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Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials

dampening PaCa mortality rates are not satisfying. Tumor progression is driven by

the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and

surrounding cells and tissues as well as distant organs, where tumor-derived extracellular

vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of

immunosuppressive leukocytes, perineural invasion, and early spread toward the

peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer,

but are most prominent in PaCa. Here, we report on the state of knowledge on

the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7,

EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic

cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers

to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features,

where feedback loops between stromal elements and tumor cells, including distorted

transcription, signal transduction, and metabolic shifts, establish vicious circles. For

the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to

cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient

transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of

tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by

signaling receptor binding. PSC, tumor-associated macrophages, and components of

the dysplastic stroma contribute to perineural invasion with signaling pathway activation

including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the

immune system. Although rich in immune cells, only immunosuppressive cells and factors

are recovered in proximity to tumor cells and hamper effector immune cells entering

the tumor stroma. Besides a paucity of immunostimulatory factors and receptors,

immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and

M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts

for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system.

We anticipate further deciphering the molecular background of these recently unraveled

intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.

Keywords: pancreatic cancer, metastasis, exosomes, cancer-initiating cell markers, stellate cells, metabolism,

perineural invasion, immunosuppression
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INTRODUCTION

The Metastatic Cascade and Tumor Cell
Dissemination
More than 90% of cancer mortality is related to metastasis
(1), which in carcinoma requires completion of the metastatic
cascade starting with local invasion of the surrounding
extracellular matrix (ECM) and cells and processing through
intravasation, surviving transport in vessels, arrest at distant
organs, extravasation, surviving in the foreign environment
and reinitiating tumor growth (2). These complex biological
events are orchestrated by cell autonomous and non-autonomous
signaling cascades. Local invasion requires breaching the basal
membrane (BM) promoted by tumor-derived proteases and
leading to liberation of growth factors and integrin activation
affecting cell polarity and survival (3). Alternatively, tumor cells
may use a protease- and integrin-independent, Rho1/ROCK1-
dependent amoeboid invasion program (4). For local invasion
of individual cells, tumor cells adopt a developmental epithelial-
mesenchymal transition (EMT) program, which orchestrates
activation of sets of transcription factors (Tf) that repress cell-
cell adhesion molecules and induce expression of mesenchymal
markers (5). Having passed the BM, tumor cells encounter
the tumor stroma, which consists of endothelial cells (EC),
pericytes, adipocytes, fibroblasts (FB), and bone marrow
mesenchymal cells. Tumor cells push the reactive stroma
toward pro-tumorigenic factor secretion and pro-tumorigenic
cell recruitment. Thus, contact with the surrounding stroma
is the first step where tumor cells receive a self-amplifying
feedback (6, 7). The following step of invasion is strongly
promoted by tumor-induced angiogenesis/lymphangiogenesis,
the newly formed vessels being tortuous, leaky and continuously
reconfiguring themselves, weak interactions between adjacent
EC and the incomplete pericyte coverage facilitate tumor

Abbreviations: AA, amino acid; a, activated; ADCC, antibody-dependent
cellular cytotoxicity; ASC, adult stem cells; BM, basal membrane; BMC,
bone marrow cells; CAF, cancer-associated fibroblasts; CIC, cancer–initiating
cells/cancer stem cells; CNS, central nervous system; CoCa, colorectal cancer;
CRD, carbohydrate recognition domain; CTL, cytotoxic T lymphocytes; DC,
dendritic cells; DFS, disease free survival; DR, desmoplastic reaction; EC,
endothelial cells; ECM, extracellular matrix; EE, early endosome; EMT, epithelial
mesenchymal transition; ER, endoplasmic reticulum; ERM, ezrin, radixin, moesin;
eRNA, enhancer lncRNA; ESC, embryonic stem cells; ESCRT, endosomal sorting
complex required for transport; EV, extracellular vesicles; Exo, exosome; FA,
fatty acid; FB, fibroblast; FN, fibronectin; GPCR, G protein-coupled receptor;
HCC, hepatocellular carcinoma; HNRNP, heterogeneous ribonucleoprotein; ICD,
intracellular domain; ILV, intraluminal vesicle; kd, knockdown; ko, knockout; LN,
laminin; lnc, long noncoding; LNC, lymph node cells; MDSC, myeloid-derived
suppressor cell; MET, mesenchymal-epithelial transition; Mφ, macrophage; MHC,
major histocompatibility complex; miRNA, microRNA; MS, mass spectrometry;
MV, microvesicles; MVB, multivesicular body; nc, non-coding; NEAA, non-
essential amino acids; NK, natural killer cells; Non-CIC, non-metastasizing tumor
cells; PaCa, pancreatic cancer; PanIN, pancreatic intraepithelial neoplasia; PNI,
perineural invasion; PSC, pancreatic stellate cells; RISC, RNA induced silencing
complex; RBP, RNA binding proteins; RNP, ribonucleoprotein; ROS, reactive
oxygen species; RTK, receptor tyrosine kinase; SC, stem cells; SNS, sympathetic
nervous system; TAM, tumor-associated macrophages; TCA, tricarboxylic acid;
TEM, tetraspanin- and glycolipid-enriched membrane microdomain; TEX, tumor
exosomes; Tf, transcription factor; Th, helper T cells; TJ, tight junction; Treg,
regulatory T cells.

cell intravasation. EC wall passage is assisted by TGFβ1 and
tumor-associated macrophages (TAM), providing CFS1/MCSF1

and EGF1. In addition, metabolic adaptations of growing
and sprouting EC support (lymph)angiogenesis (8–10). In the
vasculature, tumor cells are exposed to a variety of stresses.
In the absence of cell-cell or cell-matrix adhesion, epithelial
cell would undergo apoptosis/anoikis, which is circumvented
by metabolic shifts toward the pentosephosphate pathway and
anaerobic glycolysis. Matrix detachment-forced reduced glucose
uptake assists LKB11 activation, which increases protein kinase
AMP1 catalytic subunit PRKAA1 activity. This inhibits acetyl-
CoA carboxylases ACACA/B1, lowers NADPH1 consumption
in fatty acid (FA) synthesis, but increases NADPH generation
through an alternative pathway. This process reduces reactive
oxygen species (ROS), essential for precluding detached cancer
cell anoikis (10–13). Shear stress and the attack by the innate
immune system are circumvented by tumor cell tissue factor
(TF1) and selectins binding to platelets to form microemboli,
which act as protective shields for the tumor cells (14, 15).
Tumor cells mostly extravasate between adjacent EC. Adhesion
to EC is facilitated by selectins, cadherins, integrins, CD44,
Ig superfamily members, CD146/MUC181, and by homophilic
interactions between JAM1. Interactions between tumor cell-
provided factors such as ANGPTL41 and α5β1, CDH5/CD1441,
CLDN51, EREG1, COX21, and MMP1 support extravasation.
Actin remodeling, opening of junctions, necroptosis and APP1-
DR61-assisted EC death are discussed as underlyingmechanisms.
Platelet-, neutrophil- and monocyte-provided cytokines and
chemokines also assist extravasation (16, 17).

Metastatic Growth
There is ample evidence that migrating cancer cells leave the
circulation for well-prepared soil, known as premetastatic niche.
It is arranged in advance of cancer cell arrival by receiving
information via tumor exosomes (TEX). Integrins, tetraspanins,
receptor tyrosine kinases (RTK) and G-protein coupled receptors
(GPCR) are important for message transfer (18–21). Established
micrometastases may persist for weeks to years in a state of
long-term dormancy. This dormancy relies on resting state
persistence or failure to initiate angiogenesis, or on apoptosis-
promoting host cells. Macroscopic metastatic outgrowth requires
a multitude of adaptive programs that vary depending on
the organ site of the metastasis and the original tumor. No
metastasis-specific genetic changes being observed, outgrowth
is supposed relying on epigenetic changes, like aberrant DNA
methylation, altered chromatin structure, and activation of
transcriptional programs that can be facilitated/guided by long
non-coding (lnc)RNA. Two prerequisites must be fulfilled.
One is the presence of cancer-initiating cells (CIC) with the
capacity for self-renewal that in part is promoted by EMT-
related Tf. The other is the establishment of adaptive programs
enabling growth in the foreign environment. This includes
some common traits such as metabolic adaptation and survival
pathway activation. Other adaptive programs vary with the
site of metastasis. Thus, similar to primary tumor growth,

1Alphabetic list of gene/protein full names: Table S1.
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metastatic outgrowth is supported by the surrounding stroma
including TGFβ1 and periostin, pro-inflammatory cells, local
fibroblasts, and supportive ECM components (22–24). There
remains a last query. CIC-derived metastases frequently reflect
the mixed phenotype of the primary tumor. This may be
due to the reversibility of EMT, called mesenchymal-epithelial
transition (MET). However, further studies are required to
elucidate tumor-inherent and surrounding-supported MET
reprogramming (25–27).

Twenty-five years ago, the metastatic cascade was described
as sequential processes in microecosystems (28). This still holds
true, where striking progress in molecular characterization,
important insights into stem cell (SC)/CIC plasticity,
signaling pathways, networking connectivity and the modes
of epigenetic regulation allowed deciphering the paths toward
tumor progression.

After briefly introducing the clinical features of PaCa and
exosome composition, we discuss current theories on the
molecular mechanisms underlying the steps of the metastatic
cascade particularly in PaCa.

CLINICAL FEATURES OF PANCREATIC
CANCER GROWTH AND METASTASIS

Pancreatic cancer (PaCa) is the most lethal cancer, with a
mortality rate close to the incidence rate. The overall 5-year
survival rate is ∼5% (29) and does not exceed 15–20% after
surgery, the only curative treatment option, owing to local
recurrence and metastatic spread. Furthermore, 80% of patients
are inoperable at diagnosis (30). Though mortality rates for
several common cancers decreased over the last decades (29),
mortality rates increased for PaCa. Ductal PaCa, the most
frequent subtype, is expected to be the second cancer-related
cause of death after lung cancer by 2030 (31). The high mortality,
due to early spread and radio- and chemotherapy resistance (32),
is caused by a small population of CIC (33). Three additional
contributing features are abundant stroma reactions, preferential
dissemination along intrapancreatic nerves and pronounced
immune deviation.

Unlike most tumors, PaCa cells may form only small
islands within an abundant tumor stroma. The main
cellular components are cancer-associated fibroblasts (CAF),
predominantly deriving from pancreatic stellate cells (PSC) and
inflammatory cells. The ECM consists of collagens, laminin (LN),
fibronectin (FN), proteoglycans, and glycosaminoglycans and
harbors soluble factors affecting tumor and host cells (34, 35).
The PaCa stroma reaction, primarily promoting tumor growth,
may hamper tumor progression in certain circumstances,
indicating the need for further studies on composition and
activities (36).

Perineural invasion (PNI) is most common in PaCa and
an indicator of aggressive tumors and short survival (37).
The pancreatic nerve fibers from the splanchnic nerves, dorsal
root ganglion and the vagus become hyperinnervated and
hypertrophic. The nervous system participates in all stages of
PaCa development with neurotrophic factors and axon guidance
genes overrepresentation or mutation. CAF and intrapancreatic

immune cells also affect the intrapancreatic neurons (38), but
intrapancreatic neurons and Schwann cells also signal toward the
tumor cells (39, 40).

Finally, the PaCa stroma is replete with immune cells (41) that
are almost exclusively immunosuppressive (42).

The steeply increasing incidence of most malignant
PaCa demands intensifying efforts to clarify the underlying
mechanisms. PaCa shares the consecutive steps of the metastatic
cascade with most epithelial carcinoma, but also displays several
peculiarities. Extensive stroma dysplasia, preferred routing
of migrating tumor cells along intrapancreatic nerves and
striking deviations toward immunosuppressive cells and factors
account for the early spread. We will discuss those features,
which quantitatively differentiate PaCa from the majority of
epithelial cancer. Exosomes and PaCIC markers, both essentially
contributing to the selective features, are introduced in advance.

THE IMPORTANCE OF EXOSOMES IN
TUMOR PROGRESSION

Contact between single tumor cells detaching from the tumor
mass and distinct non-transformed tissues and cells is an
essential prerequisite for tumor progression. The crosstalk
between metastasizing and non-metastasizing tumor cells and
non-transformed cells mostly relies on message delivery by TEX
and stroma cell-derived Exo.

Exo, small 40–100 nm vesicles delivered by live cells (43),
disperse throughout the body, which allows for short and
long-range communication (44). Exo expressing donor cell-
derived components allows differentiating non-transformed cell-
derived Exo from TEX (45). Exo components are function-
competent (46) and highly effective intercellular communicators
(47). Delivered messages modulate the ECM, non-metastasizing
tumor cells (Non-CIC), and non-transformed cells including
hematopoietic cells, EC, FB, nerves, and epithelial cells (48–51).

Exo biogenesis starts with early endosome (EE) formation. EE
derive from the trans-Golgi network or internalized membrane
microdomains (52). Distinct transport machineries guide EE
toward multivesicular bodies (MVB) (53). Exo collect their
cargo during inward budding of endosomes, called intraluminal
vesicles (ILV), into MVB (54–56). LPAR11, Alix/PDCD6IP1,
and HSP701 spur inward budding and SGPP11 and diaglycerol1

are engaged in cargo sorting (57, 58). Loading are nonrandom
processes. Protein loading is facilitated by mono-ubiquitination,
acylation, myristoylation, higher order oligomerization, or
sphingolipids forming ceramide (59–61). Annexin-II supports
RNA sorting (62). Optionally, RNA becomes incorporated by
affinity for the outer (cytoplasmic) raft-like MVB membrane
(63). MiRNA loading is guided by a zip code in the 3′-
UTR and coupling of RISC (RNA induced silencing complex)
to specific EXO motifs binding to HNRNP (heterogeneous
ribonucleoprotein) (55, 64). Selective lncRNA recruitment
requires clarification (65, 66). ILV are guided toward the
proteasome for degradation or toward the plasma membrane,
supported by microtubules and Rab1 proteins (53, 67). SNARE1

and synaptogamins assist fusion with the plasma membrane
(52, 53, 67). Released vesicles are called exosomes.
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Exosome Composition
The Exo membrane lipid bilayer contains integrated membrane
proteins and lipid- or membrane protein-attached cytoskeletal
and cytosolic signaling molecules. The Exo lipid envelop is
composed of phosphatidylcholine, -ethanolamine, -inositol,
prostaglandins, lysobisphosphatidic acid, sphingomyelin,
cholesterol, GM31/GRM61, and PS1 (phosphatidylserine) (68),
high PS levels differentiating Exo from microvesicles (69). Lipids
are organized along with lipid carriers such as lipid-transporting
FABP1. Lipid second messengers are involved in biogenesis,
some requiring a link to lipids during ILV invagination,
e.g., HSPA8 needs battenin (CLN31) (70), formed by PLD21

(71, 72). Ceramide triggers an ESCRT (endosomal sorting
complex required for transport)-independent pathway of Exo
biogenesis (73). Cholesterol enhances flotillin-2 positive Exo
secretion (74). Lipid transporters such as ABCA31 are also
involved in Exo production (75). Thus, Exo carry bioactive
lipids, related enzymes, fatty acid transporters, and lipid-
related enzyme carriers and use lipids to fuse with target
cells (76–78).

Exo protein characterization profited from improved mass
spectrometry (MS) (79) to be followed by the exocharta
database [http://exocarta.org/exosome_markers]. Exo also
contain proteins engaged in biogenesis and vesicle transport
and proteins actively recruited during ILV invagination.
Tetraspanins are most strongly enriched constitutive Exo
component (80–82). Other abundant proteins include adhesion
molecules, proteases, major histocompatibility complex (MHC)
molecules, HSP, TSG1011, ALIX, annexins, cytoskeleton
proteins, metabolic enzymes, cytosolic signal transduction
molecules, and ribosomal proteins (82, 83). Finally, PaCIC
biomarkers are enriched in TEX (84–86). This is important
as CIC drive the metastatic process (87–90), where Tspan8
(86, 91) and associated α6β4 (92–94), CD44v6 (95, 96), and
linked cMET1 (96, 97), CD184/CXCR41 that can associate
with Tspan8 and CD44v6 (98–100), cldn7 (84, 101, 102), and
associated EpCAM1 (84, 103, 104), LGR5/GPR491 (105, 106)
and CD133/PROM11 (107, 108) are engaged in distinct steps of
tumor progression.

Exo also contain mRNA. mRNA is produced and processed
in the nucleus, transported to the cytoplasm and translated.
These processes are controlled by proteins, mostly RNA
binding proteins (RBP), which interact with mRNA (109)
and together with additional regulatory RNA constitute the
mRNA binding protein code (110–113). Notably, the activity
of RBP varies depending on the cell’s activation state.
Thus, GAPDH1 binds the 3′UTR of IFNγ1 and represses
translation in inactive, but not activated T-cells (114). RBP
also account for localization and trafficking of RNA-protein
complexes in cells (115, 116). Finally, the mRNA profile of
Exo differs from that of cells (117), metabolic enzymes and
proteins engaged in cell-cell and cell-matrix adhesion being
frequently overrepresented (118–120), and possibly translated in
Exo (121, 122).

Exo contain a large range of non-coding (nc)RNA. Most
abundant are microRNA (miRNA) and lncRNA. miRNA host
genes are transcribed by RNA polymerase II to form primary

(pri)-miRNA. The Drosha1 endonuclease associates with the
RBP DGCR81 releasing the stemloop precursor from the
flanking pri-miRNA transcript sequence. After export from
the nucleus by exportin-5, Dicer in association with TRBP1

cleaves the precursor loop releasing the mature miRNA (123).
One strand of this duplex RNA is integrated into the RISC
complex, which contains argonaute linking the miRNA to
target mRNA (124, 125). Importantly, miRNA with sequence
motifs for sorting into ILV are efficiently transferred into
Exo, some miRNA becoming undetectable in the donor
cell (126, 127). Most miRNA bind to a large number of
mRNA and most mRNA are targeted by more than one
miRNA, providing hurtles for their potential therapeutic use,
aggravated by the discussed mode whereby miRNA affect target
cells (117, 128).

LncRNA, defined by a length of >200 bp, are abundantly
recovered from Exo (129). LncRNA are involved in a large
range of activities, including chromatin organization, gene
transcription, mRNA turnover, protein translation, and
macromolecular complex assembly (130–132). LncRNA can also
be grouped according to functioning as signal, decoy, scaffold,
guide, enhancer RNA, and short peptides (133). Signaling
lncRNA regulate transcription (134). Decoy lncRNA sequesters
regulatory factors including Tf, catalytic proteins, subunits
of larger chromatin modifying complexes and miRNA (135).
Scaffold lncRNA provide platforms for assembly of multiple-
component complexes, e.g., ribonucleoprotein (RNP) complexes
(136). Guide lncRNA drive RNP to specific target genes
(137). Enhancer lncRNA (eRNA) influence the 3-dimensional
organization of DNA, which may result from lncRNA being
not released and tethering interacting proteins to enhancer
regions (138). Finally, lncRNA can encode function-competent
short peptides (139). Evidence for selective recruitment into
Exo derives from enrichment of some lncRNA harboring seed
regions for miRNA in Exo (140, 141). LncRNA recovery in
Exo only recently receiving attention, important information
on the multiple functions of lncRNA can be expected in the
near future.

Exo contain mitochondrial, genomic, or retrotransposon
double and single stranded DNA (142, 143). Without
hints toward sorting and disputed functionality, a possible
contribution of Exo DNA to tumor progression remains to
be elaborated.

Taken together, TEX are optimally furnished to drive all
steps of the metastatic cascade using their lipid, protein and
RNA armament, where PaCIC markers contribute to biogenesis
(Tspan8), miRNA loading (CD44v6), and lipid transport (cldn7)
(144, 145) (Figures 1A–C).

Exosome Targeting and Uptake
Exosomes bind to the ECM and cells, using for both a
similar appurtenance.

Exo binding mostly relies on surface receptor and adhesion
molecules, such as tetraspanins, integrins, proteoglycans, and
lectins, docking to appropriate ligands on the ECM and cells
(146). Tetraspanin-associated adhesion molecules account for
target-selective binding. Thus, Tspan8-α4 preferentially binds
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FIGURE 1 | Exosome characterization, biogenesis, and targeting. (A) Exosomes are composed of a lipid bilayer, transmembrane protein and the cytoplasm

containing proteins, mRNA, non-coding RNA like miRNA and lncRNA and DNA, where PaCIC-TEX, express the CIC markers Tspan8, integrin α6β1/α6β4, CD44v6,

CD133, CXCR4, LRP5, EpCAM, and cldn7. Other transmembrane proteins are linked to Exo biogenesis. (B) Exo biogenesis starts with the invagination of membrane

microdomains that are characterized by ordered lipids, like low-density lipoprotein, caveolae, clathrin-coated pits, cholesterol-based lipid rafts, and others. (C) After

fission and scission of invaginated membrane domains, the EE are guided toward MVB, the traffic differs between the origins from distinct lipid-enriched domains.

Most abundant is rab4, rab5, Doa4 promoted migration and invagination into MVB via the ESCRT system. Components of cholesterol-based lipid raft-, TJ-, or

TEM-derived EE are not completely explored. Guidance from MVB to the plasma membrane involves rab proteins, phospholipase D, and SNARE. (D) The contact

between Exo and target cells can proceed via fusion of the Exo membrane with the cell membrane, by macropinocytosis, receptor ligand binding such as

phosphatidylserine binding to TIM4 or MFGE8 or CD166 binding to CD6 or may be facilitated by Exo membrane protein complexes binding to invagination-prone

complexes as described for TEM binding to the TCR complex. Exo also bind to the ECM or matricellular proteins, CD44 and integrins being most frequently involved.

Full name of proteins are listed in Table S1. In brief, cells use a variety of pathways for the generation of EE, the traffic toward MVB, the loading of ILV with proteins,

coding and non-coding RNA and DNA. Exo may preferentially bind to and be taken up by receptor-ligand binding, uptake being facilitated by the engagement of

protein complexes at both the Exo and the target cell.

EC, whereas Tspan8-α6β4 preferentially binds FB (147, 148).
Integrins, receptors for ECM proteins, also are involved
in Tspan8-independent Exo binding (149), e.g., preventing
α5β1-FN binding inhibits anchorage independent growth (150).
ECM-binding proteins also guide Exo docking and uptake by
recipient cells, demonstrated for β1, αv, β3, and αL integrin
chains and ICAM11 (151). Recipient cell integrins contribute
to Exo binding. PaCa-TEX preferentially bind ADGRE11 and
CD11b1 on Kupffer cells (152). Premetastatic niche formation
relies on an integrin-dependent TEX tropism. (Tspan8)/β4
preferentially binds to lung (148, 153), αvβ5 preferentially to liver
cells (153).

A second Exo docking system also is highly relevant
(154). Exo proteoglycans bind to their receptors such as
galectins, CD62E1, CD169/SIGLEC11 (155, 156), and CD44
binds to hyaluronan (HA1) (157). Blocking Exo heparan sulfate
proteoglycan (HSPG), the proteoglycan CD44 or the target
cell ligands interferes with Exo binding in vitro and in vivo
(157–160). PS binding TIM41, TIM11, TIM31, GAS61, MFGE81,
Stabilin1, ADGRB11, and RAGE/AGER1 also contributes to Exo
docking (146, 154, 161). Furthermore, we want to stress that
protein complexes rather than individual molecules, many of
which are abundantly expressed, likely account for the selectivity
of Exo binding. This is well-demonstrated for tetraspanin
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complexes in glycolipid-enriched membrane domains (TEM),
the multiple interactions between clustered proteins and target
ligands strengthening and stabilizing docking (162). Finally,
in view of the ongoing discussion on rapid Exo clearance
in vivo, which could interfere with their therapeutic efficacy,
an excellent report on CD47 binding to SIRPα1 preventing
Exo clearance should be mentioned. Particularly in PaCa,
oncogenic KRAS contributes to Exo uptake by yet undefined
mechanisms such that long-term persisting Exo manipulated
to target oncogenic KRAS is currently the most efficient
therapeutics (163).

Exo uptake proceeds by Exo fusion (164, 165) or preferentially
endocytosis, a process requiring actin modulation (166).
Endocytosis occurs via phagocytosis, macropinocytosis, or
clathrin-dependent lipid raft/caveolae endocytosis (167).
Phagocytosis, facilitated by LAMP11 and TIM4 proceeds by
forming cup-like extensions, the tips fusing and becoming
internalized (168, 169). Macropinocytosis relies on lamellipodia
folding back and fusing with the plasma membrane. Dynamin,
Na+H+ exchange, RAC11, EGF, and SDF11 are also engaged
in uptake (170). Endocytosis via clathrin-coated pits, rafts,
TEM or caveolae are most frequent (171, 172). In clathrin-
dependent endocytosis, the membrane invagination becomes
coated with clathrin. Clathrin-coated pits are released after
scission by dynamin, dominant-negative forms of clathrin
reducing Exo uptake (146). Ligand clustering in TEM also
supports Exo uptake (162, 171) and a caveolin knockdown
(kd) reduces exosome uptake (173, 174). Uptaken Exo are
targeted to lysosomes for degradation. Exo content can
directly modulate target cells or stimulate target cells’ signaling
cascades, transcription and silencing processes (175–177)
(Figure 1D).

Exo/TEX binding and uptake drastically influence targets.
In PaCa, TEX, but also PSC/CAF, immune cell and nerve Exo
contribute to PaCa progression.

PANCREATIC CANCER-INITIATING CELL
MARKERS AND THE METASTATIC
CASCADE

Metastasis depends on CIC. Stem cells are a rare cell
population with the capacity for self-renewal and differentiation,
which relies mostly on Tf activation, the nuclear equivalent
remaining unaltered (178–180). This also accounts for CIC
(181, 182), characterized by infrequent division (183, 184),
longevity (185), drug and radiation resistance (186–192), and
migratory activity (193–196). Since CIC depend on crosstalk
with surrounding tissues (197, 198), we wondered whether the
PaCIC biomarkers CD44v6 (Figure 2A), Tspan8 (Figure 2B)
and associated α6β4 (Figure 2C), LGR5/GPR49 (Figure 2D),
CXCR4/CD184 that associates with Tspan8 and CD44v6
(Figure 2E), cldn7 (Figure 2F), EpCAM and cld7-associated
EpCAM (Figure 2G), and CD133 (Figure 2H) might provide
hints toward feedback communications between PaCIC and
the stroma.

Tspan8 and the α6β4 Integrin
Tetraspanins are highly conserved 4-transmembrane proteins
with a small and a large extracellular loop (199). The latter
accounts for dimerization and association with non-tetraspanin
molecules (200, 201). Prominent partners are integrins,
proteases, cytoskeleton, and cytosolic signal transduction
molecules (202–205). Intracellular, juxtamembrane cysteine
palmitoylation supports tetraspanin-tetraspanin web formation,
protects tetraspanins from lysosomal degradation and provides
a link to cholesterol and gangliosides, tetraspanins mostly acting
as molecular facilitators for associated molecules (206–209). As
mentioned, Tspan8 contributes to Exo biogenesis (210) and is
upregulated in PaCIC and -TEX (211–214).

Tspan8-promoted PaCa migration, invasion, and progression
(215–220) relies on the recruitment of additional CIC markers.
Tspan8 associates with CD44v6 (213), which recruits cMET
and VEGFR21 via CD44v6-bound HGF1 and VEGF1 (216, 221,
222), α6β1 and α6β4 (213, 223, 224), cldn7 and EpCAM (225–
227). Some associations depend on the cells’ activation state
in particular α6β4 (228), a major hemidesmosome component
in non-activated cells (229, 230). Upon association with
Tspan8, integrins become activated and initiate downstream
signaling (231, 232). The tight junction (TJ) component
cldn7 (233, 234) only associates upon palmitoylation (234)
and recruits EpCAM (235–238). Tspan8 also cooperates with
proteases (239–241).

Tspan8/Tspan8-TEX engage in crosstalk with the tumor
stroma and premetastatic niche tissue (210) and promote EC
progenitor maturation and activation (147, 148, 242). The
interaction with the ECM is initiated by Tspan8-associated
integrins. Collagen crosslinking assists associated protease
activation, which degrade collagen and LN (243). Tspan8-
associated α6β4 binding to the LN3321-rich BM promotes
tumor cell migration. Liberation of growth factors, chemokines
and proteases deposited in the ECM supports tumor cell
migration and distant organ settlement (157). TEX Tspan8-
integrin and -protease complexes distinctly affect gene expression
in different target cells. Tumor cells respond with vimentin,
Snail1, and Slug1 expression. In FB proteases (ADAM171,
MMP14, TIMP1, and 21) are mainly upregulated (240). Bone
marrow cells (BMC) respond with TNFα1 upregulation and
STAT41 activation. Lymph node cells (LNC) upregulate TNFα,
TGFβ, and FoxP31 expression (240). TEX Tspan8-α4β1/α5β1
(147, 148) targeting EC/EC progenitors induce CXCL51, MIF1,
vWF1, and CCR11 mRNA translation. The increase in mRNA
after 1d−5d indicates induction of transcription (147). In vivo,
EC/lymphatic EC respond with FGF21, VEGFR1, VEGFR2, and
VEGFR3 upregulation (244).

In brief, Tspan8 contributes to tumor progression at
different levels of the metastatic cascade. Tspan8 is engaged
in TEX biogenesis and binding/uptake and acts by clustering
integrins, RTK, and proteases, which facilitate downstream
signaling (Figure 3).

The α6β4 integrin was one of the first genes described
to be metastasis-associated (245, 246). It is expressed in
several normal epithelia, Schwann cells and EC, the β4 chain
being characterized by a long cytoplasmic tail (245). A6β4
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FIGURE 2 | Prominent PaCIC markers. (A) The lead PaCIC marker is CD44v6, a type I transmembrane protein that contributes to the crosstalk with the ECM via its

link domain and the HA binding site. It has binding sites for selectins and LRP5/6. The v6 exon product carries binding sites for several growth factors. The

cytoplasmic tail has binding sites for ankyrin and ERM proteins including merlin, which promote cytoskeleton association and downstream signaling. (B) Tspan8 is a

tetraspanin with a small and a large extracellular loop, the latter mostly accounts for protein-protein interactions. The four transmembrane regions account for

intramolecular and intermolecular interactions. The cytoplasmic tail binds PKC and PI4K. Main activities rely on the association with a large range of proteins.

Dominant are integrins, but also CD44v6 and an EpCAM-cldn7 complex. (C) Particularly α6β4 is known as a PaCIC marker. Similar to other integrins, it binds matrix

proteins, particularly LN. It is a major component of hemidesmosomes anchoring epithelial cells in the basal membrane. Upon activation, it leaves the desmosome

complex and associates preferentially with Tspan8. It differs from other integrins by a long cytoplasmic domain of the β4 chain, which promotes multiple signaling

pathways. (D) LGR5 is a seven transmembrane protein located close to frizzled. Upon R-spondin binding, it contributes via Wnt activation to ß-catenin liberation.

LGR5 activity is supported by CD44v6-associated LRP5/6. (E) CXCR4 is another seven transmembrane protein. This GPCR becomes activated by SDF1 binding. It

predominantly signals via trimeric G-proteins. CD44 crosslinking via HA promotes CXCR4 recruitment and strengthens activation of downstream signaling cascades.

Activated CXCR4 also associates with Tspan8 (F) Claudin7 is a 4 transmembrane protein, which can be integrated in TJ, where it associates with other claudins, JAM,

and occludin and the cytoplasmic zonula occludens proteins. Cldn7 is also recovered outside of TJ. Upon palmitoylation, it associates via a direct protein-protein

interaction in the transmembrane region with monomeric EpCAM. The cldn7-EpCAM complex is recruited into TEM and associates with Tspan8. (G) EpCAM is a type

I transmembrane protein of many epithelial cells. It forms tetramers, which promote homophilic binding to EpCAM on neighboring cells. It is engaged in signal

transduction, predominantly via the liberated cytoplasmic tail that acts as cotranscription factor. (H) CD133 is a five transmembrane protein located in cholesterol-rich

membrane domains. It is associated with HDAC6 that stabilizes a ternary CD133-HDAC6-β-catenin complex and β-catenin target activation, which present one of the

signaling cascades initiated via CD133. The seven most prominent PaCIC markers belong to distinct protein families and exert non-related functions. Five of these

molecules can become recruited into TEM, where they associate via weak, non-protein-protein interactions with Tspan8. This significantly expands the range of

activities of TEM and TEM-derived Exo. Of note, all seven CIC markers contribute via different routes to maintain stem cell features.

binds to LN in the BM facilitating adhesion through the
formation of hemidesmosomes, nucleating the connection
between LN and cytokeratin intermediate filaments (247). Upon
stimulation, hemidesmosomes are dismantled allowing leading
edge migration (248, 249). Hemidesmosome disassembly is
accompanied by α6β4 forming a complex with MST1R/RON1,
which interrupts its association with plectin (250). β4-linked

activated ERBB21 associates with src1, which initiates
phosphorylation of the three components and signaling
toward STAT3, which accounts for the breakdown of cell-cell
junctions and initiation of invasion (251). Motility involves
PI3K1 catalytic subunit beta activation, proceeding via α6β4
promoted IRS1 and−21 phosphorylation (252), PI3K localization
into lipid rafts or TEM (253, 254), or ERBB2/ERBB3 activation
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FIGURE 3 | Tspan8 promoted tumor progression. (A) Tspan8 acts as a facilitator. This accounts for membrane bound Tspan8, where it strengthens CD44v6, integrin,

and cldn7palm/EpCAM complex signaling activity via its association with PKC and PI4K. This also holds true for the Exo-recruited TEM complex described to

modulate the ECM, to promote or inhibit angiogenesis and to contribute actively to premetastatic niche formation. (B) Tspan8 is associated with MMP14 and the

association of Tspan8 with α6β1 promotes, besides other the transcription of MMP2 and MMP9. Upon proform activation, also assisted by the proximity to CD44v6,

matrix proteins become degraded and VEGF is released. VEGF, in collaboration with collagen degradation products, promotes angiogenesis. In addition, a complex

between Tspan8, CD44v6, α6β4, and MMP is found in focal contact. The matrix degradation promoted tissue injury contributes to platelet activation and thrombosis,

where together with the release of VEGF a positive feedback loop is created further pushing platelet activation and thrombus formation. Full name of proteins are listed

in Table S1. With the multitude of Tspan8 associating molecules, we only present one example building on the association with MMP, which strengthens angiogenesis

and thrombus formation. However, it should at least be mentioned that Tspan8 also associates with TACE, which strongly affect e.g., the delivery of the NOTCH and

the EpCAM ICD, both acting as cotranscription factors.

(255, 256). RAC1 activation strengthens the formation of
F-actin-rich motility structures by the cooperation of α6β4 with
RTK (257). α6β4-increased cAMP-specific phosphodiesterase
activity decreases cAMP and activates RhoA (258). FAK1

regulates β4 tyrosine phosphorylation, which further promotes
migration (259). Intravasation and extravasation are assisted
by β4 cytoplasmic domain-dependent upregulation of
VEGF enhancing transendothelial permeability (260). TEX
Tspan8-α6β4 supports premetastatic niche preparations in the
lung (92, 261).

β4 contributes to apoptosis resistance via tyrosine
phosphorylation of the C-terminal segment of β4 by src
family kinases downstream of RTK, but also by syndecan,
which directly binds to the β4 cytoplasmic domain (262).
Regardless of the initial signals, apoptosis resistance progresses

by antiapoptotic PI3K pathway activation (263). TEX β4-vinculin
complexes also cope with resistance toward a complex diterpene
alkaloid, likely via plectin transfer by TEX (264).

Finally, α6β4 regulates transcription of invasion/metastasis-
associated molecules by controlling promoter DNA
demethylation. This was demonstrated for NFAT11 (265),
which assists autotoxin expression, a motility factor stimulating
lipoproteinA production (266). Metastasin1/S100A41 (267)
spurs membrane ruffling via rhotekin (268), regulated
through NFAT5 in conjunction with S100A4 promoter
demethylation (269). S100A4 is also engaged in ERBB2
translation (270).

A6β4 is expressed on mature EC, a contribution to
angiogenesis being disputed (271). Although reported to inhibit
angiogenesis (148, 272, 273), α6β4 may be engaged in an early
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stage of angiogenesis (274) via stimulating VEGF translation
and signaling (275). The β4 C-terminal domain is important for
responding to FGF2 and VEGF (276) and arteriolar remodeling
is defective in β4 knockout (ko) cells due to altered TGFβ
signaling (271).

Long-known as metastasis-associated, molecular pathways of
α6β4 are not fully unraveled. Central are the signaling domain
of the β4 tail and the dislodgement from hemidesmosomes. In
PaCIC/-TEX, we consider the linkage to Tspan8 as a central
coordinator (Figure 4).

CD44v6 and CD44v6-Associated Receptor
Tyrosine Kinases
CD44v6, the alternatively spliced isoform of the adhesion
molecule CD44 is a PaCIC marker involved in several steps of
the metastatic cascade (277, 278). CD44, a type I transmembrane
glycoprotein, varies in size by N- and O-glycosylation and
insertion of alternatively spliced exon products between exons 5
and 6 of the CD44 standard isoform (CD44s) (279–281). CD44
belongs to the cartilage link protein family (282), the globular
structure being stabilized by conserved cysteines (283). After
the globular domain a heavily glycosylated stalk-like structure
has putative proteolytic cleavage sites (284) and contains
the variable exon products (285). The transmembrane region
facilitates oligomerisation and recruitment into TEM, important
for the interaction between CD44 and extracellular ligands and
other transmembrane and cytoplasmic molecules (286). The
cytoplasmic tail binds signaling and cytoskeletal linker proteins
(287, 288). Most CD44s activities are maintained by CD44v.

CD44 has multiple ligands, which contribute to tumor
progression. The link domain binds collagen, LN, FN,
E-, and L-selectin (289, 290). CD44 has binding sites for
glycosaminoglycans (GAG) and is the major HA receptor
that binds to a basic motif outside the link domain (291–
293). CD44v6 binds HGF, VEGF, and osteopontin (294–296).
These associations are of central importance for its lateral
associations with RTK. HGF binding brings CD44v6 into
proximity with cMET and expedites cMET activation, which
requires interaction between the CD44 cytoplasmic tail and
ERM (ezrin, radixin, moesin) proteins for Ras1-MAPK1 pathway
activation (297). CD44v6-ECM binding also contributes to
cMET transcription (298). Lateral association-initiated signal
transduction also accounts for IGFR11 and PDGFR1 (299).
The HA crosslinking-initiated CD44 association with CXCR4
promotes SDF1 binding (300). The association with the low-
density lipoprotein (LDL1) receptor-related LRP61 strengthened
activation of the EMT-related Wnt1 signaling pathway (301).
Cytoplasmic tail-bound ankyrin contacts with spectrin support
HA-dependent adhesion and motility (287). ERM proteins
regulate migration, cell shape, and protein resorting (302, 303).
The N-terminus of activated ERM proteins binds CD44, the
C-terminus F-actin (304). Cytoskeletal linker protein binding
expands the range of CD44-mediated downstream signaling
pathways (303, 305), which can also proceed directly from TEM-
located CD44v (306–308) or associated non-RTK (309, 310).
The CD44/CD44v6-associated membrane-bound proteases

MMP14 and Hyal21 (311) support tumor cell migration through
matrix degradation and remodeling (312). CD44 contributes
to drug resistance (313) by associating with ABC1 transporters
(314, 315) and additional antiapoptotic proteins (316, 317).
Last, not least, the CD44 cytoplasmic tail (CD44ICD) moves
toward the nucleus functioning as a cotranscription factor
(318). Alternatively, the CD44v6 cytoplasmic tail can affect
transcription by activation of signal-transducing complexes.
With regard to the metastatic cascade, CD44v6 was described
to directly or indirectly activate Tspan8, MMP9, MDR11, and
NOTCH11 transcription (221, 319–321). Finally, CD44v6, but
not CD44s, is engaged in loading ILV with miRNA (159, 322),
which might rely on its association with Dicer (322) and
contributes to tumor progression (323).

In brief, CD44v6 engages in EMT induction by supporting
Wnt signaling and Nanog and Notch activation (324–326). It
contributes to intravasation through binding and degradation via
associated proteases. It supports extravasation by selectin binding
to EC, allowing crawling toward EC-EC gaps. It assists tumor
stroma formation and premetastatic niche preparation by HA,
matrix-remodeling enzyme, cytokine, and chemokine provision
(91, 327). Recruiting miRNA into ILV expands the range of TEX
activities (322). A few of the many CD44v6 activities in tumor
progression are shown in the accompanying figure (Figure 5).

CXCR4 and Its Association With Tspan8
and CD44v6
CXCR4 has been tied to tumor progression and poor prognosis
(328, 329) and expression of its ligand SDF1 correlates with poor
survival (97).

CXCR4 is expressed in BMC/-precursors, lymphocytes,
residentmacrophages (Mφ), EC precursors, FB, and CIC. CXCR4
is a seven transmembrane GPCR (330), transcription increasing
in response to several signaling molecules such as cyclic AMP,
some cytokines including TGFβ and the growth factors FGF2
and VEGF (331). Upon ligand binding, CXCR4 undergoes a
conformational change activating the intracellular trimeric G
protein leading to the Gαi dissociation, which stimulates src,
Ras/Raf1/MAPK (332) and PI3K pathways (331, 333). Gβγ

triggers PLC, which catalyzes PIP2 into IP3 and DAG leading
to Ca++ mobilization and PKC1 and MAPK activation (334).
CXCR4 also triggers a G-protein-independent pathway (335)
promoting recruitment of GRK21 that phosphorylates the C-
terminus resulting in β-arrestin association. CXCR4 thereby
uncouples from G proteins and becomes internalized (336, 337).
GRK2 is supported by PKC, PKA, and src (338). β-arrestin serves
as a scaffold for downstream signaling promoting ERK/MAPK1
and p38/MAPK14 activation (339). Proper folding depends on
HSP90, a chaperone for members of the CXCR4 phosphorylation
cascade (340). Colocalization of these complexes in cholesterol-
enriched lipid rafts (341) facilitates signal transfer (342).

CXCR4 contributes to tumor progression at multiple levels.
CXCR4 sustains proliferation through direct activation of
MAPK, PI3K, Wnt, and HH1 signaling (343), where HH
additionally induces SDF1 expression in the tumor surrounding
(344) and activation of the intrinsic anti-apoptotic pathway
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FIGURE 4 | Distinct integrin signaling in PaCIC. (A) Hemidesomosome-integrated α6β4 is associated with BP160/320 and plectin, the complex being linked to

intermediate filament. Upon contact with RTK, the β4 cytoplasmic tail becomes phosphorylated, plectin is released from the complex and phosphorylated β4,

supported by Tspan8-associated PKC promotes PI3K, MAPK, Rho, and RAC activation. Besides initiating transcription, the complex assists the association with

actomyosin and motility. (B) Instead, when α5β1 associates with angiopoietin-activated Tie2, proliferation is initiated via ERK phosphorylation. In the presence of

VE-cadherin, linked to actin stress fibers, pMLCK, and pMLC2 collagen fragments initiate actin rearrangement that promotes dissociation of the α5 from the β1 chain,

which enclose phosphorylated Tie2. The phosphorylated Tie2 promotes Akt phosphorylation, which supports MYPT1 phosphorylation and MLC2 association that

evoke actin rearrangement. Full name of proteins are listed in Table S1. In brief, only parts of integrin-mediated activities are affected by the association with Tspan8.

Notably, the same stimulus distinctly affects integrin activation depending on the α or β chain of the integrin.

via ERK and Akt1 (344, 345). CXCR4 assists invasion, HH
signaling being associated with EMT and loss of adhesion (344).
SDF1 increases MMP2, MMP9, and urokinase expression (346,
347). Particularly in PaCa, CXCR4 expression is linked to a
subpopulation of migrating, metastasis-promoting PaCIC (348)
that is highly chemotherapy resistant (349–351).

The involvement of CXCR4 in tumor progression is
not restricted to tumor cells. EC respond to HIF1α1 with
CXCR4 upregulation (352). The SDF1-CXCR4 axis enhances
VEGF and MMP production through ERK and Akt signaling
(353), which promotes EC migration and capillary tube
formation (354). Activated PSC (aPSC) promote SDF1 secretion,
which binds to EC CXCR4 and is supported by PAUF1.
SDF1 together with VEGFC also attracts lymphatic EC
(354). Furthermore, tumor stroma cell-secreted SDF1 assists
CXCR4 activation in tumor cells and CXCR4-induced HH
expression stimulates CAF recruitment (344). By stimulating
IL61 production, CXCR4 assists TAM recruitment (343) and
mast cell recruitment and activation. Mast cells release IL13,
which activates PSC, further promoting tumor growth (355).
Other CXCR4-recruited immune cells force CXCR4 expression
via IFNγ creating a positive feedback loop (356). The
link between high CXCR4 expression and bone metastases
relies on circulating tumor cells passing through the bone

vessels, hematopoietic and mesenchymal progenitors highly
expressing SDF1 (357). Another CXCR4 ligand is SDF1-
associated HMGB11, which is also a ligand for AGER (358)
and TLR2, 4, and 91 (359, 360). SDF1/HMGB1 complex
binding to CXCR4 promotes inflammatory cell recruitment
(361) (Figure 6).

In 2007, a first series of reviews pointed out the special role
of CXCR4 in subpopulations of migrating/metastasizing CIC
(348, 362, 363). Great progress over the last decade extended
original findings toward the involvement of tumor stroma and
EC. Although the extent of CXCR4 heterocomplex engagement
in leukocyte recruitment awaits further exploration (364), based
on promising results, great efforts are taken toward therapeutic
translation (100, 365, 366).

Claudin7 and EpCAM
Claudins, including cldn7, are a four-pass proteins, which are
the central TJ components (232, 367). TJ are found in epithelial
and endothelial cells, cldn7 expression being particularly high
in the gastrointestinal tract and lymphatic vessels (368). TJ,
composed of the transmembrane proteins occludin, JAM and
cldn, linked to zonula occludens proteins (ZO1), are located
in the most apical lateral region of cell-cell contact sites (367).
The transmembrane proteins are laterally linked via claudins,
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FIGURE 5 | Multifaceted activities of CD44v6 in PaCIC. (A) Upon HA crosslinking, CD44v6 initiates HAS, uPAR, MMP2, and MMP9 transcriptions, which promote HA

assembly and matrix remodeling, where MMP14 contributes to proMMP2 and MMP9 cleavages. (B) CD44v6 can associate with α3β1 such that both molecules

jointly contribute to FAK activation and motility. (C) CD44v6 can be cleaved by TACE and subsequently by the presenilin2 complex. The CD44ICD acts as a

cotranscription factor, which together with CBP/p300 promotes CD44 transcription (D) By TNFα associating with TGFβRII, EMT protein expression is supported via

Smad signaling. The association of CD44v6 with LRP5/6 supports Wnt/frizzled activation such that β-catenin leaves the suppressive complex and acts as

cotranscription factor in NOTCH transcription. (E) There are several pathways whereby CD44v6 strengthens PaCIC survival and apoptosis resistance. cMET comes

into proximity of CD44v6 via CD44v6-bound HGF. This initiates activation of the PI3K/Akt anti-apoptotic and of the Ras-ERK pathways. In addition, CD44v6 supports

cMET transcription. A complex of CD44v6 with HAS, Annexin II, S100A, and activated ERM stabilizes MDR1 expression, which contributes to drug efflux. Finally,

stress induces the association with and dephosphorylation of merlin, which attenuates the HIPPO pathway with upregulation of cIAP1/2 and caspace3 cleavage. (F)

Some of the multiple activities of CD44v6 in stress protection via affecting the cells metabolism are summarized indicating whether altered metabolism is promoted by

signaling cascades in the cytosol or depends on transcriptional activation (red arrows). The latter accounts particularly for β-catenin-TCF/LEF, β-catenin-HIF1α, and

β-catenin-CD44ICD complexes, but also for the cooperation of CD44v6 with Tie2, TGFβR1, galectin 9, and BMPR, which affect transcription of a large range of

distinct genes. Full name of proteins are listed in Table S1. CD44v6 is engaged in most steps of the metastatic cascade. The strongest impacts are seen in terms of

survival, EMT induction and metabolic changes that guarantee unimpaired survival under hypoxic and poor nutrient conditions.

and tightly associate with TJ on opposing cells (369). TJ seal
the organism from the outside and are involved in paracellular
transport (370). The latter is determined by the polarity of
the β-sheet of the extracellular loops of cldn, which differs
between individual cldn and is adjusted to selective organs’
demands (371). Both barrier and channel functions of TJ-
integrated cldn are vital. Cldn7ko mice die within 10 days
after birth due to gut destruction that might rely on a missing
association with integrins and strong MMP3 upregulation or on
enhanced paracellular influx of colonic inflammation-inducing

bacterial products (372, 373). Apart from sealing and paracellular
transport (370, 371, 374–376), few reports explore cldn-Exo/TEX
activities. It was recently realized that a comparably large amount
of continuously remodeled TJ components is recovered insight
the cell and at distinct membrane locations (377–379). TJ
remodeling rests on claudins being PKA, PKC, and MLCK1

targets, cldn phosphorylation prohibiting TJ integration (380–
385). Furthermore, TJ formation depends on sphingomyelin
with long-chain fatty acids and cholesterol enrichment in
membrane subdomains, cholesterol depletion affecting cldn
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FIGURE 6 | CXCR4 and PaCIC survival and motility. (A) CXCR4 is a G-protein coupled receptor (GPCR) that in PaCa is mostly recovered in association with CD44v6

and/or Tspan8. Activation is initiated by binding of its ligand SDF1. Signals are transferred via the G protein subunits, which promote Ca2+ influx, and either via MAPK

or Rho chemotaxis and migration. Chemotaxis and proliferation can also proceed via the Gα, Ras, Raf, pERK1,2 activation route. Activation of PI3K/Akt, Bcl2/pBAD

promotes proliferation and survival. The latter is also supported by activation of the STAT-Jak pathway. PI3K/Akt can also initiate activation of transcription factors.

Independent of the trimeric G-protein complex, CXCR4 associates with GRK, arrestin and clathrin. The complex becomes internalized, which is accompanied by

reduced proliferation and survival. (B) Activation of β-catenin, NFκB and CREB supports transcription of CXCR4, SDF1, Smo, SHH, VEGF, MMP, and Bcl2. These

genes are important in PSC activation, recruitment of immunosuppressive MDSC and Treg and the shift of M1 to M2 and in supporting angiogenesis, which may not

be dominating in PaCa. Full name of proteins are listed in Table S1. It should be noted that the dominant activity of CXCR4 in promoting chemotaxis and motility

covers only one, not essentially dominating feature in PaCIC.

integration and abolishing TJ formation (386). Finally, cldn7
is also located in the plasma membrane outside of TJ.
Cldn7 palmitoylation is a precondition for partitioning into
TEM, where palmitoylated cldn7 associates with EpCAM and
tetraspanins (234, 387).

Internalized, TJ-derived cldn can be degraded, recycle
or integrate into EE and, after passage through MVB, into
Exo. In fact, TEM-located, palmitoylated and EpCAM-
associated cldn7 is exclusively recovered from apical
plasma membrane derived TEX (388, 389). In organoids,
a second population of cldn7+/EpCAM- TEX is delivered
at the basal membrane (389), which might derive from
internalized TJ, facilitated by the high cholesterol content.
Intracellular vesicle traffic remains to be defined (378).
Alternatively, Exo-recruitment during biogenesis is not
excluded (390) and would be consistent with pronounced

coimmunoprecipitation of cldn7 with Golgi-endoplasmic
reticulum (ER) transporters (391).

Pinpointing the activity of cldn7 in the metastatic cascade
is difficult. Palmitoylated, EpCAM-associated cldn7 might
favor signaling by supporting EpCAM cleavage and EPICD
cotranscription factor activity in EMT. However, it is hard to
demarcate from support by other TEM-located CIC markers. TJ-
integrated and phosphorylated cldn7 is associated with a wide
range of transporters, which likely impacts altered metabolism
and signal transduction of CIC (Figures 7A,C). These options
await untangling exploration.

The epithelial cell adhesion molecule EpCAM, overexpressed
in many epithelial cancer, serves as diagnostic and therapeutic
target (392). EpCAM mediates homophilic cell-cell adhesion
(393, 394) and fulfills condition-dependent distinct functions
(395). An initial, straight-forward explanation that oncogenic
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FIGURE 7 | EpCAM, claudin7 and their cooperation in PaCa. (A) In tight junctions, cldn7 is associated with additional cldns, occludin, JAM, and ZO1, 2, and 3, the

latter being associated with pMIC2 and the cytoskeleton. Upon stimulation by several cytokine receptors, PI3K, ERK, RhoA/Rock, and MLCK promote MLC2

dephosphorylation, which promotes reorganization of the cytoskeleton with consequences on the cldn associated transporter activity. A stress response provokes

internalization of the TJ complex. It is suggested that the internalized complex may be partly digested, recycle and become integrated into Exo. (B) EpCAM form

tetramers, which with low affinity bind to EpCAM tetramers on neighboring cells and concomitantly prevent PRKD1 activation that leads to ERK1/2 and myosin

activation, which inhibits Ca++-dependent Cadherin adhesion. Alternatively, EpCAM becomes cleaved by TACE and subsequently by PSN2. The cotranscription

factor EpICD becomes supported by LEF and ß-catenin that might derive from Kremen1-DKK2-LRP6 promoted Wnt-Frizzled activation. This transcription factor

complex mostly supports EpCAM and Wnt target gene expression. (C) Palmitoylated cld7 associates with monomeric EpCAM. As cldn7 is associated with PSN2,

EpICD generation is augmented. Palmitoylated cldn7 may also contribute to NICD generation that acts as cotranscription factor. In association with CD44v6 and

Tspan8, cldn7palm associates with ERM and contributes to ERM activation and actin binding. In association with uPAR and integrins it promotes both uPAR and

integrin activation. Finally, a cldn7Palm-integrin-HSP complex assists talin-FAK-src-RhoA activation and by activation of the Grb2-SOS-RAS pathway ILK and the

MAPK-JNK pathway. EpICD, NICD, and ILK contribute to c-myc, cyclinD1 and EMT gene transcription; NICD via HES and c-jun interfere with Pten transcription. Full

name of proteins are listed in Table S1. Thus, TJ cldn7 is important particularly in lipid transport and cytoskeleton organization, EpCAM by promoting oncogenes and

EMT genes, which also accounts for cldn7Palm-associated EpCAM. Cldn7Palm additionally contributes to Pten silencing.

and tumor progression supporting EpCAM activities rest
on interfering with E-cadherin-mediated adhesion required
revisiting, when it was realized that EpCAM can be cleaved
by TACE and subsequently presenilin1, which generates
EpICD (396). EpICD functions together with TCF/LEF1 as
a cotranscription factor for MYC, cyclinA/E, Oct41, and
Nanog amongst others (397, 398). EpICD is also engaged
in hypermethylation and activation of BMP1 promoters
(399) and can promote EMT through increased Slug and
PTEN/Akt/mTOR1 signaling pathway activation (400) and
engagement in Wnt signaling. PKC downregulation and MMP7

upregulation backs EpCAM-promoted motility (401–406).
Indicating its regulatory effect on another major pathway,
EpCAM silencing reduces Ras/Raf/ERK signaling (407).
However, EpCAM expression is transiently downregulated
during EMT (401, 408, 409), which could argue for EpCAM
prohibiting tumor cell dissemination (410, 411). Nonetheless,
strong overexpression on embryonic SC endorses a contribution
to pluripotency maintenance (412, 413).

EpCAM expression is epigenetically regulated. High EpCAM
expression correlates with hypomethylation of a fragment
of exon 1 and the proximal promoter, lack of EpCAM
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expression correlates with methylation at a proposed Sp1 binding
site (414, 415). Furthermore, activating histone modifications
acH41, acH31, and H3K4me31 correlate and repressive histone
modifications H3K9me31 and H3K27me31 inversely correlate
with EpCAM expression (413, 416, 417). Additionally, EpCAM
regulation by ncRNA might be relevant to the crosstalk
between TEX and targets. LncRNA LINC00152 activates
mTOR through binding to the EpCAM promoter region
(418). Furthermore, miR-150, miR-155, miR-181, and miR-223
expression is increased in EpCAM+ hepatocellular carcinoma
(HCC). MiR-155 contributes to EpCAM-promoted migration
and invasion (419) and miR-29b to proliferation and inhibition
of liver progenitor cell differentiation (418). Since miR-16-5p,
miR-23a-3p, miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-30b-
5p, miR-30c-5p, andmiR-222-3p are high in EpCAM+ colorectal
cancer (CoCa) TEX, an EpCAM-dependent recruitment is
discussed (420).

In brief, possibly due to abundant expression in most
epithelial cells and upregulated expression in many primary
tumors, the CIC features of EpCAM are more difficult to define
than originally expected. Notwithstanding, EpICD contributes
to the metastatic process by acting as a cotranscription
factor. We personally interpret the transient downregulation
during EMT as evidence for EpCAM not contributing to
intravasation, intravascular traffic or extravasation. Expression
during settlement of migrating tumor cells in distant organs
could indicate a share in premetastatic niche preparation
(Figures 7B,C). An interpretation of EpCAM regulation by
lncRNA and miRNA might be premature.

LGR5
The leucin-rich repeat containing GPCR-5 (LGR51) is a
Rhodopsin GPCR, expressed in adult SC and best explored in
intestinal SC and CIC (421). Secreted Wnt proteins interact with
the Wnt receptor complex consisting of Frizzled and LPR5/6.
Wnt binding sustains dissolving the downstream destruction
complex and liberated β-catenin acts together with TCF/LEF
as Tf (422). LGR5 is one of the targets of TCF41 (423), which
regulates Wnt signaling. In the absence of Wnt, Frizzled, LPR5/6
and the RING-type E3 ubiquitin ligases RNF431 and ZNRF31

form a complex, which promotes Frizzled ubiquitination
and degradation. Upon soluble R-spondin binding to LGR5,
RNF43 becomes phosphorylated and sequestered generating a
more stable complex between R-spondin, LRP5/6, and Wnt-
Frizzled, which promotes β-catenin liberation (424, 425). This
suggests LGR5 elimination hampering tumor progression. LGR5
elimination transiently retarded local tumor growth, possibly
reflecting CIC plasticity, where differentiated cells can revert
to LGR5+ CIC. Instead, metastatic growth was enduringly
inhibited (426, 427).

Briefly, by regulating Wnt signaling, LGR5 is important for
CIC maintenance and thereby tumor progression (Figure 8).

CD133
CD133 (Prominin1) is a hematopoietic SC and CIC marker in
many malignancies (428, 429), high expression being associated
with poor prognosis (430). CD133 is a 5-transmembrane

molecule in protruding membrane subdomains, where it
interacts with cholesterol-based lipid rafts (428, 431). CD133
contributes to cell polarity, cell-cell and cell-ECM interactions
(432) and signaling cascade activation (433). Expression is
enhanced by binding to HDAC61 that stabilizes β-catenin in a
ternary CD133-HDAC6-β-catenin complex promoting β-catenin
target activation. Loss of CD133 is accompanied by reduced
SLUG, LAMC11, and MMP7 expression and a shift toward MET
(434). CD133 activity is regulated by the tyrosine phosphatase
receptor PTPRK1, which dephosphorylates tyrosines 828 and
852. Low PTPRK expression in patients with cancer is associated
with pronounced AKT activation and poor prognosis (435).

CD133 interferes with CIC differentiation by suppressing
NTRK2 via p38MAPK and PI3K signaling (436). A CD133kd
is also accompanied by a strong decrease in invasion and
TIMP2 expression, the pathway remaining to be explored
(437). CD133 affects migration via Akt or src activation and
FAK phosphorylation (438, 439). A suggested engagement in
drug resistance might proceed via CD133 directly interacting
with PI3K-p85, resulting in multidrug resistance (440).
Finally, neighboring cells support CD133 activities, e.g.,
EC secrete a soluble form of Jagged11 promoting Notch
activation (441).

According to the location in internalization-prone rafts,
CD133 is recovered in Exo/TEX (442–444). CD133 intracellular
traffic follows an ESCRT-independent pathway and requires
ceramide, neutral sphingomyelinases and the sphingosine-1
phosphate receptor S1PR11, confirmed by reduced MVB
formation upon expulsion of S1PR1 by α-synuclein1 (445, 446).
The expected CD133-TEX contribution to intercellular
communication requires exploration (107). However,
endosomal CD133 at the pericentrosomal region captures
GABARAP1, an initiator of autophagy. This prevents GABARAP
from mediating ULK11 activation and autophagy, whereby
pericentrosomal CD133 sustains CIC undifferentiated state
maintenance (447).

CD133 shares with several metastasis-associated markers
the recovery in SC and CIC. It is engaged in CIC
maintenance, Wnt/β-catenin signaling and contributes to
migration and invasion, molecular mechanisms being not
fully elucidated.

CIC Markers, Stemness, and EMT
Before summarizing the importance of PaCIC markers in tumor
progression, we need commending on the linkage between CIC
and EMT. Partial activation of the embryonic EMT program
was considered a central feature of CIC and a prerequisite for
metastasis formation (5). This was recently questioned for PaCa,
where the EMT-related Tf Snail and Twist do not contribute to
PaCa metastasis, but promote proliferation (448). On the other
hand Notch2 and its ligand Jagged-1 are highly upregulated
in drug-resistant PaCa cells and a NOTCH2 kd is associated
with a partial reversion of the EMT phenotype with decreased
vimentin, ZEB1, Slug, Snail, and NFκB expression (449). A more
recent publication, describing ZEB1 being essential for PaCa
progression, offers a plausible explanation, proposing context-
dependent complementary subfunctions of distinct EMT-related
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FIGURE 8 | LGR5 and the contribution to PaCIC maintenance. (A) The leucine-rich repeat-containing GPCR is engaged in Wnt signaling. Its ligand is R-Spondin. In

the absence of R-Spondin, the transmembrane E ligases RNF43/ZNRF3 associate with Frizzled and LRP5/6 that leads to Frizzled phosphorylation and internalization

of the complex. (B) However, in the presence of R-Spondin, RNF43/ZNRF3 is recruited toward LGR5 such that Wnt can bind to Frizzled and LRP5/6 becomes

phosphorylated. Dsh blocks GSK3-β and β-catenin is liberated to move to the nucleus, where it together with TCF/LEF promotes cMyc, cyclinD1, and Axin1

transcription. Full name of proteins are listed in Table S1. The upregulated expression of LGR5 in PaCIC suggests its engagement in PaCIC maintenance.

Tf (450). Thus, the suggestions of CIC stemness and (partial)
EMT requirement in supporting tumor progression, are not yet
unambiguously answered (5). Taking the frequently unimpaired
growth of the primary tumor mass and of established metastases
after therapeutic trials to deplete CIC markers and/or selected Tf,
we expect that both stemness markers and partial EMT greatly
facilitate tumor progression.

Despite remaining open questions, we want to close this
chapter with a personal experience, dating back to 1978, where
a local tumor and ascites of a spontaneously arising PaCa
were isolated from a rat (451). After subcutaneous transfer, rats
receiving local tumor tissue developed local tumors, but not
metastases. Rats receiving ascites did not develop a local tumor,
but metastases in draining and distant lymph nodes and became
moribund due to thousands of miliary lung metastases (452).
The local tumor does not, the metastasizing tumor expresses
all previously listed PaCIC markers (453). While overexpression
of CD44v6, Tspan8, β4, EpCAM, and cld7 supported selective
metastasis-associated features, but not the full-fledged metastatic
profile (242, 454–457), a kd of each of these markers was
accompanied by loss or strongly reduced metastasis formation
(240, 388, 458, 459). CIC being unknown at that time, our “blind”
studies may convincingly demonstrate the strong impact of CIC
markers in tumor progression, their interdependent activities,

and importantly, the requirement for a tumor-host crosstalk, the
topic of the following chapters.

STROMA DYSPLASIA IN PANCREATIC
CANCER

PaCa is characterized by an exuberant desmoplastic stroma
reaction (DR) that may occupy far more space than the tumor
cells, which form small nodules embedded in the dense DR (460).
The DR is composed of ECM proteins, PSC, FB, EC, immune
cells, and neurons (461).

PSC, quiescent in the healthy pancreas, are located in
the basolateral region of acinar cells (462, 463). They are
characterized by GFAP1, desmin, vimentin, nestin, NGF, and
NCAM1 (464). During pancreatic injury, PSC develop a
myofibroblast phenotype expressing αSMA1, actively proliferate
and migrate. Activation of PSC is promoted by TGFβ, HGF, FGF,
EGF, and sHH1 (465) (Figures 9A,B).

Activated PSC (aPSC) modulate the tumor matrix. They
secrete ECMproteins including collagen I, III, and IV, FN and LN
(464). Matrix deposition is supported by epithelial cell secreted
SERPINE21, which activates PSC resulting in enlarged ECM
protein deposits (466). PSC secrete MMP2, MMP9, MMP13,

Frontiers in Oncology | www.frontiersin.org 15 December 2019 | Volume 9 | Article 1359

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Mu et al. Pancreatic Cancer Progression and Tumor-Stroma

FIGURE 9 | The core position of pancreatic stellate cells in the dysplastic stroma reaction in PaCa. (A) PSC abundantly contain lipid droplets and lay close to the

acinar cells in the healthy pancreas. They become activated by injury or inflammation, with a contribution of inflammatory cytokines, growth factors and ROS.

Recurrent injury promotes autokrine signaling with further provision of growth factors, inflammatory cytokines, and chemokines. They partly loose the lipid droplets

and become dispersed throughout the pancreatic stroma, where they affect the ECM, PaCa cells, leukocytes, and nerves. (B) Main factors contributing to PSC

activation are PDGF and IL33 that assist proliferation and migration, Wnt2-β-catenin and IHH-MMP14 also contribute to the migratory phenotype and

IHH-/SHH-Cox2 to proliferation. ELANE-AP1, Wnt2-β-catenin, and Smad3-ERK-TGFß1-Cox2 support collagen secretion, the latter two also support αSMA

expression. (C) PSC activation is accompanied by the generation of a very dense ECM rich in HA and collagen, the recruitment of CAF, TAM, MDSC, and Treg, but a

paucity of T cells in the dense ECM. Finally, they are engaged in a most intense crosstalk with the PaCa cells. Full name of proteins are listed in Table S1. PSC

become activated at an early stage of PaCa initiation. Signals promoting PSC activation contribute to PSC collagen and αSMA expression, proliferation, and migration.

aPSC are supposed to account for the ECM formation, to crosstalk with the tumor cells, to recruit and reprogram of leukocytes and to interact with the intrapancreatic

nerves, some of these activities are detailed in the following figures.

TIMP1, and TIMP2, which account for matrix modulation
(467–470). aPSC also affect immune cells. They express TLR2-
5, required for non-adaptive immune cell activation (471),
but also TLR9, which is protumorigenic via CCL11. CCL11
recruits regulatory T-cells (Treg) and promotes myeloid-derived
suppressor cell (MDSC) proliferation (472). aPSC expressMHCII
and present tumor antigen peptides (473). However, in the
absence of costimulatory signals MHC II presentation is not
sufficient for helper T-cells (Th) activation (474). Further
supporting immunosuppression, aPSC express high level of

CXCL10/IP101, which correlates with a Treg increase and
reduced CTL (cytotoxic T lymphocyte) and NK (natural killer
cell) activity (475). aPSC also express T-cell apoptosis-inducing
GAL1 (476, 477). Nonetheless, the impact of PSC on the immune
system is still debated, as reverting activated to resting PSC
appears superior to PSC elimination (478–480) (Figure 9C).

Taken together aPSC/CAF account for the dense stroma
formation and ECM modulation. The DR provides a barrier
for immune cells, but also for chemotherapy by poor drug
access (481). Beyond this “passive action,” aPSC/CAF contribute
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to the acquisition of major hallmarks of PaCa via cytokines,
chemokines, growth factors, and their receptors that promote
tumor cell proliferation and chemoresistance, accelerate
intrapancreatic nerve invasion and distant metastatic growth
and assist establishing an inflammatory milieu that forces
immune destruction (482). aPSC/CAF supply essential
nutrients and promote metabolic reprogramming backing
tumor cell survival and proliferation (483), which is assisted
by aPSC/CAF miRNA (484). These activities are briefly
elaborated in the following sections. Despite overwhelming
evidences for aPSC/CAF supporting PaCa growth and
progression, under selected circumstances they may provide
a host defense against the tumor, the hypothesis building
on poorer prognosis after HH depletion and in αSMA-ko
mice (485, 486).

ACTIVATED PANCREATIC STELLATE
CELLS AND THE CROSSTALK WITH
TUMOR CELLS

The extensive crosstalk between aPSC and the embedded
tumor cells is pivotal for PaCa survival and progression.
Provision of TGFβ, PDGF, FGF2, profibrinogenic factors,
serpin2, galectins3, and 9 sustain persisting PSC activation,
proliferation, migration, and collagen synthesis. The aPSC also
provide growth factors and nutritients (Figure 10A). aPSC/CAF
secrete SPARC1, involved in cell migration and proliferation
(487), and periostin, which modulates invasion via AKT
signaling and EMT (488, 489). Most abundant chemokines are
CXC/CC family members CCL2/MCP11, CXCL8/IL8, CXCL11,
and CXCL2/MIP21, all engaged in PaCa progression (490–
492). Increased radioresistance by aPSC/CAF relies on ß1
integrin-FAK activation and DNA damage response regulation
(493, 494). An impact on chemotherapy resistance hinges on
accessibility (495), activation of the SDF1-CXCR4 axis with
subsequent upregulation of IL6, increased HH expression,
and IL1β-IRAK41 or mTOR/EIF4E1 pathway activation (496–
501). Finally, aPSC/CAF support metastasis formation via
the HGF/cMET/survivin pathway, which is regulated by
TP531/CDKN1A1 (502) or through altered lipid metabolism,
particularly oleic-, palmitoleic-, and linoleic-acid upregulation
(503). Tumor progression is further supported by CAF through
partial EMT induction by HH signaling (504) and through aPSC-
Exo delivering tumor growth promoting miRNA and lncRNA,
which liberate oncogenic/metastasis-promoting mRNA from
suppressive miRNA to name only one of the lncRNA functional
activities (133). Furthermore, aPSC accompanying migrating
tumor cells provide in loco support in establishing premetastatic
niches (505, 506).

Nutrient provision by altered metabolic pathways is another
important aPSC contribution to PaCa cell progression. This
proceeds through increased glycolysis, amino acid (AA)
production from protein degradation, by glycosylation and fatty
acid synthesis, called the metabolic switch (507). Accordingly,
glycolytic enzymes such as hexokinase-2, enolase-2, LDHA,
and B1 (508) and glycolytic metabolites are elevated (509). In

addition, mitochondria adapt and account for energy supply.
We recommend a most informative report on the different
options, which tumor cells use to alter metabolic pathways
(510), and give some examples on specific aPSC contributions.
First, aPSC deliver cytokines that by binding to receptors
initiate signaling cascades toward activation of the PI3K/Akt
pathway, which is central for glycolysis, ATP level maintenance,
stabilization of the mitochondrial potential, and tumor cell
survival. Two examples are aPSC-derived IGF binding to
the IGF1R and Gas61 binding to Axl. Gas6 is a member
of the vitamin K-dependent protein family that resembles
blood coagulation factors rather than typical growth factors
(511). Both, IGF and Gas6 binding promote via PI3K/Akt
activation Asp provision (512). Second, uptake of glucose and
essential AA is facilitated by transporters either for delivery
by aPSC or for uptake by PaCa cells that may also expulse
unwanted byproducts, transporter families and their activities
being profoundly reviewed (513). An example are glutamine
transporters, which are supported by the glutamine-utilizing
enzymes glutaminase GLS11, phosphoribosyl pyrophosphate
synthetase PRPS21, and carbamoyl-phosphate synthetase 2 CAD
converting glutamine to glutamate. Glutamate cannot exit and
its accumulation replaces the TCA (tricarboxylic acid) cycle to
generate citrate, which also can derive from the pyruvate-PDK-
Ac-CoA pathway. Glutamate also stimulates cysteine uptake.
Lactate, delivered via lactate transporters supports glutamine
and glucose generation, GSH upregulation and ROS reduction.
Glucose transporters in the tumor cells further assist glucose
enrichment. Promoted by PKM2, NADH, and ATP support the
generation of pyruvate. Excellent reviews unravel the current
state of knowledge on the TCA cycle and the mitochondrial
contribution in detail (508, 514–517). Autophagy accounts for
a third support by CAF for nutrient supply. Autophagy is a
cytoplasmic recycling process, where unfolded macromolecules,
dysfunctional aggregates and organelles are sequestered in a
double membrane organelle, called autophagosome, which fuses
with lysosomes (518). The released breakdown products, AA,
FA, nucleotides, and sugars are reused or released. One of the
released AA, alanine is converted into pyruvate that is integrated
into the TCA cycle (519). As far as aPSC deliver autophagosomes
rather than the single components generated by lysosome
degradation, autophagosomes are taken up by macropinocytosis,
the nutrients becoming available after degradation in the tumor
cell’s lysosomes (520). Lysosome degradation is also required for
access to nutrients provided by aPSC-derived Exo that modify
the metabolic machinery of cancer cells increasing glycolysis
and glutamine-dependent reductive carboxylation by providing
AA, lipids, and TCA cycle intermediates (521). Finally, PaCa
cells essentially depend on large amounts of lipids. FA uptake
proceeds via different pathways. Besides gaining access by
lysosome degradation of autophagosomes and Exo, the fatty acid
translocase CD36 transports circulating free FA across the cell
membrane (522, 523). FA sequestered in lipoproteins can be
released by low density lipoprotein receptors before uptake by
CD36. Alternatively and more frequently in PaCA, lipoproteins
are internalized via LDL receptor-mediated endocytosis or
macropinocytosis (524, 525). Notably the Exo transfer requires
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FIGURE 10 | The crosstalk between PSC and pancreatic cancer cells. (A) Overview of the support provided by aPSC to PaCa survival, expansion and gain in

aggressiveness and feedback by the tumor cell, which sustains PSC activation, expansion and matrix protein synthesis. (B) Some of the important components

delivered by aPSC toward tumor cells and the initiated changes with a focus on altered metabolism. Glutamate derived from influxed glutamine can replace the TCA

cycle to generate citrate, which also can derive from the pyruvate-PDK-Ac-CoA pathway. Lactate, delivered via lactate transporters supports glutamine and glucose

generation, GSH upregulation and ROS reduction. Glucose also becomes enriched by glucose transporter in the tumor cell, where PKM2 via NADH and ATP

promotes pyruvate generation. After lysosome degradation of aPSC autophagosomes, a plethora of AA, lipids, lipoproteins, sugars, and nucleotides is delivered that

in part are taken up by specific receptors, not all being identified so far. Alternatively, autophagosomes are taken up by macropinocytosis, the macropinosome content

being delivered after lysosome degradation. Lysosome degradation is also required for the delivery of the aPSC Exo content. Another option is receptor-mediated

uptake of selective transmembrane complexes as ANXA61 bound LRP11 and THBS11. The predominant route of transfer from aPSC in PaCa cells is indicated by a

color code: red: signaling receptor mediated uptake; blue: delivery or uptake by transporters; vesicle uptake: green; violet: receptor-mediated lipid and lipoprotein

uptake; an olive circle encloses for a few of the aPSC-delivered components the pathway, whereby they contribute to the altered metabolism of PaCa cells; others

may directly support PaCa survival and aggressiveness. Full name of proteins are listed in Table S1. aPSC support PaCa survival, expansion and progression, which

to a considerable degree relies on their input of components initiating energy generation by altered metabolic pathways. Despite the focus on PSC-promoted

metabolic adaptation of PaCa cells, the presented data cover only a minor part of the present state of knowledge and additional information can be expected by

improved proteomic methodologies combined with organoid cultures.

ANXA6+ Exo derived from CAF, where ANXA6 forms a
complex with LRP11 and THBS11, the complex being only
recovered in aPSC from patient with PaCa (526) (Figure 10B).
Thus, though free nutrients are rare in the stroma, embedded
aPSC provide a potent source.

In brief, PaCa cells express surface molecules and secrete
factors that sustain PSC activation and expansion. aPSC, in

turn, support PaCa proliferation, survival and progression.
They promote proliferation and migration via cytokine and
chemokine delivery, and apoptosis/drug resistance as well as
a shift toward EMT via integrin and RTK activation. Ample
provision of nutrients supports tumor cell survival and expansion
mostly by sustaining altered metabolic pathways. Exo delivered
by aPSC add to nutrient supply. Exo miRNA and lncRNA
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contribute to inactivation of tumor suppressor and liberation of
metastasis-associated gene mRNA. lncRNA additionally support
chromosome accessibility and transcription initiation, which
adds to access of metabolism driving genes. Obviously, stress
signals from PaCa cells suffice for aPCS/CAF responding with a
plethora of supports.

ANGIOGENESIS IN PANCREATIC CANCER

PaCa cells can support angiogenesis (527–529) and microvessel
density after PaCa resection correlates with recurrence and
poor survival (530). Nonetheless, PaCa are mostly hypovascular
and hypoxic, due to a dominance of negative angiogenesis
modulators (531, 532).

Several angiogenesis inhibitory factors, elegantly reviewed
by Walia et al. (533), are enriched in PaCa. They originate
from ECM degradation, poor vascularization being a
secondary phenomenon to the fibrotic microenvironment
(534). Angiostatin, a 38-kDa tumor cell-derived plasminogen
fragment, inhibits primary and metastatic tumor growth by
blocking angiogenesis (535–537). Fibstatin, another endogenous
angiogenesis inhibitor, is a FN fragment containing the
type III domains 12–14 (538). Fibstatin cooperates with
CXCL4L1/PF4V11, inhibiting EC proliferation, migration
and tubulogenesis in vitro and both angiogenesis and
lymphangiogenesis in vivo (539). Endostatin, another
matricellular protein regulating cell function without
contributing to ECM structural integrity (533), is a collagen
XVIII fragment (540, 541). MMP12 is engaged in endostatin and
angiostatin generation (542), VEGF and FGF2 support secretion
(543). Endostatin binds both endogenous angiogenesis inhibitors
thrombospondin-1 and SPARC (544, 545) and upregulates
thrombospondin-1 expression (546). Endostatin also binds
VEGFR2 on EC and VEGFR3 on lymphatic vessels preventing
activation and downstream signaling (533, 547, 548). By
occupying integrin-ECM binding sites, initiation of the tyrosine
phosphorylation cascade, src activation, and EC migration
are interrupted (549, 550). Endostatin additionally prevents
clustering with caveolin-1 and downstream signaling activation
(551). A different mechanism underlies the antiangiogenic
effect of RNASET21. Independent of its ribonuclease activity,
RNASET2 arrests tube formation, accompanied by disruption of
the actin network. The authors suggest RNASET2 competing or
cooperating with angiogenin (552). Statins, HMGCR1 inhibitors,
interfere with angiogenesis via VEGF downregulation. Moreover,
statins prevent adhesion to the ECM by blocking intercellular
adhesion molecules (553). There is, at least, one exception to
angiogenesis/lymphangiogenesis inhibition by the PaCa stroma.
Stroma embedded mast cells enhance angiogenesis by inducing
pro-angiogenic VEGF, FGF2, PDGF, and angiopoietin-1
expression (554).

It may appear surprising that angiogenesis inhibition is a
special features of most malignant PaCa with an intensive
desmoplasia leading to hypoxia and nutrition deprivation.
However, there is no evidence of cell death. PaCa being most
well-equipped to cope with nutrient deficits, already outlined

in the preceding section, only PaCa cell autonomous programs
will be added here. Reuse of vesicle-enclosed nutrients can be
liberated in the PaCa cell lysosomes (520). PaCa cell alsomake use
of autonomous autophagy driven by a transcriptional program.
Master regulators in converging autophagic and lysosomal
functions are MITF1 and TFE1. A prerequisite for fulfilling
these distinct functions relates to their shuttling between the
surface of lysosomes, the cytoplasm, and the nucleus in response
to nutrient fluctuations and various forms of cellular stress.
Shuttling depends on changes in the phosphorylation of multiple
conserved amino acids, phosphorylation being mainly promoted
by mTOR, ERK, GSK3, and AKT, and dephosphorylation by
calcineurin (555, 556). Furthermore, in contrast to most non-
transformed tissue, tumor cells engage in de novo FA synthesis
under hypoxic conditions (517, 557). This occurs particularly
when the PI3K-Akt-mTOR pathway is constitutively active
as in PaCa. mTOR signaling activates transcription factors
of the sterol-regulatory element-binding protein family, which
induce expression of the lipogenic genes ACACA1, FASN1, and
SCD1 (558, 559).

Taken together, hypoxia-dependent and -independent
mechanisms of metabolic reprogramming account for poor
vascularization not hindering PaCa progression. Metabolic
reprogramming is predominantly promoted by aPSC/CAF and
their Exo and is supported by tumor cell autonomous programs.

NEURAL INVASION IN PANCREATIC
CANCER

Innervation of the digestive tract is composed of the intrinsic,
enteric nervous system, and afferent extrinsic nerves, transferring
information to the central nervous system (CNS) and efferent
nerves conveying commands from the CNS to the digestive
organs (560). The healthy pancreas has an abundant nerve
supply. Ganglia (aggregates of neural cell bodies), the intrinsic
component of the pancreatic innervation, are randomly
distributed throughout the parenchyma. The afferent system,
thin unmyelinated fibers run with the parasympathetic
vagus or the sympathetic input splanchnic nerves, the cell
bodies are located in the spinal or vagal afferent ganglia.
Extrinsic parasympathetic fibers derive from the vagus or
the stem brain and end in the synapse of the intrapancreatic
ganglia. Postganglionic parasympathetic fibers distribute with
sympathetic fibers. Postganglionic sympathetic fibers mostly run
with blood vessels (561, 562). Innervation is increased in PaCa
(563, 564), nerve fibers forming a dense network that interacts
with tumor cells and supports tumor growth and dissemination
(565–567). In fact, PaCa metastasize by PNI. Also reported
in other cancer, with recovery in 80–100% of patients, PNI
is most frequent in PaCa and associated with poor prognosis
(37, 568–571). PNI is seen in early stages of PaCa (572, 573) and
is independent of lymphatic or vascular metastasis (573, 574)
(Figures 11A–C).

PNI is defined as the existence of tumor cells in the
epineural, perineural and endoneural spaces of the neuronal
sheath (566, 575) and results from mutual message transfer
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FIGURE 11 | The nervous system and perineural invasion in pancreatic cancer. (A) Overview of nerve anatomy. The endoneurium surrounds all axons and serves to

separate individual nerve fibers. The axons are covered by Schwann cells, where Schwann cells myelinate the axons. Non-myelinating axons mostly ensheath multiple

(Continued)
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FIGURE 11 | small caliber axons. (B) The anatomy of the pancreatic nerves, neurotrophic factors and receptors as well as growth factors expressed by the engaged

cells all contribute to perineural invasion and are supported by adhesion molecules and proteases as demonstrated in (C) for Schwann cells that intercalate between

tumor cells promoting destruction of the adhesive matrix and actively recruiting tumor cells toward the nerve by signaling via adhesion molecules that promote

cytoskeleton reorganization associated with acquisition of a motile phenotype. (D) Overview of abundantly delivered neurotrophic factors, cytokines, and chemokines

by neurons and the corresponding receptors on PaCa tumor cells that promote tumor cell growth and invasion; dominating in the interaction between Schwann cells

and tumor cells are L1CAM and NCAM. Besides homophilic binding, they bind integrins and RTK. MAG binding MUC1 on tumor cells mainly contributes to adhesion.

For detailed information on signaling cascade initiation in PaCa, please see reviews mentioned in the text file. (E) Besides the direct engagement of neurons, Schwann

cells and tumor cells, PSC, TAM, and the dysplastic tumor matrix contribute to PNI. Molecules predominantly contributing to PNI are listed. Selective contributions of

aPSC rely predominantly on the transfer of nutrients, Exo and autophagosomes; TAM contribute by the delivery of matricellular proteins like EMAP-II and metabolism

regulators such as LDHA and iNOS, the ECM supports PNI by embedded matricellular proteins and proteases. (F) All engaged cell populations are also acceptors of

signaling cascade activators such as NGF, axon guidance cytokines/chemokines, and matricellular proteins. Activation of the cholinergic system is of major relevance

for nerves and tumor cells. Full name of proteins are listed in Table S1. PNI is one of the dominating pathways of PaCa invasion. It is supported by neurotrophins and

neurotransmitters delivered by neurons and Schwann cells, the latter in addition providing guidance factors and membrane integrated proteins that promote adhesion

and migration. aPSC are essential in nutrient transfer and TAM provide cue enzymes to cope with ROS and NO. TAM and the ECM contribute by matricellular proteins

and proteases that facilitate PaCa cell migration toward the nerve.

between nerves and tumor cells (566). Though not fully
elaborated, many contributing components are known. Nerve
growth factor family NGF, BDNF1, neurotrophin-3 and−4
(576) bind NTRK1/TRKA1 with high- and NGFR/p75NTR1

with low affinity (577–580), NTRK1 being highly expressed on
nerves and tumor cells (581). Glial cell-derived neurotrophic
factors GDNF1, NRTN, artemin and persephin are secreted by
neural tissue and bind to GFRA1-A4 (582). GDNF expression
strongly affects PNI in PaCa (583). This relies on RET receptor-
mediated activation of downstream RAS, MAPK/ERK, JNK1,
PI3K/Akt, and NFκB1 pathway activation (584–586). Anti-
NGF treatment decreased expression of PNI-involved NTRK1,
NGFR, TAC11, and calbindin in neural cells, reduced PNI
and inhibited metastases in mice (587). The CXCR4-SDF1
axis also contributes to PNI. CXCR4 promotes tumor cell
migration toward nerve cells (588, 589) and SDF1 increases NGF
expression (588). Shown in an autochthonous model, PNI plays
a significant role in initiation and progression of early PaCa
stages, inflammation and neuronal damage in the peripheral
and central nervous system already occurring in pancreatic
intraepithelial neoplasia (PanIN)2, where acinar-derived cells
frequently invade along sensory neurons into the spinal cord and
migrate caudally to the lower thoracic and upper lumbar regions.
Sensory neuron ablation prevents PNI, astrocyte activation,
and neuronal damage, suggesting sensory neurons conveying
inflammatory signals from the tumor to the CNS. Neuron
ablation also significantly delays PanIN. These data indicate a
reciprocal signaling loop between PaCa and the nervous system,
including the CNS (590). Axon guidance genes semaphorins
and plexins also are frequently altered in PaCa. Semaphorin3C
increases PaCa proliferation, invasion, and EMT through ERK1/2
signaling pathway activation (591). Semaphorin3D secretion
is regulated by AnnexinA2 phosphorylation. It acts autocrine
by binding to the coreceptors plexinD1 and neuropilin-1
(592). Parakrine signaling of Semaphorin3D and plexinD1
between tumor cells and neuronsmediates increased innervation,
PNI and PaCa metastasis (593). Activation of the peripheral
sympathetic nervous system (SNS) also assists PNI. In the healthy
pancreas the SNS regulates digestive enzyme and endocrine
hormone secretion (594, 595). In PaCa, β-adrenergic receptor
activation of the SNS contributes to tumor progression via release

of norepinephrine and epinephrine (Figure 11D). In view of
the abundance of information coupled with many remaining
questions we recommend readers particularly interested in PNI
some recent, excellent reviews (38, 596, 597).

Beside tumor cells, nerves, Schwann cells, aPSC, TAM, and
the ECM contribute to PNI. The contributing components,
sorted according to molecular families and subcellular units
are listed (Figure 11E). The complex contribution of dysplastic
stroma elements to PNI being not fully unraveled, we only
mention few examples. Tumor cells, aPSC, and TAM express
GPCR β-adrenergic receptors ADRBA1,-A2, -B1, -B21 that
signal via the associated trimeric G-proteins (598–600), HIF-1α
(601), and ERK/MAPK (574), which in concert promote tumor
growth and metastasis (39). aPSC-derived TGFβ induces NGF
via the TGFBR1/ALK51 pathway and HGF-cMET activation
(602, 603) that contribute to neural plasticity (604). TAM
infiltration also correlates with PNI (605), where TAM-secreted
IL8 assists PNI through MMP1-PAR11 signaling via ERK1/2
(606). Schwann cells highly express MAG1 (607), which is a
receptor for abundant mucin-1 on PaCa (608), MAG-mucin-
1 signaling promoting PNI (609). Furthermore, PaCa-derived
NGF attracts Schwann cells via NGFR/p75NTR (40), which
might be interpreted as the recruitment of nerve cells toward
the tumor being the first step in PNI (40, 609). Finally, long
distance nerve recruitment predominantly depends on Exo/MV
(microvesicles) (610, 611) for several cancer (612, 613). This
is best explored for glioblastoma-TEX, which are taken up by
tumor cells, EC, and Mφ, but also by healthy neural cells,
and microglia (614). Furthermore, non-transformed cell-derived
Exo/MV contribute to message transfer. Oligodendrocytes, glial
cells in the brain accounting for axon myelination, shuttle
messages between myelinating glia and neurons (615, 616)
and between neurons (617). Microglia, the brain’s Mφ defense
mechanism, also acts via released MV (618). Microglial MV
additionally regulate neuronal excitability accompanied by
neuronal ceramide and sphingosine production (618). Schwann
cells, too, communicate with the peripheral nervous system via
Exo (619).

In brief, the review “Splitting out the demons” is concerned
about glioblastoma (620), but may well be of general relevance,
particularly for PNI in PaCa. The authors demonstrate that
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the major signaling systems are NGF, axon guidance molecules,
cytokines/chemokines, the cholinergic system, and matricellular
proteins that are also delivered by several components of PaCa.
Searching for signal acceptors in PaCa revealed that tumor cells,
nerves, aPSC, and TAM can all be acceptors of these signaling
systems creating a malicious feedback loop in PaCa (Figure 11F).

Spurred by the poor prognosis and PaCa-associated pain
(620–623) and PNI being an early event in PaCa development,
PNI recently received increasing attention (595). For a long
time uncovered molecular pathways due to technical difficulties
in culturing engaged cellular components and isolating Exo
from defined subpopulations may become unraveled in the
near future. Success in culturing Schwann cells particularly
opens access to a hitherto inaccessible, important contributor.
We consider Exo/MV as an additional promising option to
interrupt PNI (618), where improved techniques for isolating
and characterizing single stroma cell derived Exo will be of
great help in deciphering a PNI-forcing contribution. Despite
strong progress, supported by elegant autochthonous mouse
models, there is still great need to unravel the complex
interactions underlying PNI, which is a prerequisite for
therapeutic interference (587, 624).

PANCREATIC CANCER AND
IMMUNOSUPPRESSION

Immune cells are abundant in the PaCa stroma (625, 626),
but are immunosuppressive (627, 628), whereas effector cells
are rare (629). This accounts for the innate and the adaptive
immune system.

NK
NK are discussed as a therapeutic option in PaCa (630, 631).
However, several constraints need clarification as NK are reduced
in the juxta tumoral area compared to the stroma, possibly due
to sequestration by aPSC (632) and NK apoptosis via FASL1-
positive tumor cells (613). In addition, cytotoxic activity of NK
cells is severely impaired (633).

Activated NK cells bind via activating receptors NKG2D1,
NKp301, and NKp461 to their ligands major histocompatibility
complex class I-related chain MICA/B1 and ULBP1-61 (634).
NKG2D having a very short cytoplasmic tail uses the adaptor
molecules DAP101 and/or DAP121 to initiate downstream
signaling (635). In addition, activated NK cells secrete IFNγ,
TNFα, GM-CSF1, the chemokine ligands CCL1-51, and CXCL81,
which trigger activation and recruitment of other innate and
adaptive immune cells, broadening and strengthening anti-
tumor immune responses (636). In PaCa, instead, decreased NK
activity is accompanied by low level NKp46, NKp30, granzymeB,
and perforin expression (637). Lactate, a by-product of tumor
metabolism also causes NKp46 downregulation (638). Another
important group of NK receptors are nectin and nectin-like
binding molecule DNAM11. DNAM1 downregulation on NK
correlates with PaCa progression (639). Furthermore, though
MICA/B is expressed in >70% of PaCa, it is also expressed on
PSC (640). NK cells preferentially migrating toward PSC become

sequestered in the stroma before reaching the tumor nodules
(641). Moreover, ADAM10 and ADAM17 cause shedding of
MICA/B and PSC inhibit NK cells via IL6 (642). Finally,
NK cells tend to target (Pa)CIC due to enhanced MICA/B
expression (643). In view of the CIC plasticity, it remains to
be explored, whether CIC targeting by NK is of therapeutic
benefit (Figure 12A).

Due to preferentially targeting tumor cells, NK-based
immunotherapy was discussed just few years after their discovery
(644), hope being fostered by their contribution to antibody-
dependent cellular cytotoxicity (645). Further unraveling the
impact of their surrounding, efficient use of NK cytotoxic
potential may become reality in PaCa.

Mφ
TAM are increased in the PaCa stroma (646), high numbers
being associated with poor prognosis (647–649). TAM mostly
exhibit the suppressive phenotype of CD163+ and CD204+
M2 (650, 651), M2 differentiation being supported by tumor-
and Treg-derived IL4, IL10, and IL13 (652). TAM suppress the
adaptive immune response via TGFβ, IL10, CCL17, CCL18,
CCL22, and PDL11 secretion (653, 654). In addition, CCL2 and
CCL201 through chemokine receptor CCR61 binding promote
MMP9 upregulation and thereby invasiveness (655, 656) and can
contribute to EMT (657, 658). In PaCa, TAM also secrete the
serine protease FAP1, which stimulates CAF (659) and induces
CDA1, contributing to drug resistance by metabolizing the active
to the inactive form of Gemcitabine (660).

Briefly, the main feature of TAM is the shift to and the
preponderance of immunosuppressive M2 in PaCa. Besides
suppressing adaptive immune responses, TAMpromote CAF and
in a positive feedback loop Treg expansion. TAM also strengthen
the aggressiveness of PaCa and support drug resistance. Reviews
are recommended for a comprehensive overview of special TAM
features in PaCa (661, 662) (Figures 12B,C).

MDSC
MDSC are a heterogeneous group of cells, characterized by
myeloid origin, immature state and mostly functional activity.
Two subgroups, defined as monocytic (M) and granulocytic (G)
MDSC are differentiated by Ly6Chigh (M-MDSC) or Ly6Ghigh

(G-MDSC), M-MDSC exerting stronger suppressive activity
(663–665). MDSC are abundant in the PaCa stroma (666). MDSC
are recruited toward PaCa via CAF-derived CXCL12 and tumor-
derived GM-CSF (588, 667). MDSC hamper T-cell recruitment
and activation, which are their major targets and promote Treg
expansion (668, 669). MDSC expansion is expedited by M-CSF1,
GM-CSF, SCF1, IL6, IFNγ, IL1β, VEGF, HSP72, IL13, C5a1,
PGE21, and S100A8/A9 (664, 670). Inhibition of differentiation
into mature myeloid cells is spurred by downstream activation of
the JAK1-STAT3/STAT5 pathway with stimulation of cyclinD1,
BCLXL1, survivin, c-myc, and S100A8/A9. CCL2 and SDF1
support MDSC recruitment, GM-CSF plays a major role in
inflammatory milieu maintenance (667). Prominent signaling
molecules engaged in MDSC activity are STAT3, COX2,
HIF1α, C/EBPB1, HMOX11, and IDO1 (654, 670, 671). MDSC
interfere at several levels with immune response induction (672).
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FIGURE 12 | The impact of PSC and tumor cells on immune cells in the pancreatic cancer stroma. (A) NK cells in the stroma display reduced activity. This is mainly

due to MDSC and Treg that by TGFβ delivery affect TNFα and IFNγ secretion and SMAD3/4 activation, which inhibit GzmB and perforin transcription. The activating

NKG2D receptor become deviated toward PSC due to higher expression of MICAB, where MICAB in tumor cells can become shed by ADAM17, free MICAB

fragments further deviating NK cells from attacking the tumor cell. The activating receptors NKp46 and NKp30 become downregulated due to a metabolic shift

induced by tumor cell derived LDHA and lactate. Activating receptor can also become occupied by inhibitory receptor, like TIGIT. Finally, tumor cells deliver an IgG like

molecule, Ighg1, occupying the FcγR of NK cells and thereby interfering with ADCC. (B) PSC have a strong impact on driving Mφ into TAM by the delivery of IL4, IL10,

IL13, mCSF, and glucocorticoids. TAM deliver IL6 and soluble IL6 receptor binding to gp130 on tumor cells, which activates the JAK/Stat3 pathway promoting tumor

cell survival and expansion by cyclin, PCNA Bcl2, and Mcl1 expression. TAM also affect the activity of additional immune cells. Lytic NK cell activity becomes inhibited

by TGFβ and IP10. A shift of Th1 to Th2 is supported by TGFβ, IL10, CCL22, and Gal1. Expansion and activity of Treg is assisted by TGFβ, IP10, and CCL11. Finally,

CTL recruitment, activation and lytic activity are impaired by TAM-derived TGFβ, IL10, IP10, IDO, and Gal1. (C) A central role of TGFβ in immune deviations relies on

binding to the TGFβRII, which promotes RAS, PI3K, and TRAF6/4 pathway activation and on TGFβR1 binding, where phosphorylated Smad4 forms a complex with

Smad2/3, the complex migrating into the nucleus promoting together with additional coactivators and transcription factor besides other transcription of NOS, PAI-1

and PDGF. (D) CTL activation is prohibited by tumor cells, PSC and immunosuppressive MDSC, Treg and TAM. The major inhibitory factors and membrane molecules

are listed. PSC particularly contribute via POSTN, GAL1, SERPINE2, PGE2, and TLR9. Low level MHCI expression on tumor cells hampers CTL activation, high FASL

expression contributes to CTL lysis and IDO and PDL1 are inhibitory receptors. As shown in the overview diagram, preventing CTL activation is the result of

coordinated activities between all contributing components. Full name of proteins are listed in Table S1. The dense stroma and poor angiogenesis may hamper

leukocyte recruitment. However, there is no paucity of immunosuppressive leukocyte, such that changes in metabolism and activation of signaling cascades are

dominating immunosuppression. Feedback circles between all contributing elements create a self-replenishing vicious circle.

Downstream effector molecules arginase-1 and iNOS1 account
for L-arginine depletion and ζ-chain downregulation in T-cells
(673). iNOS-induced NO and ROS inhibit T-cell proliferation
and promote apoptosis. HMOX1 hampers T-cell proliferation
by CO production (670, 674). Membrane-bound TGFβ1 assists
NK anergy (675). IL10 and TGFβ foster Treg expansion, which
become recruited by CXCL10 (676). TGFβ and IL10 also
account for IFNγ downregulation (670, 674). IL10 promotes
TH2 deviation (677) and M2 polarization (678). Finally, MDSC
Exo characterization uncovered MDSC activities being efficiently
transferred by Exo (679–681).

Thus, MDSC hamper mostly T-cell, but also B-cell (682) and
NK activity, at least in part by supporting Treg expansion and
activation. There are several well-established options to combat
MDSC induction and activities, frequently used in combination
with chemotherapy whose efficacy increases by eliminating
MDSC-promoted drug resistance (683, 684).

Dendritic Cells
Dendritic cells (DC) are professional antigen presenting cells,
directly linking the innate and adaptive immune systems, where
particularly Th activation essentially depends on processed
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antigen peptide presentation (685–687) and costimulatory
signals provided by DC (688, 689). However, DC activity is
severely impaired in cancer (690, 691). In the PaCa stroma, DC
are rare and mostly located at the edge of the tumor (692).
DC maturation and activation is also hindered by confrontation
with immunosuppressive cytokines TGFß, IL6, IL10, and GM-
CSF, which activate the STAT3 pathway (693–695). Furthermore,
costimulatory molecule CD40 and CD80 expression is reduced
in DC, hampering T-cell activation (696). Instead, DC produce
CCL22, which recruits Treg (697, 698). Several options for coping
with the DC deficit are clinically evaluated, mostly based on the
transfer of antigen/peptide-loaded DC, where in PaCa mucin1
and Wilms tumor protein are promising antigen candidates.
Loading DC with the patient’s TEX is another option that
guarantees presentation of the individual tumor’s immunogenic
antigens/peptides (699–701). The finding that DC-derived Exo
are equipped to stimulate T-cells (702), spurred research
focusing on DC transfer to overcome poor T-cell responses in
PaCa (703–705).

Besides supporting Treg recruitment, DC do not actively
contribute to PaCa progression. Unfortunately, their paucity in
the tumor stroma, impaired antigen processing and presentation
and the insufficient costimulatory molecule supply significantly
hamper immune response induction. There is hope for
circumventing these drawbacks by DC or DC-Exo transfer, the
latter having the advantage of a technically easier implementation
in the clinic.

T-Cells
The adaptive immune system, T-cells and B-cells, is the body’s
most specialized and efficient defense mechanism. B-cells,
secreting antibodies, account for the humoral defense, T-cells
for the cellular defense, where CD8+ CTL lyse their targets and
CD4+ Th provide soluble factors supporting CTL, B-cells and
NK. T-cells are rare in PaCa (706) and PaCa actively inhibit
CD4+ T-cell proliferation and migration (707). Furthermore,
PaCa tumor cells and the stroma skew Th from cell-mediated
responses inducing Th1 toward Th2, which might support
tolerance induction (708). The shift toward Th2 is assisted by
PaCa-delivered IL10 and TGFβ (709) and by CAF-delivered
lymphopoietin (710). Furthermore, lower numbers of T-cells in
PaCa (706) may rely on aPSC affecting T-cell migration toward
the tumor nodules (631). The Th2 cytokines IL4, IL5, IL6,
MIP1α, GM-CSF, MCP11, IL17, IP10, and IL1β are dominant
and are associated with poor immune responsiveness and a
shorter DFS (disease free survival) (711). Moreover, PaCa inhibit
CTL activity. PaCa-derived TGFβ interferes with perforin and
granzyme expression (712, 713) and PDL1 on PaCa binds
PD11 on CTL, spurring T-cell anergy or death (714). There are
subtypes of PaCa that display higher T-cell levels, but the tumor
evades the immune response due to amplification of PDL1/2 or
upregulation of inhibitory cytokines and the JAK/STAT signaling
pathway (715). aPSC also stimulate T-cell apoptosis, decrease IL2
and IFNγ secretion by Th1, but increase IL4 and IL5 secretion by
Th2, which is linked to galectin-1 expression on PSC (716, 717).

Thoughmucin-16 tumor antigen-specific CTLwere recovered
in few long term survivors, supporting the efficacy of CTL in

defending the body’s integrity (718), PaCa and aPSC skew toward
Th2 and promote T-cell anergy and apoptosis, low level T-cell
recovery correlating with a poor prognosis (719) (Figure 12D).

Treg
Treg are CD4+CD25highFoxp3+ cells (720, 721). They
contribute to immunosuppression via CD152/CTLA41 (722, 723)
and TGFβ and IL10 secretion, which affects Th, CTL, Mφ, NK,
and DC (626, 724–726). In PaCa, Treg are already present at
the PanIN stage, expand during tumor progression (727, 728)
and are preferentially located surrounding the tumor (729).
Treg promote EMT (730) and inhibit Th1 and Th17 effector
functions (731). Migration toward the tumor is assisted by tumor
chemokines and EC addressins and their ligands on Treg (732).
PaCa secrete elevated levels of CCR5 ligands/CCL28, which
increases Treg chemotaxis (733). EC in the tumor tissue express
high level of mucosal VCAM-1, E-selectin and CD116/CSF2RA1,
which foster Treg transmigration (734). Increased levels of
Treg in the circulation (735) and the tumor stroma (731, 735)
correlate with poor prognosis.

There are other unmentioned immune deviations related
to PaCa. We recommend overviews focusing on cytokines
and chemokines (736–739) and additional immunosuppressive
molecules (740), where we only mention a few. RIP1 and 31,
highly expressed in PaCa, are key mediators of necroptosis, a
caspase-independent cell death. Interestingly, while an in vitro
blockade of the necrosome was accompanied by increased PaCa
aggressiveness, in vivo deletion was associated with increased
immunogenic myeloid and T-cell infiltrates. The authors suggest
that this is due to RIP1/3 signaling through CXCL1 ligation of
its receptor CLEC4E/Mincle1 that is also expressed on TAM.
Thus, TAM lose their immunosuppressive features in the absence
of either RIP3 or CLEC4E, which is accompanied by regain
of immune defense promoting signaling in T-cells (741). A
clinical study showed that an IDO1 inhibitor prevented disease
progression. IDO1 catalyzes the degradation of tryptophan
to kynurenine (742). Tryptophan is essential for T-cells, but
kynurenine supports immunosuppression. Accordingly, IDO1
suppresses effector T-cells and NK and promotes induction,
activation and recruitment of Treg and MDSC, the signaling
pathways differing between leukocyte subsets (743). An elegant
study recently reported on Treg signaling in the tumor
environment. Tumor Treg undergo apoptosis and apoptotic Treg
exhibit stronger immunosuppressive features than live Treg.
Treg apoptosis is due to high oxidative stress susceptibility
by weak NRF21 Tf and antioxidant system-associated gene
expression. Apoptotic Treg-promoted immunosuppression relies
on release and conversion of a large amount of ATP to
adenosine by CD39 and CD73, and ADORA2A1 pathway
activation (744). Galectins are another family of secreted
proteins contributing to immune evasion in PaCa (745).
Galectins have high affinity for β-galactoside residues, sharing a
consensus carbohydrate recognition domain (CRD) responsible
for glycan binding, most of their biological functions relying
on interactions with glycosylated proteins (746). aPSC account
for galectin1 secretion and overexpression in the tumor
microenvironment (716). Galectin1 recognizes glycoproteins
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on T-cells, inhibits transendothelial migration and promotes
apoptosis of activated Th1 cells, tilting the immune balance
toward a Th2 profile. Galectin1 also impairs NK cell recruitment,
induces Treg differentiation, M2 macrophage polarization, and
MDSC expansion (747, 748), suggesting galectin1 a key driver
in immune evasion in PaCa (748). Galectin9 also is crucial for
immune deviation in PaCa. Galectin9 is a ligand for dectin11,
highly expressed in PaCaMφ. Dectin ligation promotes signaling
via syk1, PLCγ, and the JNK pathway. The dectin1-galectin9
axis is central in directing the differentiation of TAM to a M2-
like phenotype, which suffices for reprogramming CD4+ and
CD8+ T-cells (749). Finally, we list some reviews helpful as
starting information on PaCa-selective metabolic changes that
affect immune responses in PaCa (739, 750–754).

Summarizing at least some aspects of immune modulation
by the particular stroma reaction in PaCa, PSC/CAF secrete
SDF1 that coats the tumor cells and prevents T-cell infiltration
(640, 755). PSC also secrete galectin1 forcing T-cell apoptosis and
Th2 deviation (716), but recruiting Treg (485) and supporting
mononuclear cell differentiation toward MDSC (756), with
suppressive myeloid cells being most abundant in PaCa, TAM
accounting for 15–20% andMDSC for 5–10% (716, 757). Tumor-
derived GM-CSF and MIP2 account for MDSC (716, 757), CSF1
and BAG31 for TAM (757, 758) recruitment and expansion, GM-
CSF being also provided by tumor-associated mesenchymal cells
(759). Both MDSC and TAM direct suppression through factors
and tumor-cell-specific PDL1 expression (625, 760–762). B-cells
are recruited via tumor-derived CXCL13 (763). A shift toward
M2 via PI3Kγ-activated BTK1 in B-cells and TAM supports PaCa
growth and progression (764).

Taken together, PaCa and the dysplastic stroma hamper
leukocyte infiltration and skew toward immunosuppressive
components. This accounts for the non-adaptive and the adaptive
immune system. The strong impact of PaCa and the stroma
is reflected by low onco-immunotherapy efficacy, which fosters
research on combined therapeutic approaches. With 416 reviews
total and 86 in the last 18 months, on immunotherapy in PaCa,
we apologize not mentioning this aspect, which goes beyond the
scope of our trial giving an overview of the particularly dense
crosstalk between PaCa and the stroma. Nonetheless, the body’s
defense mechanism being highly efficient at maintaining health
and coping with a wide range of diseases, there is some hope that
after unraveling the complex and intertwined contributions of
individual components and signaling pathways, immunotherapy
may shortly contribute in defeating PaCa (765).

CONCLUSION AND OUTLOOK

PaCa has a dismal prognosis and incidence is rapidly increasing.
This fostered utmost intense research aiming elaborating the
underlying mechanisms, which unequivocally demonstrated the
lead role of the PaCa stroma, frequently displaying rebound
effects on the tumor cells and between the individual stroma
elements. These features seriously aggravate pinpointing single
molecular mechanisms such that despite strong progress, we are
still tickling the top of a non-melting iceberg. In brief,

1. Unlike most cancer, angiogenesis is reduced in PaCa.
Pressure from the dense dysplastic reaction may be partly
responsible for inadequate angiogenesis. We assume an
active contribution of PaCa-TEX, which interfere with
EC migration, expansion and sprouting in vitro and in
vivo. The underlying mechanism remains to be clarified.
A comparative analysis of the proteome, coding and
noncoding RNA of PaCa-TEX and TEX of a strongly
vascularized tumor might be a starting point depicting active
contributors to poor PaCa vascularization. Irrespective of the
suggested PaCa interference with angiogenesis, the stroma
provides copious nutrients and redirects the tumor cells’
metabolic pathways such that hypoxia-promoted damages are
completely waved.

2. PSC/CAF are central for PaCa stroma dysplasia. The
dysplastic stroma strongly adds to immune defense deviation
and supports PNI. Progress in suppressing the overshooting
stroma reaction may be achieved by a profound analysis of
signaling/metabolic pathways linked to aPSC. The discussion
still being ongoing, we only mentioned few examples of
aPSC/CAF-promoted metabolic reprogramming and possible
contributions of aPSC/CAF miRNA and lncRNA (483, 484).
Nonetheless and despite overwhelming evidences for PaCa-
promoting activities of aPSC/CAF, the dysplastic stroma could
serve as a protective barrier for the host against the tumor
under selected circumstances. Thus, in the growing list of
therapeutic reagents interfering with the metabolism and/or
signaling cascades in aPSC (766), the option of reverting PSC
to their quiescent state by supporting FA synthesis could be of
particular interest (767).

3. PaCa shares with many tumors a paucity of immunogenic
tumor-associated antigens and excessive tumor-promoted
immunosuppression. These drawbacks for immunotherapy
are aggravated in PaCa by the dysplastic stroma. As
immunosuppressive cells are enriched in the PaCa stroma,
the stroma density may not considerably contribute excluding
immune cells. In fact, it is within the stroma that immune
cells are killed or deviate toward immunosuppression.
Tumor immunotherapy with a strong focus on the transfer
of activated DC and T-cells to circumvent low tumor
antigen immunogenicity, requires in depth elaboration of
in loco deviation to find pathways allowing activation of
transferred immune cells within PaCa. This also accounts
for the transfer of DC-Exo, where physical barriers are
no hindrance, and for antibody-based therapies, where
BTK activation by binding to FcRγ+ TAM needs to be
bypassed. However, as good progress is already achieved in
MDSC elimination, there is hope that remaining hurdles
may be solved.

4. PNI, though not unique, is the dominant metastatic route
already at early stages of PaCa development. Elaboration
of underlying mechanisms is aggravated by an active
contribution of the neuronal components. Comparative
analyses to brain tumors, particularly glioblastoma, may
provide hints for unraveling the crosstalk between tumor
cells and nerves including Schwann cells and ganglia. With
strong evidence for synaptic information transfer by EV, a
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focus on the impact of nerve-, microglia-, and Schwann cell-
derived Exo/MV on tumor cells could help unraveling the
neural system contribution in diverting PaCa cells toward this
particular metastatic route.

5. Many studies on PaCIC markers and the feedback on the
tumor matrix, EC, the adaptive, and non-adaptive immune
system point toward these markers severely affecting host
matrix and cells. PaCIC markers are engaged in regulation
of transcription, activation of signaling cascades, and
metabolic shifts, spurring adhesion, migration, and invasion.
Abundantly recovered PaCIC markers on TEX contribute
to TEX biogenesis including loading, target binding, and
TEX uptake (86). Intensifying studies on cooperation-based
peculiarities of PaCIC-TEX markers may uncover a central
switch in the PaCIC-stroma interplay, allowing for a unifying
concept of PaCIC-TEX-based therapies.

6. We apologize for sparse discussion on signaling pathways in
the PaCa-stroma crosstalk. First, signaling pathways are often
connected and can be mutually affecting. More importantly,
in vivo studies only depict the overall changes on tumor
cells or stroma, even organoid cultures having some limits
in depicting individual components. Nonetheless, organoid
cultures provide an excellent method for unraveling the
complex andmutual interactions between PaCa cells and their
surrounding components (768, 769). It can be expected that
continuing advancement in organoid research will markedly
increase knowledge of the molecular features of the mutual
crosstalk between the distinct components and pave the way
for large scale therapeutic screenings that may prove reliable
for clinical translation (770).

7. Though providing up-to-date references to the date
of submission, for the sake of clarity and length we
kindly ask scientists working on special topics gathering
additional information. This request particularly applies to
ncRNA, where multiple targets for most miRNA hamper
coordination and the diverse range of lncRNA functions
awaits comprehensive examination (86, 136, 139, 771–773).
Furthermore, in view of many eminent reviews, we skipped
information on therapeutic translation. Finally, we apologize
for not citing numerous outstanding studies.
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