Boolean models with the ones iden-
tified by considering the number of links from BioGRID [25]. Here,
we did not find any differences between the degree of connectivity
in Boolean models and the BioGRID database (p = 1.0). As a conse-
quence, we could show that the level of connections represented in
the Boolean network models for each node faithfully represents the
one in protein–protein interaction networks scenarios (Fig. 2B).

Across all considered Boolean network models (Table 1), only
3.2% of nodes could be identified as hubs (z-score > 2.5 [24]). Com-
paring these nodes with our sets of dynamic drivers showed that
they differ significantly (p = 2.2 � 10-56) (Fig. 2C). This is in accor-
dance with the distribution of z-scores (Fig. 2D), which is signifi-
cantly lower for dynamic drivers than hubs. According to other
studies, the high impact of hub nodes might relate to their poten-
tial role as essential genes. In this context, it could be shown that
only 20% of hubs are essential genes [72] for human networks.
Being aware that the definition of essentiality is
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context-dependent, we quantified the proportion of essential
genes being dynamic drivers or hubs in our set of human networks.
By screening the HEGIAP database [72], we found that 12% of our
nodes were classified as essential in humans. Of these, 27.5% are
dynamic drivers, and only 4% are hubs. Moreover, all essential hubs
identified were also dynamic drivers.

As a second topological measure, we investigated whether our
set of dynamic drivers coincides with nodes whose removal coin-
cides with an enlargement of the networḱs diameter [71]. Again,
our selected set of drives does not significantly induce diameter
changes (Appendix Fig. A1 A, p = 0.58). Accordingly, only 34% of
the total dynamic driver set causes a diameter shift. In contrast,
highly connected nodes strongly induce changes in network diam-
eter if compared to both dynamic drivers and other nodes (Appen-
dix Fig. A1 A, p � 0.009), and 65% of hubs are also causing a
diameter shift.

In summary, our set of selected dynamic drives is not identifi-
able by topological measures relevant to influencing the networḱs
dynamics.

We compared our dynamic driver sets to dynamic features
known to influence network behavior as a next step. The depth
of canalizing functions is known to affect the stability of networks
by reducing the number of attractors (phenotypes) and avoiding
unstable behaviors (large cycling states) [19,70]. Therefore, canal-
ization is, in general, a desired dynamic property of biological net-
works. First, we analyzed the distribution of canalyzers overall
analyzed networks. Here, we found that in our group of networks,
78% of nodes canalyze at least one function, accounting for the bio-
logical relevance of the selected regulatory networks.

Nevertheless, only 10% of nodes act as canalyzing nodes in more
than three functions, given a general average canalization number
of 1.6 overall analyzed networks. Among these, more than half of
the nodes are also found in the selected dynamic driver sets from
our approach. In general, we could show that our selected set of
dynamic drivers shows a higher presence as canalyzing nodes
when compared to the rest of the nodes (Appendix Fig. A1 B). Nev-
ertheless, hub nodes still score a significantly higher number of
canalized functions. The presented results show that our approach
includes also but not only, a large amount of highly canalizing
nodes. This accounts for the relevance of our approach, still intrigu-
ingly showing that our method identifies a set of nodes indepen-
dent from other approaches.

Besides investigating the topological and dynamic features rel-
evant in biologically motived networks, we also compared our
results to another well-established method to derive dynamic dri-
vers. Kim and colleagues published a method to identify ‘kernel
nodes’ which are applied in the context of control of single network
phenotypes in logical models. Therefore, we compared the results
of our method in the networks that were commonly analyzed in
both works. By comparing the resulting sets, we found that they
only partially overlap. Besides, there is no general tendency indi-
cating that our sets might be either a super- or a subset of the ker-
nel sets from Kim and colleagues [5]. This difference in the results
might relate to the necessity of controlling a different set of nodes
to direct the systems towards only one desired phenotype. In other
words, retrieving one attractor might require different specifica-
tions in terms of activity knowledge compared to the entire set
of attractors.

3.4. The perturbation of single dynamic drivers alters network
dynamics and provides biologically relevant interventions

We showed that our method identifies minimal sets of nodes
able to resume the dynamic landscape in terms of attractors of a
certain network. Since these nodes are so relevant to the dynamic
behavior of the examined models, they might also be interesting
1609
perturbation targets able to efficiently alter the long-term behavior
of the analyzed system in vitro or in vivo. In the concepts of logic
modeling, permanent fixation of components to either 1 or 0 can
be compared to in vitro overexpression or knockout experiments.
This can be tackled for single as well as for multiple nodes simul-
taneously. In control theory applied to biological networks, driver
sets need to be all altered to shift behaviors [5,69]. However, it
might be difficult if not infeasible to control more than one or
two nodes simultaneously, especially thinking of interventions
applicable to the clinical context. Hence, we investigated whether
altering one single element in our sets can still perturb the
dynamic behavior of the system.

Thus, we performed perturbation experiments with both over-
expression and knockout of all 663 nodes present in our selection
of Boolean networks. The perturbed attractor sets were compared
to the originally retrieved attractors in the unperturbed conditions.
By matching the attractors’ activities, we could evaluate if the set
of perturbed attractors presented a gain or loss of some of the
attractors in the dynamic landscape (Fig. 2E-F). Both losses and
gains of attractors are considered as having a high impact on the
dynamic landscape of the investigated models. However, the gain
of new attractors can also indicate a decrease in the stability of
the investigated system. For example, when considering an inter-
vention target for drug targeting purposes, the emergence of a
new attractor can make the dynamic landscape more heteroge-
neous and difficult to evaluate. In addition, the new attractors
might also report activities connected to side effects or resistance.
Finally, we grouped our nodes based on being assigned to the
dynamic driver set or not. Further, hub nodes were used for com-
parison control as known inducers of network long-term activities.
Our results show that a single perturbation of genes belonging to
the dynamic driver sets yields significantly higher effects than
the rest of the nodes and is comparable to hub nodes (Fig. 2E-F).
Interestingly, additional attractors are also significantly reduced
if single dynamic drivers are perturbed (Fig. 2F). Overall, we pro-
vided evidence showing that a single perturbation of nodes belong-
ing to the dynamic driver sets significantly affects attractors’
landscapes, potentially evoking fewer alterations in the stability
of the investigated system.

To add a further layer of biological interpretation to the signif-
icant perturbations observed in the attractor landscapes as sug-
gested in Ikonomi et al. [28], we further analyzed and
interpreted the obtained attractor patterns in three case studies
from our set of analyzed models. Matching the in silico prediction
with a biological phenotype is crucial in the final evaluation of
an attractor landscape. Hence, the resulting attractors’ activities
from the perturbed conditions were compared to the experimental
results of published studies.

Cohen et al. [40] describe molecular pathways of tumor devel-
opment to invasion and metastases. In their network, we identified
AKT2 and TWIST1 as dynamic drivers. While the simulation of
AKT2 overexpression reached attractors supporting tumor devel-
opment by inhibiting apoptosis and activation of epithelial to mes-
enchymal transition (EMT), in silico knockout of TWIST1 prevents
tumor-associated characteristics. Our in silico results are supported
by the literature. Here it is described that AKT2 mediates EMT by
inhibiting GSK3b/Snail signaling [73] and that its overexpression
in combination with PTEN loss promotes metastases [74]. Both
events thus support tumor formation. In contrast to the negative
effect of AKT2, the favorable effect of TWIST1 could also be con-
firmed by a literature search. A knockout of TWIST1 in breast can-
cer cells inhibited the expression of EMT markers and prevented
metastases in immune-deficient mice [75].

Likewise, the network of Méndez-López et al. [33] captures the
EMT process. Here, all identified dynamic drivers (Snai2, ESE2, and
p16) are correlated to strong effects on the phenotypic landscape.



Table 2
Boolean functions of the Wnt/MAPK network Interactions are described by logical connectives AND (&), OR. (|), and NOT (!). All proteins are abbreviated by the current
nomenclature. A detailed biological description of the Boolean functions is provided on GitHub: https://github.com/sysbio-bioinf/DynamicDriverSets.

Node Boolean function

EGFR ERBB1/2 & PGE2 &!ERK
KRAS EGFR &!DC
RAF KRAS &!ERK &!AKT
MEK RAF
scf IQGAP1 & RAF & MEK
ERK (scf | PAK1) &!PP2A
eIF4F ERK | mTORC1
EBP1 !ERK &!mTORC1
MYC (ERK | TCF/LEF) &!APC & (!PP2A | CIP2A) &!GSK3 b deg & ERK
cJUN (ERK | TCF/LEF | COX2) & JNK
PI3K PGE2 | EGFR | KRAS
AKT (PI3K | PAK1 | SNAIL1) &!PP2A & (NF-j B | TCF/LEF | SNAIL1)
TSC1/2 GSK3 b deg &!ERK &!AKT
mTORC1 !TSC1/2
S6K mTORC1 & PI3K
TIAM1 (EGFR | AKT) &!PP2A & (MYC | TCF/LEF)
RAC1 (TIAM1 | IQGAP1 | mTORC1 | PI3K | FZD) &!APC
JNK RAC1
PAK1 RAC1 &!PP2A
IQGAP1 !GSK3 b deg

PGE2 COX2 | (SNAIL1 & HDAC2)
HDAC2 !APC & MYC
ERBB1/2 HDAC2 | AP1 | TCF/LEF
cFOS (TCF/LEF | ERK) & (ERK | RSK1/2)
RSK1/2 PI3K & ERK
AP1 cFOS & cJUN
COX2 AP1 | NF-j B | TCF/LEF
FASR NF-j B &!CTNNB1
NF-j B (RAC1 | ERK | AKT) & HDAC2 & GSK3 b cyt

CDH1 (!SNAIL1 &!HDAC2 &!AKT) | (!SNAIL1 & HDAC2 & AKT) | (!SNAIL1 &!HDAC2
& AKT) | (!SNAIL1 & HDAC2 &!AKT) | (SNAIL1 &!HDAC2 &!AKT) | (SNAIL1 & HDAC2 &!AKT) |. (SNAIL1 &!HDAC2 & AKT)

Tight junctions CDH1 & (!IQGAP1 | APC | (RAC1 & IQGAP1))
SNAIL1 ((AXIN2 | ERK | NF-j B) &! GSK3 b deg) | (AXIN2 & GSK3 b deg)
AXIN2 TCF/LEF
FZD MEK | ERK | JNK
DVL FZD
GSK3 b deg !PGE2 &!AKT &!ERK &!NF-j B
GSK3 b cyt !APC | GSK3 b deg

GSK3 b DC AXIN1
APC APC
AXIN1 !DVL
DC !DVL & GSK3 b DC & APC & (AXIN1 | AXIN2)
CTNNB1 !DC
TCF/LEF CTNNB1 & KRAS & RAC1 & (PAK1 | AKT | MEK | IQGAP1 | TIAM1 | NF-j B | SNAIL1)
PP2A !CIP2A
CIP2A EGFR | MEK | ERK
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Nevertheless, our in silico perturbations suggest that the strongest
intervention effect can be observed by targeting the dynamic dri-
ver node Snai2. While the unperturbed network simulation ends
in three single state attractors representing epithelial, senescent,
and mesenchymal characteristics [33], the simulation of Snai2
overexpression only yields one attractor with mesenchymal char-
acteristics [33]. The attractor with mesenchymal characteristics
disappeared by simulating Snai2 knockout [33]. Laboratory exper-
iments also support these effects of Snai2 in the Boolean network
model. Here, in vitro overexpression of Snai2 resulted in a mes-
enchymal appearance of cells within 72 h [76] while depletion
of Snai2 supports premature differentiation [77].

As a final case study, we presented a case study in the context of
intervention for cell reprogramming. The Boolean network of
Krumsiek et al. [49] describes hematopoietic stem cell differentia-
tion. Based on our analysis, we identified six dynamic driver nodes.
A knockout of each of these proteins leads to the loss of a blood cell
lineage in the simulation, while abnormal states are absent [49].
This is in line with results from in vitro experiments [78-80].

To sum up, literature comparison of our simulations of inter-
ventions in three different case studies could enforce our results
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independent of the cell context. Interestingly, none of the pre-
sented case studies included hub nodes in the selected sets. Based
on these results, it can be reasoned that even nodes with only a few
connections in a network structure can change the phenotype of
biological processes. Overall, we provide a method to efficiently
determine biologically motivated intervention targets in logic-
based models.

3.5. Moving from simulation to laboratory validation: A workflow on
how to apply the method to identify new potential drug targets

Systems biology provides a holistic view of complex regulatory
processes, with the aim of their mechanistic understanding.
Thereby, the final hope is to reduce laboratory experimental efforts
by correctly identifying mechanisms and nodes relevant for a cer-
tain process. Nevertheless, the more models grow in size, the more
also computational efforts become demanding. In this context, we
provide a new and crucial method to narrow down the complexity
of in silico investigation by determining dynamic drivers which are
sufficient to determine the whole phenotypical landscape. Given
that we already show above that our set detects promising

https://github.com/sysbio-bioinf/DynamicDriverSets


Fig. 3. Modeling colorectal cancer progression and intervention. (A) An interaction graph of the colorectal cancer (CRC) model is shown. Dynamic drivers are highlighted in
yellow. The size of the circles is proportional to the z-transformed connectivity of the node. (B) Phenotypical distribution during tumor progression is depicted by pie charts.
(C) Phenotypical distribution after dynamic driver intervention. In general, phenotypes are assigned based on the activity of nodes responsible for proliferation and migration
(see also Appendix Figs. A.2-A.3 and Appendix Method A.4). Please note that simulations were performed considering the opposite behavior of each dynamic driver compared
to the adenocarcinoma state (e.g. AKT is active in the adenocarcinoma phenotype, therefore a knockout was performed). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

S.D. Werle, N. Ikonomi, J.D. Schwab et al. Computational and Structural Biotechnology Journal 20 (2022) 1603–1617
intervention and therapeutic targets, we now want to depict the
overall process of moving from model establishment, to simula-
tion, to identification of dynamic drivers, and finally to bench for
in vitro validation.

To this purpose, we constructed a new literature-based Boolean
network model (Table 2) dealing with the crosstalk of two fre-
quently mutated pathways in colorectal cancer (CRC) – Wnt and
MAPK [81] with the final aim of predicting new therapeutic targets.
Within this scope, we focused on a severe phenotype of colorectal
cancer with APC loss and mutated KRAS (adenocarcinoma state).
The final model contains 45 nodes and 256 interactions (Fig. 3A)
and is able to reproduce the progression of CRC (Fig. 3B, Fig. A2).
After assessing that the model’s dynamic landscape represents
cancer progression, we applied our new method to identify
dynamic drivers. Thereby, we identified seven nodes responsible
for the complete network dynamics (Fig. 3A).

Next, we analyzed the potential of the identified dynamic dri-
vers as intervention targets for CRC. To do so, we performed in silico
intervention simulations with these nodes based on a progressed
cancer condition phenotype (loss of APC and active KRAS, adeno-
carcinoma phenotype) and compared the attractor landscape to
the unperturbed network (Fig. 3C and Appendix Fig. A3, and
Appendix Methods A.4). Thereby we focused on the potential of
the interventions to inhibit proliferative and/or migratory traits
(a detailed analysis of the attractor patterns is provided in Appen-
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dix Methods A.4). Additionally, we screened if drugs are available
to potentially treat human beings (Table 3 and Appendix Methods
A.4). This deep investigation indicated that the dynamic drivers
ERK and CIP2A are the most promising unexplored intervention
targets in the landscape of CRC. The rationale of the selection of
dynamic drivers to further test is summarized in Table 3 and
described in detail in the Appendix Methods A.4.

To test now the power of the identified dynamic drivers as
intervention targets, we treated the CRC cell line SW480 with the
specific ERK inhibitor BVD-523 [82] and the specific CIP2A inhibi-
tor TD-52 [83]. Coupling kinase and phosphatase inhibitors has
been applied to prevent known insurgence of resistance of MEK
and RAF inhibitors [84]. Even if this is not reported in the case of
ERK and no resistance mechanisms are known yet from clinical set-
ups (Appendix Table A.1), we tested the combination of the two
targets. This follows the hypothesis that also ERK inhibitors might
be enforced by further phosphates inhibition.

SW480 cells are known to have a loss of function alterations of
APC. Since this loss of APC is associated with increased prolifera-
tion [99] and migration [100] as well as loss of cell adhesion
[101], we studied the impact of our interventions on these effects.
Treatment with either BVD-523 or with TD-52 reduced the prolif-
erative potential of SW480 by 2-fold (mean values, Fig. 4A) within
24 h in comparison to untreated or DMSO treated controls without
increasing apoptosis (Fig. 4B). By combining both approaches of



Table 3
Rationale of selection of dynamic drivers for further laboratory validation Please note that simulations were performed considering the opposite behavior of each dynamic driver
compared to the adenocarcinoma state and the activity of cMYC and Tight Junctions nodes.

Dynamic
Driver

In silico perturbation effectson the
adenocarcinoma phenotype
(see also Fig. 3C, Appendix Fig. A.3
and Appendix Method A.4)

Available small
molecules
(See also
Appendix Method
A.4)

Known for resistance/
inefficacy in patients
(See also Appendix Method
A.4)

Target approaches in humans
(See also Appendix Method A.4)

Targeted in
CRC KRAS
patients
(See also
Appendix
Method A.4)

Proliferation Adhesion

AKT AKT knockout
does not change
proliferative
potential

AKT
knockout
restores
adhesion

[85] [86] [85] NCT
01,333,475
[87];
NCT01802320
[88]

APC APC knock-in
inhibits
proliferation

APC knock-in
restores
adhesion

[89] – – –

CIP2A CIP2A knockout
inhibits
proliferation

CIP2A
knockout
restores
adhesion

[83,90,91] – [92] (As derivative of Erlotinib) –

ERK ERK knockout
inhibits
proliferation

ERK
knockout
restores
adhesion

[82,93,94] – [94], NCT03417739, NCT02994732,
NCT02296242, NCT01781429, NCT03454035,
NCT03698994, NCT02608229, NCT02465060,
NCT03155620

–

GSK3b GSK3b knock-in
inhibits
proliferation

GSK3b
knock-in
restores
adhesion

In vitro shown
mechanisms [95],
but no small mo-
lecules

– – –

TCF/LEF TCF/LEF
knockout does
not change
proliferation

TCF/LEF
knockout
does not
affect
adhesion

Problems of
complex
selectivity [96]

Specific inhibition of Wnt will
destroy tissue homeostasis
[97]. Need for cancer specific
signals

– –

RAC1 RAC1 knockout
inhibits
proliferation

RAC1
knockout
restores
adhesion

Developing
selective
inhibitors is still
an open issue [98]

– – –
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inhibition, an even stronger mean inhibitory effect of 3.4-fold was
achieved (Fig. 4A).

Moreover, the migratory potential of ERK or CIP2A treated
SW480 cells was significantly reduced (Fig. 4C-D). Depth-
characterization of the in silico interventions of the dynamic dri-
vers ERK and CIP2A indicated a restoration of E-cadherin at the cell
membrane (Appendix Fig. A.4). This might explain the reduced
migratory potential observed after inhibiting ERK or CIP2A. Stain-
ing of E-cadherin could support this assumption (Fig. 4E, Appendix
Fig. A.4).

Our workflow could successfully show how the investigation of
dynamic drivers can be implemented to guide in vitro validation of
new intervention targets in a certain tumor landscape. Here, we
could show that the dynamic driver set helps to quickly restrict
candidates for intervention, especially in large networks. Besides,
predictions on the perturbation of candidate targets were con-
firmed in our in vitro experiments. Altogether, we presume that
detecting these dynamic drivers sets can be helpful and supportive
in translating large in silico setups into in vitro validation. Notably,
90 in silico perturbation experiments should have been performed
and singularly evaluated without the dynamic driver set to narrow
down the intervention candidates.
4. Discussion

In the present work, we set up an approach to identify sets of
dynamic drivers responsible for determining the entire dynamic
behavior of the system. Our approach is developed in the context
of Boolean network models. Using dynamic models requires col-
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lecting and integrating existing knowledge, which can be time-
consuming. Next, mathematical terms need to be derived to model
regulatory interactions between the models’ compounds. This
modeling process might require extensive literature and data
research. However, Boolean networks as models have the great
advantage of allowing dynamic simulations of large networks by
not requiring the knowledge of precise kinetic parameters.

Consequently, less data is needed than in other dynamic models
such as systems of differential equations. These parameters are
often unknown, and their automatic inference would require sig-
nificant experimental efforts, especially in modeling extensive
pathway crosstalk. In addition, the latest modeling approaches in
the context of Boolean networks showed the potentiality to per-
form attractor searches up to 100,000 nodes [102], bringing the
dynamic investigation to genome-size networks. From a different
perspective, Boolean models might be considered an oversimplifi-
cation of the actual complexity of biological systems. Nevertheless,
other previous research efforts have shown that predicting pheno-
types via Boolean modeling is a winning strategy, further sustained
by experimental validation on model-based predictions
[9,10,103,104].

Controlling biomolecular networks has become a demanding
task considering shifting the phenotypical landscape towards the
desired behavior. For this reason, different studies proposed meth-
ods to identify dynamic driver sets able to control single pheno-
types based on logic gene regulatory networks [5,32,35,36]. From
this perspective, different approaches are possible. Some works
focus on driving single starting states toward the desired pheno-
type [13,105,106]. Others, instead, investigated how to drive any
possible starting state to a single desired phenotype [5,107-109].



Fig. 4. Targeting dynamic drivers in vitro. ERK and CIP2A identified as dynamic drivers were targeted individually and in combination. (A) Cell counts from proliferation assay
after 24 h post-treatment (n = 5, Wilcoxon test). For both of the single drug treatments, a 2-fold reduction was detected. The combined treatment led to a 3.4-fold decrease.
(B) The percentage of dead cells from the proliferation assay shows no significant differences in apoptosis (n = 5, Wilcoxon test). (C, D) The percentage of wound closure after
48 h post-treatment indicates a reduced migratory potential (BVD-523: n = 5, otherwise: n = 6, Wilcoxon test). (E) Merged confocal microscope pictures of E-cadherin staining
(green) and colored nuclei (blue) 48 h post-treatment. Treatment of dynamic drivers restored E-cadherin at the cell membrane. We adjust p-values via Bonferroni corrections
and assume significant results if p < 0.05. p-values are depicted on top of each comparison bar. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Nevertheless, methods to identify control sets that define the
complete phenotypical landscape are still missing. In this direction,
Choo et al. [32] proposed a method to drive any possible starting
state towards a set of phenotypes sharing the same sink (pheno-
typical node, e.g., ‘‘apoptosis”). While this work targets multiple
phenotypes, it relies on nodes that are not commonly present in
all logical biomolecular networks.

In addition, the diversity of the phenotypical landscape is still
limited. These methods have in common their requirement of pre-
cise knowledge of the desired phenotype to be targeted. Yang and
colleagues [110], instead, by defining the concept of Logical
Domain of Influence (LDOI) of a particular node state, were able
to uncouple the identification of intervention targets to the attrac-
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tor search. By studying the properties of Boolean operators, they
identified by starting from a fixed node state the sets of nodes
whose activities are determined by the applied perturbation (the
LDOI of the fixed node). Again, while this method does not require
an exploration of the state space of the examined Boolean network,
it is still restricted to controlling only a subset of activities related
to a specific target phenotype.

Here, instead, we approached the control problem from a differ-
ent perspective. We set up a method to identify driver sets that
alone can determine the whole attractor landscape of the system.
Our approach is independent of the precise knowledge of the phe-
notypical landscape, and we could show that our identified
dynamic drivers can be targeted independently from each other.
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Interestingly, this ‘‘unbiased” exploration or prediction of dynamic
landscapes has been applied mostly via topological-based methods
[111,112]. Nevertheless, our method strongly relies on the pres-
ence of a Boolean model. In contrast, to, e.g., hubs as potential tar-
gets, which only need directed graphs, our approach uses this
additional information to make a tailored prediction of dynamic
influencing nodes.

As a further example of this, Weidner et al. [112] identified a set
of topological measures able to capture the dynamic properties of
Boolean networks. While such methods are fast and scale up well
with the increase in network sizes, they still retrieve larger sets
of nodes than dynamic-based ones. In the case of Weidner et al.
[112], the intersection of the two selected topological-based mea-
sures led to a reduction of nodes of interest of around 30%. This
selection was, in that case, further reduced by focusing on subsets
of interest-based on other properties such as connectivity.

We applied our method to 35 previously published Boolean net-
works (Table 1). Similar to previous studies [5,32] tackling single
phenotypical control, we could show that a small set of nodes also
determine the whole phenotypical landscape independently of the
network size. By comparing our sets to previously suggested topo-
logical and dynamic measures [71], we showed that our sets of
dynamic drivers are identifiable only via our approach, with
reduced overlap with previously established methods. Interest-
ingly, our method combines nodes previously indicated as impor-
tant for the network dynamics [5,67,68,71,113] and couples them
with new ones. Highly connected components represent a striking
example of this. Our results suggest that highly connected nodes
are not the only relevant components defining our driver sets. In
accordance, Liu and colleagues [13] previously indicated that dri-
ver sets tend to avoid hub nodes. This might appear to contrast
the common assumption that highly connected nodes are master
regulators of biological processes [114]. However, our results indi-
cate that both theories can co-exist by showing that hubs are a
subset of dynamic driver genes. Additionally, both our in silico
and in vitro case studies showed that the effect of targeting our
dynamic drivers is independent of their degree of connectivity.
Moreover, we highlighted a promising role of coupling individual
dynamic drivers as intervention targets.

We envision that our approach can be applied to ease up the
transition between in silico prediction and experimental setup.
For this reason, we established a workflow in the context of new
therapeutic targets for CRC. Starting from a large model, we could
reduce the search of potential targets to only seven nodes, all able
to affect network dynamics. Interestingly, while our model is
shown to be enriched for drug targets involved in clinical trial
use, the set of dynamic drivers tends to exclude targets known to
raise resistance to treatment in cancer patients (Appendix
Fig. A.5, and Appendix Table A1). Since resistance mostly arises
from reactivation mechanisms that limit the dynamic impact of
the intervention, we conclude that evaluating the driver sets on a
dynamic level helps avoid the selection of targets inducing these
resistance mechanisms. In addition, while four out of seven of
our dynamic drivers have reported drugs in clinical trials, the ones
not yet in clinical use might still be interesting as new future tar-
geted interventions.

On these grounds, we deepened our analysis on the driver set
by coupling our in silico prediction with knowledge of drug and
potential clinical applications; we could select two previously
uninvestigated therapeutic targets in CRC and successfully test
them in vitro. Our results highlight the advantages of our method:
1.) Our sets of dynamic drivers are independent of the precise phe-
notype context. In the CRC scenario, this translates into their appli-
cability to different cancer stages or their role as disease drivers. A
striking example of this is APC, both a disease driver and a poten-
tial therapeutic target. 2.) Our method efficiently scales down the
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computational effort. Considering that the established model con-
sists of 45 nodes, 90 in silico knock-in and knockouts should be
simulated and evaluated to determine promising single targets.
This number triples if one is interested in the applicability to differ-
ent cancer stages and disease drivers and exponentially scales up
by target combinations. 3.) Dynamic drivers can be targeted inde-
pendently from each other, leaving a wide range of possibilities for
both single and combinations of interventions.

In the present work, we designed an approach to identify
dynamic drivers able to control the whole phenotypical landscape
of a biomolecular network. To the best of our knowledge, ours is
the first study to address this specific question. Our results support
the understanding of characteristics governing network dynamics
and can be promising in guiding drug target identification.

5. Conclusion

We presented a computational approach to retrieve minimal
sets of dynamic driver nodes whose activities are responsible for
the entire attractor landscape of the simulated system. We could
study both the topological and dynamic features of our retrieved
sets of dynamic drivers by applying our approach to a wide range
of biologically motivated networks. Our results indicate that
dynamic driver nodes are less highly connected than hub nodes,
and their perturbation leads to relevant shifts in the dynamics of
the analyzed networks. We could associate loss of dynamic drivers
with disease drivers or therapeutical interventions. Finally, we
could show their application as a therapeutic intervention in a case
study where we presented a new dynamic model to study colorec-
tal cancer progression.
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