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Abstract 

Background:  To perform virtual re-executions of a breast cancer clinical trial with a time-to-event outcome to dem‑
onstrate what would have happened if the trial had used various Bayesian adaptive designs instead.

Methods:  We aimed to retrospectively “re-execute” a randomised controlled trial that compared two chemotherapy 
regimens for women with metastatic breast cancer (ANZ 9311) using Bayesian adaptive designs. We used computer 
simulations to estimate the power and sample sizes of a large number of different candidate designs and shortlisted 
designs with the either highest power or the lowest average sample size. Using the real-world data, we explored what 
would have happened had ANZ 9311 been conducted using these shortlisted designs.

Results:  We shortlisted ten adaptive designs that had higher power, lower average sample size, and a lower false 
positive rate, compared to the original trial design. Adaptive designs that prioritised small sample size reduced the 
average sample size by up to 37% when there was no clinical effect and by up to 17% at the target clinical effect. 
Adaptive designs that prioritised high power increased power by up to 5.9 percentage points without a correspond‑
ing increase in type I error. The performance of the adaptive designs when applied to the real-world ANZ 9311 data 
was consistent with the simulations.

Conclusion:  The shortlisted Bayesian adaptive designs improved power or lowered the average sample size substan‑
tially. When designing new oncology trials, researchers should consider whether a Bayesian adaptive design may be 
beneficial.
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Introduction
Randomised controlled trials are the gold standard for 
demonstrating the efficacy of new treatments in evi-
dence-based medicine. Traditional randomised con-
trolled trials recruit up to a fixed sample size that is 
calculated according to a desired power, significance 
level, and estimated effect size (we herein refer to such 
designs as “fixed designs”). Poor a priori understanding 
about effect sizes can result in under- or over-powered 

fixed designs. An overpowered trial design will continue 
to randomise patients to an inferior treatment with-
out good cause. An underpowered trial design will fail 
to reach a definitive conclusion because the estimated 
treatment effect is too uncertain. Because a fixed design 
generally cannot be changed once recruitment is under-
way without either compromising the integrity of a trial 
or incurring statistical penalties, even if reliable interim 
effect sizes become available, the problem of under- or 
over-powering is real.

Adaptive designs can avoid being under- or over-
powered by modifying the design based on interim 
results. At an interim analysis, an adaptive design can 
avoid overpowering by stopping the trial if a strong 
treatment effect is observed, or avoid underpowering 
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by increasing the maximum sample size if it is likely 
to be too small. Advanced adaptive designs can be 
very flexible and are often able to investigate multiple 
treatments in multiple populations simultanously, and 
reach conclusions earlier than fixed trial designs [1]. 
Although adaptive designs can use frequentist methods 
[2–5], Bayesian methods offer more efficiency and flex-
ibility [6].

The advantages of Bayesian adaptive designs are par-
ticularly desirable in oncology, where clinical trial failure 
rates are the highest among all medical specialties [7, 8]. 
Maximising power for a given sample size is especially 
important for rare cancers and cancer subtypes, where 
populations are small.

Despite the potential benefits of Bayesian adap-
tive designs, they are not widely used [9–11], possibly 
because the designs are unfamiliar to most researchers 
and clinicians. Although fixed designs often use simple 
and well-established methods, there are many different 
ways to design a Bayesian adaptive trial, with little guid-
ance on what designs are most suitable for a given sce-
nario [12–16]. In contrast to fixed designs where sample 
sizes are calculated using well-known mathematical for-
mulae, Bayesian adaptive designs generally require com-
putations for which no mathematical formulae exist. 
Instead, operating characteristics such as type II error 
(i.e. the false negative rate, noting that 1 less the type II 
error rate is commonly referred to as the “power”), type I 
error (i.e. the false positive rate, also commonly referred 
to as the “significance” level), and average sample size can 
often only be estimated for adaptive designs by simulat-
ing large numbers of virtual trials, requiring specialised 
software and often considerable computing resources.

Simulations come with simplifications and other 
assumptions that may not adequately approximate the 
complexities of reality. “Virtual re-executions,” re-analys-
ing real-world clinical trial data using Bayesian adaptive 
techniques, provide reassurance that the performance 
of these designs in simulation translates to the real 
world, and also serve as case studies that demonstrate 
the advantages of Bayesian adaptive designs to clinical 
researchers who may not be familiar with computer sim-
ulation methods. Recently, Ryan et al. performed virtual 
re-executions of a respiratory trial with a binary outcome 
[17] and an orthopedic trial with a continuous outcome 
[18] to demonstrate what would have happened if the 
trials used various Bayesian adaptive designs. We take 
a similar approach to Ryan et  al. [17, 18], but we focus 
on a medical oncology setting and virtually re-execute 
a completed phase II breast cancer trial with a time-to-
event outcome. Time-to-event outcomes are especially 
challenging for Bayesian adaptive designs because there 

is less information to adapt upon at each interim analysis 
if an event has not yet happened.

We proceed by describing the motivating case study 
along with shortlisted adaptive designs, then describe the 
methods to assess the shortlisted designs via simulation 
and virtual re-execution, follow by describing the results 
in detail, and conclude with a general discussion and 
summary of key concepts.

Methods
Case study
In 1993, Breast Cancer Trials, known at the time as the 
Australia and New Zealand Breast Cancer Trials Group, 
initiated the ANZ 9311 trial [19] to investigate whether 
increasing dose intensity of chemotherapy improved sur-
vival among patients with metastatic breast cancer.

ANZ 9311 was an open-label trial that randomised 
women with metastatic breast cancer 1:1 to receive either 
high-dose epirubicin 150 mg/m2 and cyclophosphamide 
1500  mg/m2 with filgrastim every 3  weeks for 3 cycles 
(HDEC), or standard dose epirubicin 75  mg/m2 and 
cyclophosphamide 750 mg/m2 every 3 weeks for 6 cycles 
(SDEC). The primary outcome was overall survival. A 
total of 225 participants were deemed sufficient to detect, 
with 80% power at the 5% significance level, a change in 
median overall survival of 10 versus 15 months.

The trial recruited 235 participants over the period 
from April 1994 to July 1998 for an average rate of 4.6 
per month. At the time of final analysis, 19.25 years after 
recruitment began, four participants (1.7%) were lost 
to follow-up. Median overall survival was 14.5  months 
in the HDEC arm versus 16.5 months in the SDEC arm 
(logrank p = 0.29).

Shortlisted fixed and adaptive designs
As a benchmark to compare the Bayesian adaptive 
designs against, we considered how we would address 
the ANZ 9311 clinical question today using a fixed 
design with a shorter follow-up time than the original 
19.25  years. The sample size for the fixed design was 
recalculated using the Kim and Tsiatis [20] method with 
Freedman’s formula [21]. Survival times were assumed 
to be exponentially distributed, with estimated median 
overall survival of 10  months in the control arm and 
15  months in the experimental arm. It was assumed 
that participants would be recruited at an average rate 
of 4.5 per month, and had a 1% chance of being lost to 
follow-up per year. Assuming a maximum of 10  years 
for recruitment and follow-up, 234 participants (117 per 
arm), yielding 197 events, provided 80% power to detect 
a hazard ratio corresponding to the estimated survival 
difference at the 5% two-sided significance level. Hence, 
the fixed design trial would close to recruitment when 
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234 participants have been recruited, and final analysis 
would occur at 197 events.

We shortlisted several adaptive designs for the vir-
tual re-execution of ANZ 9311. Each design specified an 
interim analysis every 28 days, at which point a probabil-
ity of efficacy was computed using one of several meth-
ods. In general, at each of these interim analyses, the 
trial stopped for futility if this probability dropped below 
a lower decision threshold, dL , provided at least a mini-
mum number of events for futility, kF , had occurred in 
each arm. The trial stopped for success if this probabil-
ity exceeded an upper decision threshold, dU , provided 
at least a minimum number of events for success, kS , had 
occurred in each arm. If neither threshold was reached, 
the trial stopped inconclusively when the maximum sam-
ple size was reached in either arm. All adaptive designs 
that we considered used equal randomisation. The maxi-
mum sample size per arm was set at 117 so that it could 
be compared directly to the fixed design. Several spe-
cific decision methods for time-to-event outcomes were 
considered:

1.	 Posterior probability: The posterior probability that 
the mean survival time in the experimental arm is 
larger than that in the control arm, calculated using 
the “exponential-inverse gamma model” as described 
by Thall et al [12].

2.	 Predictive probability of success (PPS): PPS is the 
probability that the trial will stop for success by the 
time the maximum sample size  is reached, based on 
data up to and including the current interim. Tang 
[13] describes a method of calculating the PPS of the 
Cox proportional-hazards model, where “success” is 
the two-sided p-value being less than a significance 
threshold, dα , in favour of the experimental arm.

3.	 Conditional probability of success (CPS): CPS is 
the probability of observing success given the treat-
ment effect equals a specific value (in contrast to PPS, 
which considers the entire posterior probability dis-
tribution of the treatment effect). Because the treat-
ment effect has a range of possible values, so does 
CPS. Here we use its median value as described by 
Tang [14].

4.	 Goldilocks: The “Goldilocks” design is a subtle vari-
ation of PPS. Here, futility is determined by PPS 
assuming recruitment continues until maximum 
sample size is reached, whereas success is deter-
mined by PPS assuming recruitment is closed at the 
current sample size [15]. We calculate these probabil-
ities using Tang’s methods [13].

5.	 PPBS: PPS can also be calculated where “success” is 
in terms of the posterior probability, as described 
above, exceeding a Bayesian success threshold dS [16] 

(as opposed to a p-value being less than a significance 
threshold). We refer to this as “predictive probability 
of Bayesian success” (PPBS) to distinguish it from 
PPS based on p-values.

Software and simulation settings
Using the R and C +  + programming languages [22], we 
wrote custom software capable of simulating a range of 
different trial designs. Recruitment times were generated 
according to a Poisson process. Average recruitment rate, 
survival times, and dropout rates were simulated accord-
ing to the assumptions described in the previous section.

Selection of shortlisted designs
In adaptive trials, different decision methods and event 
numbers can result in different operating characteristics. 
For each of the five decision methods, settings forkF,kS , dL
,dU,dα , and dS that yielded desirable operating character-
istics were found through simulation. Operating charac-
teristics were considered desirable if they met both of the 
following criteria:

1.	 Probability of success less than that of the fixed 
design when the null hypothesis is true (median 
survival of 10  months in both arms), analogous to 
improved frequentist type I error.

2.	 Probability of success greater than that of the fixed 
design when the true effect size is in the region 
of the estimated effect size (median survival of 
14  months to 16  months in the experimental arm 
versus 10  months in the control arm), analogous to 
improved frequentist power.

Table 1 lists the possible design settings that were con-
sidered for each of the five decision methods. Every pos-
sible combination of settings comprised a single design 
(thus, we explored 19,500 different designs in total), each 
of which were simulated over a range of effect size sce-
narios. For each scenario, operating characteristics such 
as average sample size were calculated by simulating the 
trial up to 100,000 times, in line with United States Food 
and Drug Administration recommendations [23]. Among 
all designs satisfiying the stated criteria, two shortlisted 
designs were selected for virtual re-execution for each of 
the five decision methods, one that prioritised low sam-
ple size and another that prioritised high power.

Virtual re‑execution of shortlisted designs
We re-executed each of the shortlisted designs using 
the real-world data from ANZ 9311. Recruitment 
times, arm allocations, and clinical outcomes remained 
as they were in the original trial. At each interim 
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analysis, the Bayesian computations were performed 
using the data that would have been known at the time. 
The virtual re-execution of a shortlisted design corre-
sponds to what would have happened had that design 
been used for the real-world realisation of the ANZ 
9311 trial. As each such re-execution represents only 
a single realisation of the trial, virtual re-executions 
were also performed using bootstrapping to estimate 
the probability of these results happening if ANZ 9311 
were repeated. Here, participants were still recruited 
at the original times, but arm allocations were re-ran-
domised and clinical outcomes are randomly sampled 
with replacement from among the observed outcomes 
of each respective arm. Bootstrapping was performed 
using 100,000 replicates. If the list of original recruit-
ment times was exhausted in any virtual re-execution, 
additional recruitment times were generated according 
to a Poisson process, with an average recruitment rate 
equal to that observed for ANZ 9311.

Results
Comparison of decision methods
Figure  1 compares the probabilities of stopping for effi-
cacy and mean sample size for the five trial designs across 
a range of plausible effect sizes. Each design used a dif-
ferent decision method while keeping the other settings 
atkF = 20,kS = 20 , dL = 0.1,dU = 0.99 , and where appli-
cable,dα = 0.05,dS = 0.975 . For these settings, the PPS, 
CPS, Goldilocks, and PPBS designs were much more 
“decisive” than the posterior probability designs in that 
they had minimal probability of reaching maximum sam-
ple size with an inconclusive result. PPS and Goldilocks 
performed similarly to each other, with Goldilocks hav-
ing a very small advantage over PPS in terms of higher 
power and lower mean sample size. CPS and PPBS also 
performed similar to each other, with both yielding lower 
power and lower mean sample size compared to PPS and 
Goldilocks.

Table 1  Candidate design settings for each decision method

PPS Predictive probability of success, CPS Conditional probability of success, PPBS Predictive probability of Bayesian success

Parameter Posterior PPS, CPS, Goldilocks PPBS

Minimum number of events
  To stop for futility (kF) 10, 20,..., 50

  To stop for success (kS) 10, 20,..., 50

Decision method thresholds
  Lower (dL) 0.05, 0.1, 0.2,..., 0.5 0.005, 0.01, 0.025, 0.05, 0.1, 0.2

  Upper (dU) 0.99, 0.991,..., 0.999 0.95, 0.975, 0.99, 0.995, 0.999, 0.9995

  Significance (dα) – 0.03, 0.04,..., 0.07 –

  Bayesian success (dS) – – 0.965, 0.97,..., 0.985

Fig. 1  Simulated operating characteristics comparing five different decision methods. PPS: predictive probability of success; CPS: conditional 
probability of success; PPBS: predictive probability of Bayesian success
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Shortlisted designs and operating characteristics
We were able to find designs that satisfied our selection 
criteria for each of the five decision methods. Table  2 
describes the ten shortlisted designs that best prioritised 
either low sample size or high power. Table  3 describes 
the operating characteristics of each design in terms of 
type I and II errors and the sample size distribution at 
both the null and the target effect. Adaptive designs that 
prioritised small sample size reduced average sample size 
by up to 37% when there was no clinical effect and by 
up to 17% at the target clinical effect while still achiev-
ing desirable type I and II errors. Adaptive designs that 
prioritised high power yielded an absolute increase in 
power by up to 5.9% while still achieving desirable type 
I errors. Among the candidate designs, PPS and Goldi-
locks achieved the smallest average sample sizes, whereas 
PPS, Goldilocks and PPBS achieved the highest power.

Figure 2 illustrates the operating characteristics of the 
ten shortlisted designs across the range of plausible effect 
sizes.

Virtual re‑execution of ANZ 9311
Table  4 describes what would have happened had each 
shortlisted design been used for ANZ 9311. All but one 
of the shortlisted adaptive designs stopped early for futil-
ity, arriving at the equivalent conclusion as the original 
trial, but doing so while reducing sample size by up to 
33% compared to the original trial. To address the ques-
tion of whether these benefits would be consistently real-
ised if ANZ 9311 were to be repeated by recruiting a new 
sample from the same population, Table 5 describes the 
estimated operating characteristics of each shortlisted 
design using bootstrapped ANZ 9311 data. The demon-
strated behaviour of shortlisted designs during virtual re-
execution was consistent with their simulated operating 

characteristics. All shortlisted designs had a very low 
probability of stopping for success, of around 0.1%. Pos-
terior probability designs had a substantial chance of 
reaching maximum sample size without a conclusion, but 
PPS, CPS, Goldilocks and PPBS almost always stopped 
early for futility. When prioritising small sample size, PPS 
and Goldilocks yielded the largest improvement com-
pared to the fixed design, reducing average sample size by 
42%. Shortlisted designs prioritising high power, despite 
having the highest tendency to recruit more participants 
in pursuit of this goal, still reduced average sample size 
by 6–9% compared to the fixed design.

Table 2  Settings for each shortlisted design

PPS Predictive probability of success, CPS Conditional probability of success, PPBS Predictive probability of Bayesian success

Strategy Parameter Posterior PPS CPS Goldilocks PPBS

Small average
sample size

kF 20 10 30 10 30

kS 50 10 40 20 50

dL 0.2 0.025 0.01 0.025 0.01

dU 0.993 0.99 0.999 0.975 0.975

dα – 0.04 0.05 0.04 –

dS – – – – 0.98

High power kF 30 50 50 50 50

kS 50 10 50 50 50

dL 0.05 0.01 0.01 0.01 0.005

dU 0.993 0.9995 0.9995 0.995 0.9995

dα – 0.05 0.05 0.05 –

dS – – – – 0.975

Table 3  Simulated operating characteristics for shortlisted 
designs

PPS Predictive probability of success, CPS Conditional probability of success, 
PPBS Predictive probability of Bayesian success. The target effect represents the 
scenario of a true median survival of 15 months in the experimental arm and 
10 months in the control arm

Design Type I error 
(%)

Power (%) Sample size, mean (SD)

Null effect Target effect

Fixed 2.50 80.8 235 (1.9) 235 (1.9)

Small sample size
  Posterior 2.46 81.3 184 (59.8) 211 (25.3)

  PPS 2.26 81.4 149 (59.2) 199 (50.4)

  CPS 2.39 81.8 154 (44.5) 207 (34.8)

  Goldilocks 2.45 81.7 149 (59.0) 194 (47.6)

  PPBS 2.42 81.5 153 (43.3) 205 (29.5)

High power
  Posterior 2.45 82.1 223 (30.5) 213 (20.7)

  PPS 2.44 85.9 198 (29.1) 225 (25.4)

  CPS 2.36 84.8 187 (28.2) 222 (19.2)

  Goldilocks 2.42 85.9 198 (29.0) 224 (17.4)

  PPBS 2.44 85.9 191 (29.4) 223 (18.6)
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Discussion
We have shown how Bayesian adaptive designs can 
substantially outperform a fixed design in terms of 
lower type I and II errors, and average sample size in a 
real-world oncology clinical trial. The virtual re-execu-
tions of real-world data were consistent with the simu-
lation results. Although in general delayed outcomes 
are problematic for adaptive trial designs [24], we were 

able to demonstrate the benefits of using such designs 
across a range of median survival times in the range of 
7 to 18 months via simulation. The shortlisted designs 
are specific to our clinical scenario; other clinical sce-
narios would require different designs to be found 
through their own simulations [25]. In particular, it 
may be harder to find adaptive designs with good oper-
ating characteristics in scenarios with longer survival 

Fig. 2  Simulated operating characteristics of shortlisted designs. PPS: predictive probability of success; CPS: conditional probability of success; 
PPBS: predictive probability of Bayesian success

Table 4  Virtual re-execution of shortlisted designs using real-world ANZ 9311 data

PPS Predictive probability of success, CPS Conditional probability of success, PPBS Predictive probability of Bayesian success. The hazard ratios and 95% confidence 
intervals (CI) are the estimates from the Cox proportional-hazards model, unadjusted for any adaptations, for illustrative purposes only

Design Trial conclusion Duration (months) Sample size Hazard ratio (95% CI)

Original trial H0 not rejected 53.0 recruitment + 91.2 follow-up 235 1.17 (0.90, 1.52)

Small sample size
  Posterior Early futility 69.9 233 1.14 (0.85, 1.52)

  PPS Early futility 50.6 214 1.03 (0.71, 1.48)

  CPS Early futility 43.2 164 1.00 (0.66, 1.52)

  Goldilocks Early futility 50.6 214 1.03 (0.71, 1.48)

  PPBS Early futility 42.3 158 0.98 (0.64, 1.50)

High power
  Posterior Inconclusive 120.5 233 1.17 (0.90, 1.53)

  PPS Early futility 52.4 228 1.10 (0.77, 1.58)

  CPS Early futility 47.8 189 1.00 (0.68, 1.47)

  Goldilocks Early futility 52.4 228 1.10 (0.77, 1.58)

  PPBS Early futility 47.8 189 1.00 (0.68, 1.47)
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times, faster recruitment rates, and more loss to follow-
up. Note also that the posterior probability and PPBS 
designs assumed exponentially distributed survival 
times which may be not be suitable for studies where 
this assumption is unjustifiable.

Our study considered five different decision meth-
ods for early stopping. To our knowledge, this is the 
first time these have been directly compared in this 
way. For all five decision methods, we were able to 
shortlist designs with higher power, lower type I error, 
and lower average sample size compared to the fixed 
design. Among the five decision methods, the short-
listed designs using PPS, CPS, Goldilocks, and PPBS 
had noticeably better operating characteristics than 
those using posterior probability. This may be because 
trials governed by posterior probability decisions have 
a substantial probability of reaching maximum sample 
size without reaching a conclusion, resulting in ineffi-
ciency, whereas this is not the case for with PPS, CPS, 
Goldilocks, and PPBS-based decision methods. Over-
all, PPS and the closely related Goldilocks decision 
method offered the best performance, whether prior-
itising small average sample size or high power. This 
pattern was consistent across a wide range of simulated 
effect sizes, and also when the shortlisted designs were 
applied to real-world trial data. This may be because 
PPS and Goldilocks are inherently more efficient than 
the other decision methods, or because our search 
space of candidate designs happened to be more suited 
towards them. Whatever the case, PPS and Goldilocks 
may offer more potential than posterior probability in 
designs for similar clinical scenarios.

Bayesian adaptive trials have potential to substantially 
improve the way trials are conducted in medical oncol-
ogy. Smaller average sample sizes in medical oncology 
trials would mean better cancer treatments are identi-
fied more quickly, and with lower research and devel-
opment costs, including fewer patients randomised to 
suboptimal treatments. Higher power means fewer 
effective treatments remaining unidentified.

To foster the the use of Bayesian adaptive designs 
their unfamiliarity among researchers must continue 
to be addressed. Studies such as this one, using real-
world trial data in virtual re-executions, are important 
in addressing such unfamiliarity.

Conclusion
Compared to fixed designs, Bayesian adaptive designs 
can offer substantial improvements in terms of higher 
power and lower average sample, even for time-to-
event outcomes with median times in the order of many 
months. Researchers in oncology designing new studies 
should consider whether their trials would benefit from 
using a Bayesian adaptive design.
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