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Abstract

Objective: There are many barriers to accessing mental health assessments including

cost and stigma. Even when individuals receive professional care, assessments are

intermittent and may be limited partly due to the episodic nature of psychiatric symp-

toms. Therefore, machine-learning technology using speech samples obtained in the

clinic or remotely could one day be a biomarker to improve diagnosis and treatment.

To date, reviews have only focused on using acoustic features from speech to detect

depression and schizophrenia. Here, we present the first systematic review of studies

using speech for automated assessments across a broader range of psychiatric

disorders.

Methods: We followed the Preferred Reporting Items for Systematic Reviews and

Meta-Analysis (PRISMA) guidelines. We included studies from the last 10 years using

speech to identify the presence or severity of disorders within the Diagnostic and

Statistical Manual of Mental Disorders (DSM-5). For each study, we describe sample

size, clinical evaluation method, speech-eliciting tasks, machine learning methodol-

ogy, performance, and other relevant findings.

Results: 1395 studies were screened of which 127 studies met the inclusion criteria.

The majority of studies were on depression, schizophrenia, and bipolar disorder, and

the remaining on post-traumatic stress disorder, anxiety disorders, and eating disor-

ders. 63% of studies built machine learning predictive models, and the remaining

37% performed null-hypothesis testing only. We provide an online database with our

search results and synthesize how acoustic features appear in each disorder.

Conclusion: Speech processing technology could aid mental health assessments, but

there are many obstacles to overcome, especially the need for comprehensive trans-

diagnostic and longitudinal studies. Given the diverse types of data sets, feature

extraction, computational methodologies, and evaluation criteria, we provide guide-

lines for both acquiring data and building machine learning models with a focus on

testing hypotheses, open science, reproducibility, and generalizability.

Level of Evidence: 3a
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1 | INTRODUCTION

Mental health disorders in the United States affect 25% of adults,

18% of adolescents, and 13% of children.1,2 These disorders have a

larger economic impact than cancer, cardiovascular diseases, diabetes,

and respiratory diseases, but societies and governments spend much

less on mental disorders than these other disorders.3 Current

approaches to the assessment and monitoring of psychiatric condi-

tions rely primarily on intermittent reports from affected individuals

or their caregivers. These reports are often subjective and include

patients' retrospective recall biases (eg, to downplay or overestimate

symptoms), cognitive limitations (eg, memory of episodes and environ-

ment, causal inference), and social stigma. There is an urgency to

objectively diagnose, monitor over time, and provide evidence-based

interventions for individuals with mental illnesses, particularly those

who are unable to access traditional psychological or psychiatric ser-

vices due to geographical, financial, or practical barriers. Only 41% of

US adults suffering from a mental health condition access mental

health services in a given year.4 This systematic and objective assess-

ment would facilitate remote assessments and better personalization

of care and thereby improve clinical services across the medical

practice.

One promising avenue toward improving the objectivity of psy-

chiatric assessment and access to services is to leverage the increase

in health-related data collection using sensors (eg, wearables,

smartphones, cameras) alongside improvements in machine learning

technology (see Figure 1 for an overview). Wearables, including

watches, rings, and clothes that measure biological and behavioral

indices such as temperature, skin conductance, movement, and heart

rate, can be potential indicators of anxiety and depression, and used

to provide biofeedback.5,6 Features obtained from video recordings

have been used to detect depression7 and bipolar disorder.8-10 Tech-

nologies such as MultiSense11 can be used to measure facial expres-

sions, body gestures, smile-frown dynamics, and eye contact. Many

smartphones can measure ambient light, moisture, pressure, gait, loca-

tion, and acceleration, steps taken, some of which are used to detect

psychiatric disorders.12,13 Features extracted from handwriting have

shown to indicate anxiety and stress.14 Neuroimaging data have also

been provided many promising results,15-17 but this article focuses on

non-neuroimaging sensors such as voice. Finally, text obtained either

from transcribed audio recordings, blogs, or social media has been

used to detect many psychiatric disorders including psychotic, depres-

sive, and anxiety disorders from morphological, syntactic, semantic,

and discursive features (for reviews, see References 18-20). These

technologies thus provide opportunities for better assessment of

mental health.

1.1 | The promise of technological assessment of
mental health

Using machine learning technology to analyze data obtained from sen-

sors for the assessment of psychiatric disorders has the potential to:

(a) screen for at-risk individuals before they access the mental health

care system; (b) complement clinicians' assessments once individuals

seek care; and (c) help monitor symptoms once patients leave the

clinic or in between consultations. Each of these goals will be dis-

cussed in turn.

First, these technologies can help address several barriers that

prevent individuals from accessing mental health diagnoses and treat-

ments in the first place. A factor analysis of primary care surveys21

found that the main perceived barriers to potential psychological

treatment are cost, stigma, lack of motivation, fear of unsettling feel-

ings, negative view of therapy, mismatch between therapy and needs,

time constraints, accessibility restrictions, and availability of services.

Some subpopulations facing especially challenging barriers to care

include individuals with physical handicaps22 or those involved in wars

or humanitarian reliefs where distress is more likely.23 Individuals out-

side the mental health care system could still assess their mental

health remotely with such technologies and then access online

resources, telemedicine options, and smartphone apps (eg, cognitive

behavioral therapy strategies according to their severity).24 These

technologies may be able to, using longitudinal data across individuals,

select personalized treatment alternatives by learning the success rate

of different treatments given specific symptomatology.25 More imme-

diately, such technologies could be used for screening in schools, uni-

versities, armed forces, and primary-care settings.

Second, these technologies may improve assessment within the

clinic given certain obstacles clinicians face. Once individuals access

the mental health care system, qualitative clinical evaluations face the

obstacle of diagnosing disorders that may be episodic and may have

high comorbidity rates. This makes it harder to separate overlapping

symptoms into underlying discrete diagnoses. This obstacle is

evidenced by the presence of low inter-rater reliability26 and test-

retest reliability27 in certain psychiatric diagnoses including major

depressive disorder (MDD) that have a low kappa score. It is a com-

plex engineering problem to create a model to detect a specific disorder

when many patients present more than one disorder or symptoms are

intermittent. For instance, more than 50% of cases of post-traumatic

stress disorder (PTSD) co-occur with depressive, anxiety, or substance

use disorders.23 Furthermore, suicidal thoughts and behaviors can also

be a goal in predictive models28 (for a review, see Reference 29) and are

present across many disorders. Comorbidity is one reason why the

National Institute of Mental Health has developed the Research Domain
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Criteria with the goal of deconstructing diagnoses with biomarkers—

from genetic to behavioral—to predict and improve response to treat-

ments.30 Therefore, algorithms trained on behavioral descriptors could

provide likelihood estimates for different disorders to aid clinicians in

differential diagnosis (eg, determining whether a patient meets criteria

for unipolar depression or bipolar disorder31), help detect risk for chronic

psychiatric disorders,32 psychiatric episodes,33 or suicidal behavior29;

and over time learn to predict the best treatment given multimodal

F IGURE 1 How machine learning works
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(genetic, brain-imaging, behavioral) data.34 Therefore, complementing

clinical interviews with machine learning models trained on the record-

ings of these interviews could improve outcomes, save clinicians' time,

reduce health care costs, and make treatment planning more efficient.

Finally, this technology may improve mental health care by facilitating

more regular and real-time monitoring of symptoms. For instance, even if

individuals are able to see a clinician in-person, they may not return;

therefore, remote monitoring would allow individuals, caregivers, or clini-

cians to observe and assess mental health and decide if it is time to seek

help. Furthermore, once chronic patients are in a regular visiting schedule,

symptoms may fluctuate in between visits. Sensors and just-in-time adap-

tive interventions might ultimately be able to detect urgent episodes or

warning signs and deploy online resources or computerized therapy

before problems escalate.35 With monitoring via these real-time methods,

patients and clinicians have the potential to more reliably observe behav-

ior, perform early detection of episodes, request unscheduled evaluations,

and/or change the course of treatment in a personalized way.

These promises are far from being fulfilled. Most studies of such

applications to date do not use large, representative samples that are

needed to assess disorders in out-of-sample individuals. Clinical dat-

a sets tend to be small, and models trained on limited observations of

a certain type of data (eg, recorded in a silent room, Caucasian

speakers, adults) may not even extrapolate to data that seems to be

similar. Furthermore, algorithms are susceptible to learning biases

inherent in the data used to train them (eg, incorrectly assigning lower

disorder severity to African Americans because less of them have the

disorder in the training set).36-39 Critically, many high-performing algo-

rithms (eg, deep neural networks, proprietary models) are “black

boxes,” since it is currently not understood how these models com-

bine features to output the severity of a disorder. This creates a lack

of trust since they have been shown to be fooled by adversarial

attacks (ie, perceptually small manipulations in the inputs that create

incorrect outputs).40 This is why a recent European Union regulation

requires a right to obtain an explanation of life-affecting decisions

from automated algorithms41,42 such as clinical assessments, and

DARPA has released an Explainable Artificial Intelligence program to

tackle these challenges43 (“Explain and interpret models to reduce bias

and improve scientific understanding” guideline in the Section 4).

1.2 | Speech as an automated biomarker for
mental health

Most of us speak effortlessly without realizing the complexity of coor-

dination that this act entails. Speaking is not just moving the mouth. It

is an orchestration of human communication expressing thought,

intent, and emotion in a carefully choreographed performance. This

motor coordination involves over 100 muscles and is supported by a

large network of brain regions processing auditory, somatosensory,

and visual input, language perception and production.44 Thus, spoken

communication is a window into the mind, and opens the strong

potential for the plethora of technologies to capture and process

speech to evaluate mental health.

Speech patterns have been known to provide indicators of mental

disorders: in 1921, Emil Kraepelin stated that depressed patients'

voices tended to have lower pitch, more monotonous speech, lower

sound intensity, and lower speech rate as well as more hesitations,

stuttering, and whispering.45 In comparison to other behavioral

descriptors (eg, skin conductance, acceleration), speech has a number

of advantages: it is hard to hide symptoms, it directly expresses emo-

tion and thought through its language content, it indirectly reflects

neural modulation through motor and acoustic variation, it may gener-

alize across languages (due to similar vocal anatomy) which is espe-

cially useful for low-resource languages when natural language

processing technology is not available, and it is relatively effortless to

obtain using smartphones, tablets, and computers instead of more

costly wearables or invasive neuroimaging methods, especially consid-

ering many clinical interviews are already recorded. Furthermore, it is

a type of data that will be increasingly available given the improve-

ments in speech recognition and shown through virtual assistants

such as Amazon Alexa, Apple Siri, Google Voice Search, speech to text

applications for electronic health records, and voice biometrics for

security, military, and education.

Table 1 provides an overview of the different approaches to

assess mental health and their relative advantages and disadvantages

(see also Reference 48). In this review, we focus on studies that com-

pare whether acoustic features differ in psychiatric populations

through null-hypothesis testing and predictive models which use

acoustic features to detect the presence or severity of a psychiatric

disorder in an individual. Both types of models are built using auto-

matically extracted acoustic features. Null-hypothesis models isolate

variables deemed important above a relatively arbitrary P value, and

can be incongruent with the variables that maximize predictions in

new settings.49 Significant differences are usually considered more

useful for scientific inference than prediction. Predictive studies train

models on a subset of the data and test performance on the rest of

the data not used for training and therefore give insight into how well

they may generalize to new individuals.

The goals of this review are to both provide a state of the art on

computationally detecting mental health disorders from acoustic

speech features and synthesize best practices to achieve this goal.

There are reviews on using speech to detect specific psychiatric dis-

orders such as depression29,50,51 and schizophrenia52,53; however,

this is the first systematic review on a broad range of psychiatric dis-

orders. The reasons for performing this review are to address the

lack of a clear picture of the utility of speech signals in detecting and

differentiating mental health disorders, as well as the relative effi-

cacy of the signal across disorders; highlight the variability of acous-

tic features that may be useful in assessing psychiatric disorders;

discuss confounders that affect such assessment and how are they

controlled; provide a practical guide to a set of experimental tasks to

elicit speech; and report which methodologies are being used

to improve generalization of models to new individuals. We wish to

show how having access to speech data could improve mental health

care, which we will discuss provides a new bridge between psychia-

try and laryngology.
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Therefore, our specific aims for this systematic review are to

(a) synthesize results from publications covering null-hypothesis test-

ing and predictive models which use automatically extracted acoustic

features to detect psychiatric disorders, (b) characterize psychiatric

disorders based on the acoustic features that are significantly differ-

ent in comparison to neurotypical populations, (c) link these altered

acoustic features to observed symptoms or behaviors, and

(d) considering the challenges of this field, offer guidelines for acquir-

ing data and building machine learning models to achieve higher

reproducibility and generalizability. Thus, we hope to facilitate the

application of these methods to improve assessment and treatment of

psychiatric disorders.

2 | METHODS

We followed the Preferred Reporting Items for Systematic Reviews

and Meta-Analysis (PRISMA) guidelines.54

2.1 | Eligibility criteria and literature search

The search aimed at identifying articles from the last 10 years that

include computational methods for predicting psychiatric disorders by

analyzing speech from individuals' recordings through machine learn-

ing methods. The following studies were excluded: (a) studies with

children or about developmental disorders; (b) case studies; (c) studies

that only used perceptual evaluations of speech; (d) studies without

control groups or comparison along a diagnostic scale's severity;

(e) unpublished or non-peer reviewed theses; and (f) if disorder had

with many eligible studies (>40), we excluded studies published before

2018 with under four citations plus one citation per year of antiquity

(ie, included 2017 articles with four citations, 2016 articles with five

citations). Google Scholar was used as it indexes journals as well as

conference articles, a common type of publication in computational

speech analysis. Articles ranging from 2009 to the present were

searched between May 16 and August 12, 2019 by finding keywords

in the title in the following manner: “allintitle:(<disorder> + acoustic

TABLE 1 Advantages and disadvantages of different types of psychiatric assessments

Measurement Advantages Disadvantages

Clinician assessments using perceptual-
rated questionnaires

• Clinician experience

• Tests have populational norms

• Clinicians can ask for further

assessments

• Clinicians can offer treatment pathway

• Questionnaire items are interpretable

• Costs of clinic and clinician

• Time-consuming

• Requires extensive training

• Normally assessed sporadically in clinic

• Questionnaires often use ordinal and

vague variables (eg, never, sometimes)

• Prone to clinician's biases: expertise,

culture and race,46 research question

• Patient's memory distortions47

• Patients' perceived barriers to pursuing

treatment (see main text)

• Inter-rater reliability can be low

• Cannot capture complex features

Self-assessments • Potentially free

• Less time-consuming than clinician

assessments

• No clinical training required

• Can be administered anywhere

• Tests have populational norms

• More narrow than clinical evaluation

• Biased by patient's voluntary responses

• Generally cannot offer personalized

treatment

• Cannot capture complex features

• Assessments have to be created and

validated based on observation of

symptoms

Automated computational assessments

based on sensors

• Potentially free

• Potentially instantaneous

• Can be done remotely, continuously, and

naturalistically (app prompts)

• Can incorporate larger and more varied

samples than clinic samples

• Avoids human biases and single rater

• Can capture multimodal features (audio,

video, text, accelerometer)

• Ratio and continuous variables

• Can capture complex features due to

linear and nonlinear multivariate models,

and find new structure in data

• Allows scalability because models can be

fast and automated

• Most models have not been validated

through clinical trials thus far

• Needs large amounts of data

• Many sources of variation in the signal,

and their relative contributions are

poorly understood

• Models can be affected by biases in data

(eg, race, age, noise)

• Difficult to incorporate expert priors (eg,

body language, clinical history) into

models

• Assessment does not automatically lead

to treatment or intervention options
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OR acoustical OR speech OR voice OR vocal OR audio OR pitch OR

prosody OR vowel),” where <disorder> was replaced by DSM-555 dis-

orders (iteratively searched for each disorder and related terms due to

character limitations in Google Scholar searches). We excluded neuro-

logical or neurocognitive disorders (eg, Neurocognitive Disorder Due

to Parkinson's Disease), neurodevelopmental disorders (eg, autism),

F IGURE 2 PRISMA flow diagram of study inclusion and exclusion criteria for the systematic review

TABLE 2 Summary of systematic review results

Disorder Articles % (N) Median sample size (range) Clinical assessment % (N) Predictive models % (N)

Depression 49.6 (63) 123 (11-1688) 38 (24) 87 (55)

PTSD 7.9 (10) 41 (10-253) 70 (7) 80 (8)

Schizophrenia 18.1 (23) 44 (18-195) 86 (20) 13 (3)

Anxiety 4.7 (6) 45 (20-104) 50 (3) 0 (0)

Bipolar 16.5 (21) 39 (5-89) 90 (19) 66 (14)

Bulimia 0.8 (1) 22 (-) 100 (1) 0 (0)

Anorexia 1.6 (2) 107 (66-148) 100 (2) 0 (0)

OCD 0.8 (1) 35 (-) 100 (1) 0 (0)

Note: The distribution of the 127 studies that matched the inclusion criteria is described in the Articles column. Within each disorder, the following

characteristics are described: median sample size (case group plus control group), proportion of clinical diagnosis vs self-report measures, and proportion of

predictive vs null-hypothesis testing studies.

Abbreviations: OCD, obsessive-compulsive disorder; PTSD, post-traumatic stress disorder.

LOW ET AL. 101



noncognitive or body-centered disorders (eg, sleep, catatonic, somatic,

sexual, elimination), and substance use disorders, which allows us to

approximately reduce the scope of the review to adolescent and adult

psychiatric disorders. This resulted in the following search terms with

associated names: “post-traumatic stress” OR PTSD OR posttraumatic

stress; bipolar OR mania OR manic OR cyclothymic, anxiety OR anx-

ious OR mutism OR phobia OR panic OR agoraphobia; “obsessive-

compulsive” OR obsessive-compulsive disorder (OCD) OR dysmorphic

OR hoarding OR trichotillomania; dissociative OR depersonalization;

“eating disorder” OR anorexia OR bulimia OR “binge-eating” OR pica

OR rumination; “personality disorder” OR “paranoid personality” OR

schizoid OR antisocial OR borderline OR histrionic OR narcissistic OR

avoidant OR “dependent personality”; “mood disorder” OR “mood

dysregulation”; schizophrenia OR schizophrenic OR schizotypy OR

schizotypal OR psychosis OR psychotic OR delusion OR delusional

OR paranoia OR paranoid OR alogia; depression OR depressed OR

depressive OR dysthymia OR MDD. Reviews were searched twice by

adding the term “+ review.” General keywords were also included in

the review search such as “mental health” OR psychiatry OR psychiat-

ric OR “affective disorder” OR “psychological disorder” OR “mental

illness.”

2.2 | Data extraction

Screening was performed by the first author (D.M.L.) by reading the

title and abstract. From each article, the following features were syn-

thesized if available: disorders, sample size, presence of control group,

age, clinically assessed or self-assessed, clinical scales used for diagno-

sis, tasks to obtain speech, predictive model, highest performance or

statistical significance, type of validation or test set, and other rele-

vant findings (especially if stated which features were predictive).

3 | RESULTS

A total of 127 studies were included in the review (see Figure 2). See

Table 2 for a general description on the search results. Full synthe-

sized search results are available online (https://tinyurl.com/

y6ojfq56), which can be updated with new studies on a blank row by

adding comments for every column, with the table at the time of pub-

lication also available (https://tinyurl.com/tu58te3). Review articles

and data sets without models were included for easy reference, but

were not counted in Table 2.

F IGURE 3 Synthesis of null-hypothesis testing studies across psychiatric disorders. Acoustic features are color-coded on the y-axis into
source features from the vocal folds (blue), filter features from the vocal tract (red), spectral features (purple), and prosodic or melodic features
(black).56 Features that are significantly higher in a psychiatric population than healthy controls or that correlate positively with the severity of a
disorder receive a score of 1 (red), features that are lower or correlate negatively receive a score of −1 (blue), and nonsignificant or contradicting
findings receive a score of 0 (gray). The mean is computed for features with multiple results. The cell size is weighed by the amount of studies.
Features not studied in a disorder are blank. Anxiety, social or general anxiety disorder; OCD, obsessive-compulsive disorder; PTSD, post-
traumatic stress disorder
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3.1 | Key acoustic features across disorders

Figure 3 provides a synthesis of the field, showing which features

have been studied thus far through null-hypothesis testing. We syn-

thesize the acoustic features that have been shown to be statistically

lower or higher in a psychiatric disorder in comparison to healthy con-

trols or those that correlate with a diagnostic scale (see Figure 4 for

glossary). Each cell represents the sign of a statistical test (eg, psychi-

atric group significantly higher than control group) or correlation (eg,

negative correlation with diagnostic scale) across potentially multiple

studies for a given acoustic feature and disorder. Acoustic features

that are significantly higher in psychiatric population than healthy

controls or that correlate positively with the severity of a disorder

receive a score of 1, ones that are lower or correlate negatively

receive a score of −1, and nonsignificant findings receive a score of

0. Then the overall score for each cell is obtained by taking the mean.

The cell size reflects the amount of studies supporting this effect. To

improve visibility, features that appear in only one study were

excluded for the top-studied disorders (ie, depression, schizophrenia,

and hypomanic states within bipolar disorder). Results that correlate a

feature with a subsymptom of a clinical scale were excluded (ie, only

total scores from scales were used).1

Some aspects were simplified: for instance, both social anxiety

disorder and generalized anxiety disorder were grouped under the

anxiety column. Energy and intensity features were grouped under

intensity. Within bipolar disorder studies, features that characterized

depression with regards to euthymia were placed in depression dis-

order column, while both hypomania vs euthymia and bipolar vs con-

trol were placed in the hypomania column. Also worth noting is that

the type of task used could change results, even within the same

study,58 such as extracting features from sustained vowels or voiced

speech.59

4 | DISCUSSION

The majority of studies found in this review that use automated speech

feature extraction to assess mental health conditions focused on MDD,

bipolar disorder, and schizophrenia. The reason is likely due to the fact

that Audio/Visual Emotion Challenge and Workshop (AVEC) machine

learning competitions have been carried out for MDD-PTSD60-63 and

bipolar disorder,64 where the goal is to detect disorder severity using

audio and video features. The open-access research data sets used in

these competitions such as the Distress Analysis Interview Corpus65

were then used by many other studies after the competition. Out of

the 127 studies included in this review, 32% used AVEC data sets. The

creation of apps to collect data such as MONARCA13,33 or PRIORI66

apps for hypomanic and depressive state detection in bipolar disorder

has also helped promote studies. Schizophrenia, on the other hand, has

been studied less from the machine learning field since 87% of studies

performed null-hypothesis testing only.

Regarding performance in predictive models, few studies used

held-out test sets. It is unlikely that performance will generalize as

reported if studies did not evaluate performance on a representative

held-out test set (which are most studies in this review) and instead

used some form of cross-validation (which is the case in most

reviewed studies), which is likely overfitting (see Figures 1 and 5). This

limited generalizability and overfitting are observed for instance in the

drop in performance from development to test set in submissions to

the AVEC challenges.8,9,64,67 For results that used held-out test sets,

which are more likely to generalize if they are representative, scores

range from close to chance to higher scores including Afshan et al68

(F1-score = 0.95) which most likely benefited from having a large sam-

ple size (N depressed = 735, N controls = 953) and all participants

being the same sex (female). At the same time, Kächele et al69

obtained one of the highest performances in AVEC 2014 (ie, mean

absolute error = 7.08), simply using provided audio baseline features

and a random forest classifier (the highest performance combined

audio and visual features).70 Therefore, performance is a function of

sample size, preprocessing, feature selection, and model, which will all

depend on the specific data being used (ie, different algorithms on dif-

ferent datasets will make different speed-accuracy-complexity

tradeoffs and therefore there is no universally best model; see “no

free lunch theorem”).71

When analyzing feature importance for a given disorder, within

predictive models, many types of features have shown to be predic-

tive and their relevance seems to be influenced by how different algo-

rithms capture information from different types of data. Within null-

hypothesis testing studies, the most studied acoustic features were f0

mean, f0 variability, intensity variability, jitter, shimmer, and total time

talking. Next, we discuss how acoustic features may relate to observ-

able symptoms.

4.1 | Linking acoustic features to symptoms of
psychiatric disorders

4.1.1 | Major depressive disorder

A decrease in f0 and f0 range in depressed individuals has repeatedly

been observed,56,59,72 which is a classic finding (for a review on

speech patterns in depression, see Reference 29), and reflects the

monotonous speech often seen in depression. Meanwhile, other

acoustic features such as jitter, shimmer, and f0 variability tend to

increase with depression severity and psychomotor retardation (ie,

slowing of thought, physical movement, and reaction times) which

affects motor control precision and laryngeal muscle tension.56,59,72

4.1.2 | Post-traumatic stress disorder

Marmar et al73 interpreted the features that helped achieved high per-

formance in detecting PTSD, which indicated that speech from indi-

viduals with PTSD is more monotonous, slower, and flatter. Similarly,

other studies found reduced tonality in the vowel space (ie, F1 and F2

2D space for the vowels /a/, /i/, /u/)74 and f0 variability.75
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F IGURE 4 Glossary of acoustic features. Classification based on References 29 and 56. For further discussion, see the Geneva Minimalistic
Acoustic Parameter Set (GeMAPS)57 and Section 4.3.3
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4.1.3 | Schizophrenia

Several studies found total time talking76,77 and speech rate78,79 to be

significantly lower, while mean pause duration to be higher76,77,80 in

schizophrenia, which are measures poverty of speech and alogia, clas-

sical negative symptoms in schizophrenia.53 Flat affect, another nega-

tive symptom, could be expressed by lower f0 mean and variability

but results were mixed with many null results in line with a meta-

analysis that showed weaker effects for atypicalities in pitch variabil-

ity than ones in duration.53

4.1.4 | Bipolar disorder

Significant increases in tonality were observed including increases in

median f0,81,82 and mean F1 and F2.83 Furthermore, a significantly

higher number of longer pauses were observed in depressive states

than in euthymic or hypomanic states,81 and speech pauses became

longer as patients transitioned into depressive states.13 Changes in

speech in depression and mania are well known clinically as they are

captured by the psychomotor retardation item in the Hamilton

Depression Rating84 and the speech rate item on the Young Mania

Rating Scale85; however, speech rate was not identified in the

reviewed studies, and therefore, remains promising for future studies.

4.1.5 | Anxiety disorders

Many studies found a significant increase in mean f0 in social anxiety

disorder58,86-88 and generalized anxiety disorder,89 with some studies

finding null results.88,90 This was the highest score for mean f0 across

disorders (see Figure 3). Jitter and shimmer were also significantly

higher in anxious patients.89,90 Only one study91 met inclusion criteria

for OCD and found that the voices of individuals with OCD had sig-

nificantly more jitter than healthy controls. Beyond automated feature

extraction, a clinical evaluation of showed OCD voice to be signifi-

cantly more hoarse and breathy and have a lower speech rate.

4.1.6 | Bulimia nervosa

Significantly higher source features such as jitter, shimmer, fre-

quency disturbance ratio, and amplitude disturbance ratio have been

found in bulimia nervosa along with a variety of laryngeal alterations

due to vomiting (for reviews, see References 92-94). For instance,

dysphonia has been observed95 as well as pharyngeal reflux in

singers who also presented vocal fold edema and polypoid

changes.96 Lesions such as laryngitis posterior, pharyngitis, and

hematomas in the vocal folds could be caused by chronic irritation

due to the presence of chyme during self-induced vomiting.97

Therefore, these impairments may alter these source features origi-

nated in the vocal folds.

4.1.7 | Anorexia nervosa

Contradicting findings were found for mean f097,98 in anorexia

nervosa. However, when analyzing only participants who presented

the disorder before the menarche, it was found that they had signifi-

cantly higher mean f0.98 Furthermore, inappropriate larynx structure

was observed in older patients along with a weak, asthenic voice, and

some hyperfunctional dysphonia.97 Therefore, it may be f0 is altered

if anorexia affects puberty development due to being present before

menarche or if anorexia has been present for enough time to cause

weakness. More research is needed to clarify these findings.

4.2 | Guidelines for acquiring data

Studies tend to propose models for detecting disorders, however they

vary greatly in sample size, demographics, confounds that were con-

trolled, diagnosis criteria, speech-eliciting task and recording environ-

ment. Therefore, the detection will be biased to whichever criteria

they used to acquire data. We summarize and discuss different strate-

gies found in the reviewed articles to record speech, avoid confounds,

and elicit relevant signals in speech for psychiatric-trait detection

while safeguarding privacy (for further discussion, see Reference 99).

4.2.1 | Report comorbidities

Most studies reviewed included individuals with psychiatric com-

orbidities.88 Scherer et al (2013) included subjects who presented a

high correlation (Pearson's r > 0.8) between their depression PHQ-9

score and their PTSD PCL-C score.116 However, most studies did not

report the comorbidities. Few studies specifically addressed this prob-

lem and tried, for instance, to differentiate unipolar depression from

bipolar disorder100 and dysthymia from generalized anxiety disor-

der.101 To better understand what is being classified, multiple diag-

nostic questionnaires should be used to detect comorbidities. Future

research could also compare models built for populations with and

without comorbidities.

4.2.2 | Detect symptoms or problems instead of
disorders

There are very few publications focusing on predicting symptoms or

problems. However, it would be desirable to link acoustic features to

specific symptoms or problems that may be shared across disorders

by detecting specific subitems within diagnostic questionnaires in line

with the NIMH RDoC described in Section 1 (eg, Reference 102; for

further discussion, see Reference 103). In psychiatry, there is a current

trend to move from symptoms, which assume an underlying latent dis-

ease or disorder, to problems (eg, less sleep, lower energy), which may

be related to underlying biological mechanisms.
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4.2.3 | Consider additional confounds when
selecting control group

A control group must not match diagnostic criteria by either being eval-

uated as neurotypical or within a different pathological group (eg, MDD

in comparison to PTSD) and present statistically equivalent values for

potential confounding variables that would affect speech. A strategy to

improve classification is to discard intermediate scoring participants.66

The most common controlled confounding variables in this review were

age, sex (including sex-dependent classifiers), native language, and com-

orbidities, especially other psychiatric disorders, as well as traumatic

brain injury, speech and respiratory disorders, cleft lip and palate, and

substance abuse. Critically, most studies did not actually test the null

hypothesis for confounds. Few studies controlled other variables that

may affect speech patterns including race, education, and medication.

Some psychiatric medications have shown to produce dry mouth,

tremors,104 and dyskinesia,105 which impact speech. Therefore, medi-

cated participants might be excluded (though this would affect sample

generalizability) or medication should be reported. Other less studied

variables that may affect speech and may vary within a group, thus

inserting noise, are height, weight, dialectal variant, energetic state at

the time of speech elicitation, and intimacy.29 If these variables are sta-

tistically different between case and control groups, they can be better

matched through techniques such as propensity score matching.106

4.2.4 | Self-report assessments may not match
clinical diagnosis

Even though clinical evaluations by a psychiatrist or clinical psycholo-

gist are generally considered the “gold-standard” for diagnosis in com-

parison to self-report measures, this would be costly and inter-rater

reliability can still be quite low.27 Most studies in this review had a cli-

nician evaluate participants instead of using self-report question-

naires. However, the widely used AVEC data sets for depression and

PTSD60-63 and bipolar disorder64 used self-report measures. When

using self-report measures, the goal of the study must be reframed

from predicting diagnosis to predicting self-report questionnaire

scores, which may not always match clinical diagnosis. Finally,

selecting open access questionnaires are better for reproducibility

purposes, since new studies could incorporate them.

4.2.5 | Use power analysis to determine sample
size for null-hypothesis testing

The median psychiatric group size was 30 participants. However,

closer to 74 participants per group would be needed to reach 95%

power for reliable effect size estimates in null-hypothesis testing stud-

ies.53 Machine learning models need a large enough test set to be rep-

resentative of the general population (see Figure 1). Furthermore,

predictive models such as deep neural networks are surprisingly effec-

tive but need a much larger amount of data than simple linear

classifiers such as support vector machines because they need to

adjust millions of weights to map input to output. An approximate rule

of thumb is that a model needs 10 times more training samples than

degrees of freedom to prevent overfitting107; however, this depends

on the amount of input features, their distributions across disorders,

and the underlying, often unknown, size of the effect.

4.2.6 | Use multiple tasks

Choosing the right task is important given a feature may correlate with

a diagnostic scale using one task but not using another, and even change

correlational direction using symptom subitems of a scale.56 Using the

classification found in Parola et al (in press)53, we synthesize examples

and advantages of different types of tasks in Table 3. Producing

sustained vowels is optimal for measuring source features (eg, shimmer,

jitter) since finding voiced sections in continuous speech is difficult.114

Maximum phonation time of a sustained vowel with comfortable loud-

ness measured by a stopwatch negatively correlated with years having

anorexia97 and can be caused by the weakening of respiratory muscles,

decrease in subglottal pressure, and excessive tension of laryngeal mus-

cles. Reducing laryngeal control could cause monotonous speech which

is a classic sign of psychomotor retardation in depression.56 Less ecolog-

ically valid methods can nevertheless provide more control over evoked

emotions such as reading positive, negative, and neutral narratives since

every participant elicits acoustic patterns constrained by reading the

same text.115 For instance, Scherer et al116 found that positive and neu-

tral questions differentiated a PTSD from a control group better than

negative ones (for a meta-analysis on reactions to positive and negative

stimuli, see Reference 117). Alghowinem et al118 showed how this type

of pattern changes according to what features are extracted, the polarity

of the question, and what time segment is used to train models, showing

that the first seconds performed better than using the whole recording.

More ecological free speech responses can be followed by generic

follow-up questions such as “How did this change your life?” so more

data are acquired. Interestingly, interviews may be done by virtual

humans or avatars which reduces costs, may increase comfortableness

for some participants, and this can help re-enact dramatic scenarios the

same way across users,119-121 which has been used in the AVEC chal-

lenges for depression classification.8

4.2.7 | Use one microphone per speaker in
interviews

When recording an interview between the participant and an interviewer,

the main issue is being able to extract only speech segments belong to

the participant to train models. To do this, one must separate speakers, a

process known as diarization. This is much easier if there is a microphone

next to each speaker. Headsets or lapel mics tend to be ideal, but may

make certain participants more uncomfortable then desk microphones.

However, differences in recording setup and distances between speaker

and microphone can cause confounds.122 Two smartphones can be
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placed next to each speaker with an acoustic barrier in between to better

detect speakers (see preprocessing section below). Finally, when saving

the audio file, it is a good strategy to include all the information of the

sample (participant ID, group, task, date) on the file name or in a separate

file linked to a file ID. To avoid discrepancies between interviewers' file

naming (eg, upper/lower case, spaces) and what is included in the record-

ing, file names could be generated automatically.

4.2.8 | Strengthen privacy

Consent forms should be signed with clear indication as to whether

participants' data can be shared with other research teams through

request or publicly. However, even though this is authorized, it cre-

ates a risk for the participant having audio (or video) recordings of

potentially vulnerable information such as what is shared in a clinical

interview. Therefore, speech features such as those extracted by

openSMILE123 can be shared instead of their raw audio data. It is not

possible to reconstruct the raw audio signal from these features; how-

ever, the participant can still be identified by matching the extracted

features to new features extracted from a different recording of the

same participant. Another approach to improve privacy is to filter

recordings in real time or use bone conduction microphones, which

can allow the extraction of acoustic data without being linguistically

interpretable.124 The disadvantage is that text data cannot be

obtained later on. When text data are obtained from regular record-

ings, then it can be manually annotated to replace identifying informa-

tion.65 Another approach consists of capturing audio on the

participant's device, extracting encrypted acoustic features from

which the raw audio cannot be reconstructed, and then sending the

features to a secure server to later download.33 Distributed train-

ing125 is a more novel approach where the actual model is trained on

the participant's device, and then the learned weights or

configuration—but not the data—is returned to the researcher, a train-

ing style which can now be done with tools such as TensorFlow.js.126

4.3 | Guidelines for machine learning models

An ideal scenario would entail having a model that can detect a disorder

in a new person even if this person is recorded in a novel environment

with a different age, accent, language, background noise, recording

equipment, comorbidity, and tasks than the one provided in the training

data—the process of generalization. However, the current state of the

field is to try to detect a disorder in a new person given a model that is

trained on other examples collected in similar settings, which is a much

more limited form of generalization. The following guidelines are

intended to help avoid overfitting and improve generalization.

4.3.1 | Preregister the model building protocol

Within null-hypothesis testing, given the large amount of acoustic fea-

tures that can be extracted from a short time window of audio, the

more features there are, it will be more likely to find a feature that sig-

nificantly correlates with the disorder. A critical downside is that these

features may correlate with a disorder in one dataset but not another.

Within predictive models, multiple configurations can be tried out to

increase performance; however, without confirming performance on

an unseen test set, it is likely these results have overfitted the training

data similar to p-hacking in null-hypothesis testing.127 Therefore,

preregistering the features hypothesized to correlate or be statistically

different between groups and preregistering a protocol that specifies

how models will be built and tested reduces the possibility of increas-

ing bias via analytical choices.128 In the preregistration process,

exploratory research (where flexibility is encouraged to uncover new

hypotheses) is distinguished from confirmatory research (where flexi-

bility is denied to avoid confirmation and hindsight biases).127 Further-

more, in general, it is important to always include nonsignificant

results because they are important to judge the relative effect of posi-

tive results in other studies; this is guaranteed in preregistrations as

they are stated as future tests. Though some studies in this review

TABLE 3 Advantages of different types of speech-eliciting tasks

Task and examples Advantages

Constrained Sustained vowel108

• Maximum phonation time97
Optimal for measuring source and respiration features

• Captures muscle weakness and aspects of motor control

Repeating “PATAKA” Tests diadochokinetic rate,109 captures speech sequencing, and is a

proxy for lung capacity

Counting64 More control over acoustic patterns using a common vocabulary

Reading110

• Emotion-evoking sentences

• Rainbow passage

• The Grandfather passage

• More control over evoked emotions

• Contains every sound in English and is representative of normal

speech111

• Paragraph used to assess communication disorders112

Free speech Monologue: describing, retelling happy, or

traumatic memory86
More ecologically valid than reading

Dialogue:

• Semi-structured interviews73

• Phone conversations33,66,113

Social dynamics (turn taking, intimacy)

• Already done in many clinics

• By not recording other caller, no need for diarization. Smartphones

provide accelerometer data13
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test hypotheses,74,88 we have not encountered preregistrations,

which is becoming a common practice in other scientific fields.

4.3.2 | Preprocessing

Voice activity detection (VAD) can be used to obtain audio segments

containing speech to discard silences and noise. Furthermore, continu-

ous speech segments shorter than 1 second can be ignored as in

Ringeval et al8 (the exact value can be tested for performance). If two

speakers are present (eg, in a clinical interview), the interviewer's seg-

ments may be discarded through automatic diarization. Diarization

can be performed automatically through open-source packages (eg,

Kaldi) or paid diarization systems such as rev.ai or Google Cloud

Speech-to-Text. When two microphones are used, to avoid segments

with interviewer's voice, VAD can be performed on both channels,

and only participant's channel voiced segments with higher VAD score

than the corresponding interviewer channel segments can be

retained.73 To avoid overfitting, preprocessing (eg, performing dimen-

sionality reduction or feature selection) should be done separately on

train and test sets.

4.3.3 | Feature extraction

Acoustic feature extraction can be done with open-source packages

such as openSMILE, covarep, pyAudioAnalysis, openEAR, and Praat.

As seen in Figure 3, similar features (eg, total pause and pause per-

centage) are extracted in different studies. Since even the same fea-

tures can be extracted in slightly different ways, standardizing feature

extraction provides the benefit of comparing results across. Examples

include the extended GeMAPS57 which was developed to determine a

minimal but powerful set of features (88) that index voice changes

during affective processes or brute-force approaches such as INTER-

SPEECH 2013 ComParE competition feature set129 that uses many

more features (6373) but may reduce generalization (by providing

more features to overfit the specific training set used) and thus

extracting more features may require larger sample sizes. We encour-

age testing statistical significance of a feature between populations

even in predictive studies to advance the understanding of how these

features may characterize a disorder. Furthermore, extracting text fea-

tures is possible with automatic speech recognition (ASR) using open

source platforms such as Mozilla DeepSpeech or commercial plat-

forms such as rev.ai or Google Cloud Speech-to-Text. Text features

include ngrams (ie, counts of words or phrases), semantic coherence

(ie, stability of meaning from sentence to sentence), syntactic com-

plexity, sentiment polarity, average sentence lengths, psychological

domains (eg, cognitive processes, social processes),130 and word

embeddings (ie, word meaning). ASR can be improved by human

annotators with tools such as ELAN.131

4.3.4 | Perform bootstrapping with small samples

Evaluating on a held-out test set only once is reasonable if the test

set is representative of the population of interest. When using small

data sets that are common in the medical field, a 20% test set or a

5-fold cross validation of a 100-person study will result in a biased

estimate of how the model will generalize since is unlikely the test

sets or folds are representative of the entire population being tested.

Instead, repeated bootstrapping with repetition of, for example,

60 samples, can be performed relatively fast on small data sets (see

Figure 5). This will result in a distribution of performance scores of

which the mean or median can be taken as final performance metric.

This approach may not be feasible with more complex models, such

as deep neural networks, due to their higher computational complex-

ity. In such cases, k-fold cross-validation may be used to provide a

more expedient validation. Such complex models also require more

data, and as data set size increases, there is less need for

bootstrapped resampling.

F IGURE 5 Nested bootstrapping for more robust performance estimation on small datasets and hyperparameter tuning. Example uses RMSE
as performance metric on 60 bootstrapping samples and 5-fold cross-validation. K-fold cross-validation assumes large sample sizes and on small
datasets may return a biased estimate of the underlying performance distribution. RMSE, root mean squared error
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4.3.5 | Perform nested resampling for
hyperparameter tuning

As described in Figure 5, to avoid overfitting, perform hyperparameter

tuning (eg, grid or randomized search) over each training set of the

resampling method be it with replacement (bootstrapping) or without

replacement (k-fold cross-validation). These methods can be com-

bined to reduce computational complexity (eg, the inner loop can be

done with k-fold cross-validation).

4.3.6 | Test performance statistically through a
permutation test

It is not sufficient to achieve a higher score than chance, but this score

must have a reasonable effect size and be statistically significant to be

of clinical use. For instance, one study66 indicates that performance is

significantly higher than baseline with a paired t test. However, to

increase confidence in generalizing results even more, a permutation

test can be performed where models are trained on randomly sorted

labels to evaluate how much the model can learn from noise and the

inherent biases in the data, which often surpasses chance. This can

also be performed following the bootstrapping procedure. Then a

paired-test can be used to test significance between the permuted

and nonpermuted distributions of scores.

4.3.7 | Report multiple metrics and consider class
imbalance

When dealing with unbalanced classes (more cases of healthy than

the psychiatric population), for classification tasks it is important to

not use accuracy since it will be biased toward true negatives, and

instead use F1-score. It is also relevant to report F1-score for both

positive and negative classes. Additional important metrics to report

are precision, recall, and area under the receiver operating characteris-

tic curve (ROC AUC). For visualization, when classification is binary

and very unbalanced, precision-recall curve plots can provide a more

accurate description than ROC plots.132 For regression tasks, common

metrics are root mean squared error, mean absolute error, and the

coefficient of determination (r2). An alternative metric is the concor-

dance correlation coefficient, which is not altered by changes in scale

and location and includes information on precision and accuracy.8

Overall, it is useful to report multiple metrics (eg, the ones mentioned

in this section) since it is difficult to compare studies that report dif-

ferent metrics.

4.3.8 | Explain and interpret models to reduce bias
and improve scientific understanding

Fortunately, the field of interpretable machine learning is trying to

systematize what interpretability means and how it can be

measured.133,134 For a practical perspective, there is a book covering

many useful tools135 and packages that compare multiple

explainability methods.136 Explaining which features are predictive of

a given disorders not only allows debugging but also allows the field

to create new hypotheses and better understand the disorders to ulti-

mately create generative models. Feature importance can be done by

additive feature attribution methods,137 feature selection methods,

correlating each feature with the diagnostic severity, testing whether

a feature is significantly different between groups, retraining with

important features alone to measure if they are sufficient for optimal

model performance, or all of the above. Other types of explanations

include counterfactual and adversarial examples.135 Some studies in

this review presented excellent quantitative descriptions of a feature

in the psychiatric and control group but lacked statistical analysis. Fur-

thermore, as many articles have done, it is useful to attempt to link

changes in acoustic features to psychiatric behaviors or symptoms

(eg, low f0 variability with flat affect), and use these links for testing

hypotheses. There is an ongoing debate around whether complex, dif-

ficult to interpret models that perform well should be sacrificed for

lower performing but simpler to interpret models.138 From our point

of view, in current medicine, we would not want to discard complex

diagnostic tools (eg, biopsy) for simpler but less effective ones (eg,

lump palpation). Similarly, the precise mechanisms of many drugs are

not well understood, but they are used because they have been

proven to work through clinical trials. Therefore, validating complex

models on large, representative samples is key since they may have

biases as described in Section 1.

4.3.9 | Release code and data through a container
to improve reproducibility

To reproduce results of a machine learning study, data sets and code

must be provided. However, clinical data sets do not always contain

the permission to be shared, but the features extracted from raw

audio could be shared under proper permission (see section 4.2.8).

Providing code is the main tool to compare studies that use different

methods and evaluation metrics. Finally, even if data and code are

shared, they are often not reproducible since code might be incom-

plete or dependencies might not be specified. Therefore, we encour-

age using containers such as Docker and Singularity that contain

code, data, packages, and a basic operating system, which can be

rerun easily to re-execute original analyses or replicate analyses on

other data.139,140 Innovation might be faster if models could be

tweaked in a more efficient manner.

4.3.10 | Competitions promote research but do
not necessarily produce useful models

As stated before, 32% of studies in this review used AVEC data sets

during or after competitions. Some of these studies present useful

innovations in feature extraction and model design. However, one
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challenge competitions face is that the more results a team presents,

the more likely incorrect inferences are to occur since they may over-

fit the test set with one of their models by chance. Still, teams are

often allowed to submit more than once. The issues with multiple-

hypothesis testing count equally if multiple submissions occur within

teams or across teams. Given the relatively small test sets that are

provided in competitions for clinical problems, it is likely the winning

model happens to win the second best submission just by chance,

because it happened to overfit the small test set slightly better. There-

fore, we cannot trust that novel models that perform slightly better in

competitions will generalize because of this “crowd overfitting”141:

the top N performing models may actually perform similarly in the

population, even though one happens to work best for the competi-

tion test set. Even more concerning, the fifth best performing model

in the competition may be the best performing model in the popula-

tion. Some solutions to competition overfitting include performing

multiple-comparison correction across submissions and prioritizing

simpler models.142,143

4.4 | Future approaches

4.4.1 | Limitations

Given the breadth of psychiatric disorders included in this review,

keywords were only searched in the title and not in the abstract. The

resulting articles were then screened by reading title and/or abstract.

Therefore articles where speech description was not the main focus

may have been missed if “speech” or related terms were not in the

title (eg, studies that measured speech among other behaviors).

4.4.2 | Understudied disorders

More studies need to be done on disorders beyond depression,

schizophrenia, and bipolar disorder such as OCD, bulimia, anorexia,

anxiety disorders, and personality disorders. It is likely the most stud-

ied disorders were inspired by clinician's intuitions that speech may

provide a link to diagnosis. Considering machine learning can find

structure in ways that are nonintuitive for humans, it is likely there will

be other disorders that also carry a signal in speech.

4.4.3 | Generalization

Even though models work for one data set, we do not know if they

will generalize to a new sample or similar samples that vary in age,

geography, socio-economic level, recording setup, and task.

Alghowinem et al144 tested performance when training and testing on

different datasets from different countries, languages, and accents

(see also References 59, 145, and 146). Several studies66,147 com-

pared performance across different smartphones which result in dif-

ferent amounts of clipping, loudness, and noise, which is important to

achieve device-independent predictions. Mitra et al measured the

effect on performance of noise and reverberation changes between

train and test sets on depression detection.148

4.4.4 | Longitudinal studies

The vast majority of studies were cross-sectional. It is not understood

if acoustic features that are predictive cross-sectionally across individ-

uals are also predictive longitudinally within individuals. Several bipo-

lar disorder studies33,149,150 covered in this review took a longitudinal

approach to capture different states (eg, manic, hypomanic, euthymic,

depressed), this approach is not often taken in other disorders even

though symptoms can naturally oscillate and disorders remiss. A few

studies on MDD112,151 analyzed changes in symptom severity and

treatment impact longitudinally through speech patterns.

4.4.5 | Multimodal learning

Even though this review focuses on speech, many studies provided

multimodel models trained on audio and video recordings such as

those from AVEC competitions, in which some multimodal models

reported improved performance as compared to unimodal

models.70,152 Some studies combined these types of features with

neurophysiological measures such as electroencephalography.153

4.4.6 | From disorders to diseases

Machine learning might change diagnostic criteria given personalized

medicine and continuous, real-time monitoring,154 especially consider-

ing the limitations diagnostic criteria may currently have.26,30,103,155

By linking behavioral and biological features to symptoms instead of

diagnoses, we could further understand the underlying diseases and

endophenotypes that gives rise to the personalized configuration of

symptoms and reduce the need of traditional disorders.34 Further-

more, not all acoustic features are measured across studies. Therefore,

using standardized feature sets (see Section 4.3.3), performing null-

hypothesis testing in parallel to machine learning studies, and includ-

ing data from other modalities (eg, text, video, accelerometer) is a step

toward characterizing more features across disorders and understand-

ing underlying diseases further.

4.4.7 | Risks of this technology

It is extremely important to thoroughly assess the ethical implications

of this research. Insurance companies and employers could turn down

applicants if they predict a psychiatric disorder is present or will

develop. Friends and foes could gain insight into our private mental

lives by obtaining samples of our voice or other behaviors. Even when

data are shared consensually, understanding what consent actually
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implies is challenging.156 More clear information and examples should

be provided on how exactly data might be used. Furthermore, chan-

nels to deactivate consent could be offered intermittently. Since most

models have not actually been validated through a clinical trial, it

would seem these risks do not exist at present. However, companies

may still use these models as if they were valid, and given the expo-

nential growth of technology they may achieve validity soon. Those

developing technology should be aware of the multiple ways systems

can fail and strategies to prevent failures, discrimination, and negative

side effects.157 As a community of scientists, technologists, and clini-

cians, we must participate in debates with citizens and policy makers

to help prevent abuses and safeguard the advancement of a technol-

ogy that could help so many.

4.5 | Breaking the barrier between psychiatry and
laryngology

The barrier between psychiatry and neurology can be somewhat

arbitrary and are rooted in distinct historical practices in the 20th

century.158,159 With this review article, we hope to demonstrate

that psychiatry and laryngology have more in common than previ-

ously thought for several reasons. First, a substantial amount of

individuals attending otolaryngology centers are suffering from

mental health disorders160 and so to provide care, mental health

could be assessed for potential referrals. These disorders may be

independent to their complaint or they may actually be causing

alterations that make them see an otolaryngologist in the first place,

as seen in the relationship between anxiety, depression, and tinni-

tus.161,162 Most voice alterations presented in this review are not

necessarily voice disorders, simply patterns linked to disorders. One

critical exception is bulimia nervosa where voice alterations have

been observed.92-94

Furthermore, regardless of whether the underlying cause is

psychiatric or laryngeal, having a voice pathology tends to produce

distress163 as seen with dysphonia164 and stuttering.160 Given this

and potential psychogenic disorders, laryngologists also have the

challenging task of promoting psychiatric consultation and psycho-

therapy in a way that reduces the associated stigma, since it is cur-

rently underutilized: from 1998 to 2007, psychotherapy use in the

US population decreased from 3.4% in 1998 to 3.2% in 2007 even

though the distribution of mental health disorders is much

higher.165

Another reason the two fields can overlap is that laryngology

visits can include extensive voice evaluations which are often

recorded. Therefore, given what has been shown in this review, it

seems reasonable (and relatively low burden) to start assessing mental

health during ENT visits. This would create a rich source of data to

link mental health assessments with acoustic features easily obtained

from recordings of voice evaluations. Even though the voice disorder

will confound certain acoustic features that tend to predict psychiatric

disorders, other features may remain unconfounded. With the guide-

lines previously presented on how to acquire data, we hope this will

open new collaborations between laryngologists, psychiatrists, and

machine learning specialists.

5 | CONCLUSIONS

A total of 127 studies were reviewed that measure acoustic features

from speech to distinguish psychiatric from healthy individuals either

through null-hypothesis testing or predictive machine learning models.

We provided a synthesis of significant and nonsignificant acoustic fea-

tures across disorders as well as those that correlate with a given disor-

der severity. We discussed guidelines on how to acquire data, prevent

confounds, safeguard privacy, select speech-eliciting tasks, and improve

generalization and reproducibility of machine learning models. Certain

disorders have been less studied such as eating and anxiety disorders.

More studies have been carried out in MDD, PTSD, and bipolar disorder

thanks to open-access research data sets provided by AVEC competi-

tions60-64 and the DAIC data set.65 Competitions in particular provide a

common framework to compare innovations under equal data and evalu-

ation metrics, measure performance with a held-out test set to estimate

overfitting (but there is still a great need to improve crowd overfitting),

and allow future studies to be done with the same dataset. Therefore,

we encourage creating open data sets, if possible through competitions,

as they have shown to be highly productive. Whereas productivity is

healthy, reproducibility is key: since the studies in this review build com-

putational models, data and code can easily be shared—ideally through

containers—to test claims and make gradual innovations as a community.

Furthermore, more studies using multiple datasets and preregistering

hypotheses could help improve generalization and resolve conflicting

findings regarding the significant and predictive acoustic features in each

disorder. In closing, building machine learning models on speech seems a

promising pathway toward improving mental-health assessments and

treatments in line with preventive and personalized medicine.
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