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Considerations of Blood Properties, Outlet
Boundary Conditions and Energy Loss Approaches
in Computational Fluid Dynamics Modeling

Ji Young Moon?, Dae Chul Suh, MD', Yong Sang Lee?,
Young Woo Kim?, Joon Sang Lee, PhD?

Despite recent development of computational fluid dynamics (CFD) research, analysis of computation-
al fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid,
velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-
state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in
inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible
solution by comparing the theoretical and computational studies.

Key Words : Computer simulation; Hydrodynamics; Computational fluid dynamics;
Biological boundary condition; Cerebral arteries

Modeling blood vessels is one of the main interests in
computational simulation of hemodynamics. By
materializing the geometry of certain blood vessel
cases and running simulations, we can obtain a tremen-
dous amount of data regarding certain afflictions such
as aneurysm and stenosis. However, accurate modeling
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of the circulatory system is still a challenging objective.
There are many technical difficulties to overcome in
simulating blood flow, including the non-Newtonian
properties of blood, the complicated shapes and elastic-
ity of vessels and the pulsatile blood flow [1-4].
Researchers have dedicated effort to developing
accurate methods for circulatory system modeling by
simplifying or approximating properties that are
difficult to precisely imitate [5-8]. One of these simpli-
fied methods includes an assumption which regarded
blood as a Newtonian fluid, ignoring its characteristics
and treating it as a water-like liquid. Also the usage of
simple boundary conditions is inevitable, since the
complicated vessel shape of the entire vascular system
can neither be measured nor materialized completely.
Based on the recent articles published in Stroke [9-
12], we identified three major weak points which are
overlooked in the computational modeling and simula-
tion processes of the circulatory system. First, the non-
Newtonian property is scarcely applied to blood flow.
As blood is not a pure liquid but rather a compound of
tissue particles such as red blood cells, its viscosity
differs greatly with change in shear rate (Fig. 1A). The
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second consideration is the inappropriate outlet
boundary conditions of simulation models. The effect
from outside of simulation domain, including backward
pressure by wave reflection, must be considered at the
outlet boundary for precise modeling (Fig. 1B). Third,
when energy loss term is used in result analysis, the
effect by vessel’s geometry itself is not reflected
properly. Blood flow properties are affected not only by
abnormal vessel conditions such as aneurysm, but also
by the cross-sectional area or directional change of
blood vessels. These factors must be considered for
accurate calculation of energy loss (Fig. 1C).

These technical issues have emerged to the surface
partly due to recent progress of computational simula-
tion methodology. In this paper, the three main
modeling considerations are pointed out in detail. The
importance of these three categories is explained
thoroughly by numerical explanation and comparison
with the works of other researchers.

Non-Newtonian Properties

Blood is a non-Newtonian fluid or more precisely, a
pseudo-plastic fluid [13]. This type of fluid is less like
water and more like toothpaste or ketchup, flowing
more smoothly as the velocity of flow increases. This
smooth flowing phenomenon at higher velocity is
related with decreased viscosity and increased shear
rate of the blood. Such phenomenon is called as the
shear thinning behavior of the blood as a non-
Newtonian fluid (Fig. 1A).

Blood flow is pulsatile; therefore, properties such as
pressure, velocity, flow rate, and viscosity change as a
function of time. Wall shear rate is also a function of
time (Figs. 2A, B), indicating that if wall shear rate
changes, viscosity might also change. This phenome-
non cannot be explained with Newtonian assumptions.
However, the Carreau-Yasuda model, one of the non-
Newtonian models, demonstrates the change in viscos-
ity according to time (cardiac cycle). This is an
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Fig. 1. The three main considerations in circulatory system modeling: A. non-Newtonian properties of blood, B. outlet boundary
conditions of the model, and C. additional energy loss due to vessel geometry.
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important reason why non-Newtonian analysis must be
used in the pulsatile cardiac conditions.

Several studies have emphasized the importance of
this non-Newtonian behavior of blood by comparing
Newtonian and non-Newtonian modeling research.
Gijsen et al. [14] showed that applying non-Newtonian
fluid flow at arteries with bifurcations greatly affects
the flow features compared to Newtonain fluid flow.
Molla and Paul [15] also compared Newtonian and
non-Newtonian models in their research of arterial
stenosis. Application of non-Newtonian properties was
emphasized at specific diseases such as aneurysm. Wall
shear stress, which is one of the most important factors
for diagnosis of aneurysm, is the function of viscosity
and shear rate. Assuming blood as Newtonian fluid
means that the effect of viscosity term is ignored.
Fisher and Rossmann [16] compared analysis of wall
shear stress (WSS) distribution at aneurysm with both
non-Newtonian (Casson, Carreau, Power law) and
Newtonian models. The result showed that WSS of
non-Newtonian models is more influential in
aneurysms than that of Newtonian model. Also, Kim et
al. [17] applied non-Newtonian properties to the
analysis of stents in aneurysms, proposing that viscos-
ity and velocity profiles in the aneurysm are largely

determined by non-Newtonian properties of blood flow.

Outlet Boundary Condition

Boundary conditions are the given conditions at the
domain boundaries and which account for outer
domain properties, are one of the most important
factors for a modeling process. As the simulation
domain is restricted to only a small proportion of the
total circulatory system, the conditions outside of the
domain cannot be directly applied to the simulation.
Directly measured properties from a specimen may be
applied at the boundaries; however, it is difficult to
fully demonstrate the entire vascular system due to the
problems of universality, simplicity, and technical
deficiency. Simplified numerical boundary conditions
are instead applied in most circulatory system
modeling. There are several methods for selecting the
outlet boundary condition. The ‘zero pressure outlet
or ‘traction-free’ boundary condition is used in various
models due to its simplicity [18]. However, when the
purpose of modeling is to analyze blood flow, the zero
pressure outlet should not be used due to its inaccurate
simulation results. The zero pressure boundary is as
akin to assuming that the vessel is cut and exposed to
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atmospheric air conditions. Therefore, it neglects the
change in pressure and flow rate by ‘wave reflection
from downstream vessels, resulting in considerable
difference from actual blood flow.

Wave reflection is an influx of blood due to the
reflected wave from downstream arteries. This is
mainly due to the pulsatile flow of blood and elasticity
of blood vessels. As pulsatile antegrade flow passes
through the elastic vessel, this vessel repeatedly shrinks
and expands, causing retrograde flow through the
whole vascular system. This wave reflection results in
considerable changes in blood pressure and flow rate
due to overlap with the forward flow of blood. This
wave reflection can be used in diagnosis of cardiovas-
cular disease. As wave reflections and arterial stiffness
are associated with an increased risk of cardiovascular
disease, the measurement of central arterial pressure
can provide a valid aid in cardiovascular risk assess-
ment [19, 20].

To demonstrate this wave reflection, the term

‘impedance’ is applied to outlet boundary conditions.
The well-known outlet conditions in theoretical
hemodynamics include resistance, Windkessel, and
impedance boundary models [18].

Resistance model substitutes the outer domain
vessels into one single variable, while Windkessel
model uses three variables [21]. These two models can
develop wave reflection phenomenon, yet still inappro-
priate because it cannot show the arrival time of wave
reflection correctly. However, impedance boundary
model reflects the entire vessel geometry and property.
By constructing the 1D vessel system that represent the
real vessels, the variable called ‘impedance’ is

calculated from the peripheral blood vessel to the
boundary of simulation domain. Unlike the other
models, this impedance variable includes both the data
of magnitude and arrival time of wave reflection [18].
Because it considers wave reflection from bifurcations
and geometry of vessels, the impedance model success-
fully demonstrates the pulsatile aspects of real blood
flow. Comparison of zero pressure boundary condition
and impedance boundary condition is shown in Fig. 3.

The difference of those two boundary conditions
compared in a vessel mentioned in Fig. 3, was clearly
demonstrated by Vignon-Vlementel et al [18]., as
shown in Fig. 4. When there is 75% area reduction
stenosis in a branch of the bifurcation vessel model,
mean flow of constant pressure boundary condition is
divided into 70% and 30% each, because the fluid
resistance by the geometry of computational domain is
only considered. For the impedance boundary
condition, on the other hand, the flow is also affected
by entire circulatory system so that the difference
between those two vessels is smaller than that of the
constant pressure boundary condition. These results
agree with representative clinical observations for iliac
artery stenosis with less than an 85% area reduction
[18]. For these reasons, the wave reflection should be
considered to perform an accurate simulation for the
purpose of analysis.

Energy Loss Due to the Vessel’s Pathway

Interpreting computational results is as much
important as performing accurate simulation. There are
various ways to interpret simulation result data, such as

Fig. 3. Comparison between the zero
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pressure boundary condition and the
impedance boundary condition. Zero
pressure boundary condition assumes
that pressure at the outlet boundary is
zero, as if bleeding were occurring, without
considering any influences from the
vessels outside of the simulation domain.
However, in impedance boundary case, as
shown at right, the term Z is adopted to
demonstrate the wave reflection caused
by the outer domain. By regarding the
blood flow of the whole vascular system
as if it were electrical current running
through a circuit, and so adopting the
impedance term to express resistance of
vessel to blood flow, the wave reflection
is successfully accounted for at the outlet
of the simulation domain.

Neurointervention Vol. 9, Issue 1, 2014



Computational Fluid Dynamics Modeling

plotting pressure and flow rate or calculating wall shear
stress [16]. One of the possible methods is energy loss
analysis. As the loss of energy is equal to the amount of
energy applied to the vessel wall, it is directly related
the risk of conditions such as the rupture of aneurysm
[12,22-24]. However, there are many factors, which
are mostly related to the geometry of vessel, to be
considered when using the energy loss equation. It
might cause a considerable error on result if those
factors are not reflected properly.

To predict clinical treatment effects, Bernoulli’s
energy loss concept is used [25]. If P;, V; are pressure
and velocity at the initial cross sectional area domain
respectively and Py Vthe pressure and velocity at the
final cross sectional area domain, then the energy loss
equation can be written as:

[ [
AEBemoulli’s = (Pi+ sz)'(Pf—’_ij) (1

This Bernoulli’s energy loss is purely due to mechani-
cal energy loss. The energy loss consists of a limited
number of ‘loss factors , so some papers have already
claimed that it cannot be applied in all clinical patholo-
gies such as aneurysms or stenosis [25-27]. As energy
loss can change by depending on its geometrical
conditions, the following issues should be considered
when using the loss term.

The main properties of energy loss by the pathway of

blood are the change in cross sectional area and the
direction of flow axis, based on Bernoulli’s equation
and momentum conservation [26, 28]. From Fig. 5A, if
AE4eomerry 18 the energy loss from a change in
geometry, such as cross-sectional area or directional
change, then the mechanical energy balance
(Bernoulli’s equation) is

(Pi=P)= 5 (V7= V) + DE gopmeny @)

Also, the force-momentum relationship (momentum
conservation) is

(Pi=Pp=pQ (Vy- V,-cosﬁ)/Af
=PQ (4;- Ascost)/ A} 3)
where p is density of blood, @ is angle change in
direction, Q is flow rate (m’/s) and A is cross sectional

area. Using Equations 2 and 3, we can derive the
following equation:

%QZ(Ain’AfZ - ZAAfcosﬁ) “4)
4E geometry 4 Ei, f (0) - AiZAfZ

From Equation 4, energy loss can occur due to
change in cross-sectional area or flow angle. Fig. 5B
shows this relationship between energy loss and change
of cross sectional area or angle. The velocity difference
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Fig. 4. The simulation of mean flow rate at the stenotic blood vessel with two different boundary conditions: the constant pressure and
the impedance boundary condition [18]. (Reprinted with permission) A. Geometry of a bifurcated blood vessel with stenosis that reduces
the cross sectional area by 75%. B. Flow distribution between normal and stenotic iliac vessels. Flow rate is calculated at the bottom end
of each bifurcation. For the case of constant pressure boundary, the left branch of bifurcation with stenosis has a drastically different flow
rate compared to the right branch, which is completely unrealistic. In the case of impedance boundary, however, the difference between
the two branches is much smaller as the pressure from the outer domain has been applied properly.
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Fig. 5. A. Schematic representation of a stream of fluid traversing a vessel from an initial position i to a final position f. Uniform flow
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area, and V; and V; represent the corresponding average velocities of flow. B. The relationship between geometrical energy loss and
cross-sectional area ratio. Each line represents the degree of change in flow angle. Each dot represents the point where the loss
becomes minimum at the listed angles (0°, 30°, 45°, 60°, 90”).[26, 28] (Reprinted with permission)

at initial and final points is related to the momentum
conservation equation, 4 (mv)=Ft, where m is mass, v
is velocity, F is force and t is time. A change in ‘mv’
means that force is applied and the velocity and
direction of blood flow are changed by the force of
collisions with the vessel wall. The altered velocity and
direction result in a change in fluid properties, which
are directly related to energy loss.
From Equation 4,

Af+A}F - 244 c080
4f

4E; f(ﬁ)/ % Vi= Q)

Fig. 5B shows that energy loss is also affected by
changes in cross sectional area and flow angle. The
larger the flow angle changes, the larger the energy loss
becomes. In the case of vessel contraction, the larger
the change in cross-sectional area, the larger energy
loss is. The dots presented at 0-60 degrees represent
the cross-sectional area where energy loss is ata
minimum. Energy loss tends to decrease until its
minimum value, then increase again. As, energy loss
approaches 5 V? the cross-sectional area change is
larger at each change of angle. In the case of a change
in 90°, energy loss decreases to 5 V;* without a
minimum value.

The level of change in cross-sectional area and
direction of flow also affects energy loss. This means
that if the rate of change in cross-sectional area or the
angle of path is larger, then the value of energy loss
also increases [26, 29].

A. Change in cross-sectional area but no alteration
in direction of flow
The following Equations 6 and 7 show that variation
in vessel geometry affects energy loss:

(P~ P)="5-0°(d;- Aycosd)id A,

— O T (A A4, A ©)

where Py=P; and Py =Py, Ag=A; and Ay=A,
4E (0=0)=| [8| 5O (1A -1ADatf=0 (7
geometry 1+ﬂ f )a ( )

We can rewrite Equatlon 7, AEgeomerry (0=0) =
function of £ - Big, Biy="% O (l/Af2 1/4;%), which is
term of Bernoulli’ s equation.

In Fig. 6A, it is assumed that the vessel having some
gradient of cross sectional area is divided by ‘N’
number of steps. Then the momentum conservation
between steps (n-1) and (n) can be written as Equation
8.When =0, from Equations 2 and 6, Equation 7 can
be derived to flnd the value of 4E eomerry by using ‘A

A
ra(t10 )( 2 sz £V?) is from the Bernoulli’s equation
and (—; ’)is the loss factor based on ratio of change in
cross sectional area. As observed in Fig. 6A, (2 g) gets
smaller with increasing N, meaning that the greater the
cross-sectional area changes, the less the energy loss is.
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B. No change in cross-sectional area but an
alteration in direction of flow
When the angle changes by ‘N’ number of steps, the
energy loss between n-1 and n steps is demonstrated by
Equation 8 which is derived from Equation 4:
{2 sin(0 /2)}? 0
AEO) = S Oy ®)

The sum of the 4E; f(ﬂ) values in all N steps can be
expressed by Equation 9:

AE, Oy 4E0) =5 & £y 256,208 ©)

r o

AE; (0)is 42 (=% 1) multiplied by ‘energy loss
factor’. This factor decreases as N increases (Fig. 6B).
To sum up, the energy loss decreases as the angle
change becomes more gradual

Equation 9 can be rewritten as:

AE;;(0)= 3 {2sin(@,2)}* - %%, (10)
%

= loss factor - I
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It has been shown that, even without an aneurysm
there is energy loss due to the geometry of the vessel
itself. Hence, energy loss near an aneurysm consists of
loss from the aneurysm itself and the loss from the
geometry of the vessel, expressed as 4E=AE,p,ym™
AE goomenry These equations show that the geometry of
vessel must be considered when using the energy loss

in diagnosis.

SUMMARY

Three important modeling considerations that are
rarely used in circulatory system modeling are
explained in this paper. The non-Newtonian properties
of blood are found to be critical for the accuracy of
modeling. Choosing the appropriate outlet boundary
condition also makes an important difference in the
results of a simulation. Finally, the energy loss related
with blood vessel geometry must be included when the
energy term is used in numerical calculations.

There are many researchers developing better
modeling techniques and numerical methods, yet these
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new methods are not routinely applied in circulatory
system modeling. Establishing accurate and trustwor-
thy modeling of the circulatory system requires the
newest techniques and implementation.
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