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Article Addendum

Myotonic dystrophy type 1 (DM1), 
an incurable, neuromuscular 

disease, is caused by the expansion of 
CTG repeats within the 3′ UTR of 
DMPK on chromosome 19q. In DM1 
patients, mutant DMPK transcripts 
deregulate RNA metabolism by altering 
CUG RNA-binding proteins. Several 
approaches have been proposed for DM1 
therapy focused on specific degradation 
of the mutant CUG repeats or on 
correction of RNA-binding proteins, 
affected by CUG repeats. One such 
protein is CUG RNA-binding protein 
(CUGBP1). The ability of CUGBP1 to 
increase or inhibit translation depends 
on phosphorylation at Ser302, which 
is mediated by cyclin D3-CDK4. The 
mutant CUG repeats increase the 
levels of CUGBP1 protein and inhibit 
Ser302 phosphorylation, leading to the 
accumulation of CUGBP1 isoforms that 
repress translation (i.e., CUGBP1REP). 
Elevation of CUGBP1REP in DM1 is 
caused by increased GSK3β kinase, 
which reduces the cyclin D3-CDK4 
pathway and subsequent phosphorylation 
of CUGBP1 at Ser302. In this review, 
we discuss our recent discovery showing 
that correction of GSK3β activity in the 
DM1 mouse model (i.e., HSALR mice) 
reduces DM1 muscle pathology. These 
findings demonstrate that GSK3β is 
a novel therapeutic target for treating 
DM1.

Introduction

Myotonic dystrophy type 1 (DM1) 
is an autosomal dominant inherited 
disease that affects many tissues. In 
skeletal muscle, this condition leads to 

weakness, atrophy, and myotonia.1 In 
addition to skeletal muscle symptoms, 
patients with DM1 develop arrythmias 
and cardiomyopathy in the heart, 
neurological abnormalities, and insulin 
resistance. DM1 is caused by a mutation 
in the dystrophia myotonica protein 
kinase (DMPK) gene, which results in an 
expansion of CTG trinucleotide repeats 
within its 3′ UTR.2,3 CTG expansions 
are highly unstable and vary in length in 
normal individuals from 5 to 35 repeats. 
In patients with DM1, the length of CTG 
expansions, which correlates with the 
severity of clinical symptoms, varies from 
50 to several thousand repeats.

Development of DM1 therapy requires 
elucidation of the molecular mechanisms 
by which CTG repeats lead to DM1 
pathology. Studies have established that 
CTG repeats lead to DM1 pathology 
by causing the accumulation of mutant 
DMPK mRNA transcripts containing 
an expanded array of CUG repeats that 
target RNA-binding proteins, thereby 
changing their activities and altering RNA 
homeostasis in DM1 cells.4-8 The most 
studied RNA-binding proteins affected 
by CUG repeats are CELF1 (also known 
as CUGBP1) and MBNL1. CUGBP1 is 
a member of the family of CUGBP and 
ELAV-like factors, whereas MBNL1 
belongs to the muscleblind-like (MBNL) 
family of proteins.9-11

The mutant CUG repeats primarily 
cause two toxic events in DM1 cells. 
First, the aggregation of mutant DMPK 
transcripts, possibly due to disruption of 
their subsequent processing,11,12 can lead 
to sequestration of MBNL1 proteins, 
thereby reducing their splicing activity11,13 
(Fig. 1). Second, the mutant CUG repeats 
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increase CUGBP1 stability, leading to 
elevated levels of this protein in DM1 
cells14,15 (Fig.  1). This stabilization is 
mediated by an increase in PKC-mediated 
phosphorylation of CUGBP1 and its 
subsequent binding to soluble CUG 
repeats.14,16

However, these mutant CUG repeats 
also disrupt CUGBP1 phosphorylation 
by other kinases. CUGBP1 contains a 
number of serine and threonine residues 
that regulate its activity and intracellular 
localization. Ser28 is normally 
phosphorylated by Akt to control 
the nuclear-cytoplasmic distribution 
of CUGBP1.17 Another important 
phosphorylation site is Ser302, which 
is located within the spacer between 
RNA-binding domains 2 and 3. Ser302 
phosphorylation, which is mediated by 
cyclin D3-dependent kinase 4 (CDK4),17 
promotes CUGBP1 binding to eukaryotic 
translation initiation factor 2α (eIF2α) 
and the subsequent association of 
CUGBP1 with polysomes.17-19 Because 
of its positive role in activating the 
translation of several mRNAs, encoding 

p21, HDAC1, MEF2A, and cyclin D1, 
phospho-Ser302 CUGBP1 was designated 
as CUGBP1ACT. Although CUGBP1ACT 
binds to eIF2α, it does not affect global 
translation.

We found that a significant 
proportion of CUGBP1 in DM1 cells 
is un-phosphorylated at Ser302.17 In 
contrast to the phosphorylated form, 
un-phosphorylated Ser302 CUGBP1 
binds to inactive (phospho-Ser51) 
eIF2α, thereby forming the inactive 
CUGBP1REP-eIF2α complex. This 
repressor complex is localized within 
stress granules (SGs) to trap mRNAs 
and delay their translation.17,20 We found 
that one CUGBP1 target, MRG15, which 
encodes a protein, involved in DNA repair 
and chromatin remodeling, is bound by 
CUGBP1REP in DM1 cells, leading to 
reduced MRG15 protein levels.17 These 
data showed that CUGBP1REP may 
repress the translation of many additional 
mRNAs in cytoplasmic aggregates or 
SGs, and that Ser302 phosphorylation 
of CUGBP1 by cyclin D3-CDK4 may 
act to switch the function of CUGBP1 

from repressor to activator of translation. 
Interestingly, both forms of CUGBP1 are 
elevated in DM1. In addition to regulating 
translation, CUGBP1 controls mRNA 
splicing and stability.17-19,21-24 Therefore, 
elevation of CUGBP1ACT in DM1 may 
increase the translation of some mRNAs 
and change the splicing and stability of 
CUGBP1 targets.

Our recently published work showed 
that the increase in CUGBP1REP in DM1 
cells is due to elevated levels of activated 
GSK3β25. Consistent with this, GSK3β 
levels are also increased in the skeletal 
muscle of HSALR mice, which express 
tracks of 250 CUG repeats within the 
3′ UTR of human skeletal actin and is 
commonly used model of CUG repeat 
RNA mediated pathology in DM1.5,25 
GSK3β has many substrates, including 
cyclin D3.26 Phosphorylation of cyclin D3 
by GSK3β in DM1 patients and HSALR 
mice results in reduced cyclin D3 protein 
levels because phosphorylated cyclin D3 
is targeted for degradation. In agreement 
with this reduction in cyclin D3 in DM1 
cells, CUG repeats convert CUGBP1ACT 
to CUGBP1REP.

Once alterations to the GSK3β 
pathway were discovered, we investigated 
whether GSK3 inhibitors can correct the 
pathology of DM1. Analysis of HSALR 
mice treated with inhibitors of GSK3, 
namely lithium and TDZD-8, showed 
that elevated GSK3β plays a crucial role 
in DM1 pathology. We found that both 
inhibitors significantly increased grip 
strength in HSALR mice and improved 
DM1 muscle histology.25 Moreover, 
treatment of HSALR mice with lithium or 
TDZD-8 significantly reduced variability 
in myofiber size (Fig.  2A-C), as well as 
the number of central nuclei in HSALR 
muscle25 (Fig. 2D). Based on these data, 
we concluded that the elevated GSK3β 
is the third major toxic event in DM1 
pathogenesis (Fig. 1).

Initially, we expected that deregulation 
of the GSK3β-cyclin D3-CDK4-
CUGBP1 pathway may be responsible 
for muscle atrophy in DM1. However, 
treatment with lithium and TDZD-8 
also reduced myotonia in HSALR mice.25 
Thus, it is possible that the correction 
of CUGBP1 activity may not only 
“normalize” the translational activity of 

Figure  1. Toxic events caused by mutant CUG repeats in DM1 cells and possible therapeutic 
approaches for their correction. Mutant CUG repeats cause three toxic molecular events: (1) 
sequestration of MBNL1, (2) higher levels of CUGBP1, leading to elevation of the active form of 
CUGBP1 (CUGBP1ACT), and (3) elevation of active GSK3β, which reduces cyclin D3 and converts 
a portion of CUGBP1ACT to CUGBP1REP. Thus, both CUGBP1 forms are elevated in DM1. Reduced 
MBNL1 and increased CUGBP1ACT lead to deregulation of mRNA splicing, translation, and stability. 
Futhermore, increased CUGBP1REP may reduce mRNA translation in stress granules. Taken together, 
these molecular changes lead to myotonia, weakness, and muscle atrophy. Administration of GSK3β 
inhibitors reduces DM1 muscle histopathology, weakness, and myotonia similar to degradation of 
mutant CUG repeats by AONs.�



www.landesbioscience.com	R are Diseases	 e26555-3

CUGBP1, but also its splicing activity. 
This correction may lead to the correction 
of the splicing of one myotonia-associated 
target of CUGBP1, the chloride channel.23 
Although we found that lithium converts 
CUGBP1REP into CUGBP1ACT in HSALR 
muscle, further investigation is necessary 
to determine whether the GSK3β-cyclin 
D3-CDK4 pathway plays a major role 
in reducing myotonia in DM1 mice or 
whether GSK3β inhibition affects other 
pathways in these mice. Taken together, 
we found that GSK3 inhibitors reduce 
DM1 pathology in HSALR mice similar to 
the degradation of mutant CUG repeats 
by antisense oligonucleotides (AONs)27-29 
(Fig. 1).

Our initial experiments in which 
6-mo-old HSALR mice were treated with 
GSK3 inhibitors were based on protocols 
using short treatment durations, 
specifically 2–7 d for TDZD-8 or 2 
weeks for lithium.25 We noticed that grip 

strength increased and that myotonia was 
reduced in the treated mice immediately 
after treatment. However, once treatment 
was completed, HSALR mice developed 
muscle weakness again. These results 
suggest that, to maintain “normalized” 
grip strength in adult HSALR mice, 
GSK3 inhibitors must be administered 
continuously if the treatment protocols 
tested in our recent study are used.25 
In contrast, myotonia in these mice 
remained lower for several weeks after 
cessation of treatment.25 The mechanisms 
responsible for the long beneficial effect 
of the GSK3 inhibitors on myotonia 
in HSALR mice remain to be studied. 
Interestingly, the effects of these inhibitors 
on grip weakness were more pronounced 
in 6-week-old HSALR mice. Treatment of 
6-week-old HSALR mice with TDZD-8 
for 1 week significantly increased the grip 
strength in these mice when evaluated 
at 3 mo of age.25 These data suggest that 

inhibition of GSK3β in HSALR mice at a 
pre-symptomatic age may be beneficial to 
reducing the incidence of DM1 pathology 
in adult HSALR mice.

Conclusions

In summary, our study found increased 
levels of GSK3β in the skeletal muscle of 
DM1 patients and HSALR mice.25 This 
alteration seems to be a key event in DM1 
pathology because GSK3 inhibitors can 
reduce dysfunctional muscle pathology 
in the DM1 mouse model. It remains 
to be determined whether GSK3β plays 
a role in the development of other DM1 
symptoms, such as insulin resistance 
and defects in cardiac and neurological 
functions. Studies have demonstrated 
that GSK3β is increased in other 
conditions, including type 2 diabetes 
mellitus.30 Therefore, elevated GSK3β 
may contribute to the development of 

Figure  2. Correction of muscle histopathology in HSALR mice treated with GSK3 inhibitors, namely lithium and TDZD-8. (A) Hematoxylin and eosin 
staining of muscle sections (gastrocnemius) from age-matched 6-mo-old WT, untreated HSALR mice, and lithium-treated HSALR mice. Internal nuclei in 
the muscle of untreated HSALR mice are indicated by asterisks. (B) Lithium reduces myofiber size variability in HSALR mice. Myofiber area was compared 
in gastrocnemius from age-matched 6-mo-old WT mice and HSALR mice untreated and treated for 2 weeks with lithium. The y-axis shows the average 
myofiber area in pixels. p < 3.36 × 10-16 (untreated HSALR mice vs. WT mice); p < 1.10 × 10-7 (treated vs. untreated HSALR mice). (C) TDZD-8 treatment reduces 
myofiber size variability in HSALR muscle. Myofiber area was increased in 4-mo-old HSALR mice relative to WT mice (***p < 5.88 × 10-6). The myofiber area 
was reduced in HSALR mice after TDZD-8 treatment. *p < 0.02677 (treated HSALR mice vs. untreated). (D) Treatment of HSALR mice with TDZD-8 reduces the 
number of central nuclei in the skeletal muscle (gastrocnemius) of HSALR mice. The number of central nuclei was counted in six randomly selected 20 × 
views and the average values are shown. The average number of central nuclei per view was increased in HSALR mice (***p < 4.616 × 10-8) relative to WT 
mice. However, treatment with TDZD-8 reduced the number of central nuclei. ***p < 0.000387 (treated HSALR mice vs. untreated).
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insulin resistance in DM1. Since GSK3 
inhibitors are used to treat neurological 
disorders such as bipolar disease,30 
these compounds may also improve 
neurological dysfunction in patients with 
DM1 in addition to correcting skeletal 
muscle defects.
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