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Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation
responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high
linkage disequilibrium are called haplotype blocks. A small subset of SNPs, called tag SNPs, is sufficient to capture the haplotype
patterns in each haplotype block. Previously developed algorithms completely partition a haplotype sample into blocks while
attempting to minimize the number of tag SNPs. However, when resource limitations prevent genotyping all the tag SNPs, it is
desirable to restrict their number. We propose two dynamic programming algorithms, incorporating many diversity evaluation
functions, for haplotype block partitioning using a limited number of tag SNPs. We use the proposed algorithms to partition the
chromosome 21 haplotype data. When the sample is fully partitioned into blocks by our algorithms, the 2,266 blocks and 3,260
tag SNPs are fewer than those identified by previous studies. We also demonstrate that our algorithms find the optimal solution by
exploiting the nonmonotonic property of a common haplotype-evaluation function.

1. Introduction

Single-nucleotide polymorphisms (SNPs) play important
roles in disease association studies owing to their high
abundance in the human genome, low mutation rate, and
amenability to high-throughput genotyping. A small subset
of SNPs directly influences the quality or quantity of the
gene product and increases the risks of certain diseases or
of severe side effects of drugs. Alleles of SNPs that are close
together tend to be inherited together. A haplotype refers to
a set of SNPs found to be statistically associated on a single
chromosome. Haplotypes defined by common SNPs have
important uses in identifying disease association and human
traits [1–5].

Genome-wide association studies based on linkage dis-
equilibrium (LD) offer a promising approach to detect
genetic variation responsible for common human diseases.
The patterns of linkage disequilibrium (LD) observed in
human chromosome show a block-like structure [1, 6, 7],

such that the entire chromosome can be partitioned into
high-LD regions interspersedwith low-LD regions.The high-
LD regions are called haplotype blocks and the low-LD
regions are referred to as recombination hotspots. A few
common haplotypes account for most of the variation from
person to person in haplotype blocks. Furthermore, each
haplotype block, comprising large regions of low diversity,
can be characterized with a small number of SNPs, which
are referred to as tag SNPs [8]. Identification of tag SNPs is
aimed at tagging candidate genes which can capture the most
information in the haplotype blocks. The new technologies
allow to genotype rarer variants than before [9]; therefore,
there are more and more genotyping data needed to be
analyzed, and the structure of haplotype blocks will be more
complicated. Despite great progress in current genotyping
developments which allow intensive genotyping at cheap
prices, the concept of tag SNP selection is more and more
significant due to exploded genotyping data. Most tag SNP
selection strategies are based on haplotype blocks and have
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the aim of identifying a minimal subset of SNPs able to tag
the most common haplotypes [7, 10].

Several methods have been used to identify haplotype-
block structures, including LD-based [6, 11], recombination-
based [12, 13], information-complexity-based [14–16], and
diversity-based [7, 17, 18] methods. The result of block
partitioning and the meaning of a haplotype block may differ
according to the assessment criteria. The diversity-based test
methods can be classified into two categories: those that
divide strings of SNPs into blocks on the basis of the decay of
LD across block boundaries and those that delineate blocks
on the basis of some haplotype-diversity measure within
the blocks. Patil et al. [7] defined a haplotype block as a
region in which a fraction of a percent or more of all the
observed haplotypes are represented at least 𝑛 times or at a
given threshold in the sample. They applied the optimization
criteria outlined by Zhang et al. [10, 19] and described a
general algorithm that defines block boundaries in a way that
minimizes the number of SNPs that are required to identify
all the haplotypes in a region. They identified a total of 4,563
tag SNPs and 4,135 blocks defining the haplotype structure of
human chromosome 21 [7]. In each block they required that
at least 80% of the haplotypes must be represented more than
once in the block.

In this paper, we propose two dynamic programming
algorithms, incorporating several haplotype diversity evalu-
ation functions, for haplotype block partitioning with con-
straints on diversity and the number of tag SNPs. Part
of data related to this paper have been open to public
domain http://www.cs.pu.edu.tw/∼yawlin/ (web-site page of
a coauthor), these data are also published at local conference
[20].

2. Diversity Functions

Several operational definitions have been used to identify
haplotype-block structures [6, 7, 11–18] and result in different
results of block partitioning and meanings of a haplotype
block, depending on the objective function.Haplotype blocks
are genome regions with high LD, so that distinct haplotype
patternswithin the block are few and the diversity of the block
is low. In terms of diversity functions, the block selection
problem can be viewed as finding a segmentation of a
given haplotype matrix such that the diversities of chosen
blocks satisfy a certain value constraint. We use the following
definitions.

Definition 1 (haplotype block diversity). Given an interval
[𝑖, 𝑗] of a haplotype matrix A and a diversity function, 𝛿 :

[𝑖, 𝑗] → 𝛿(𝑖, 𝑗) ∈ R is an evaluation function measuring the
diversity of the submatrix A(𝑖; 𝑗).

Given an 𝑚 × 𝑛 haplotype matrix 𝐴, a block 𝐵(𝑖, 𝑗) of
matrix 𝐴 is viewed as 𝑚 haplotype strings; they are parti-
tioned into groups by merging identical haplotype strings
into the same group. The probability 𝑝

𝑖
of each haplotype

pattern 𝑏
𝑖
is defined accordingly, such that ∑𝑝

𝑖
= 1. Li [21]

proposes a diversity function defined by

𝛿
𝐷 (

𝐵) = 1 − ∑

𝑏𝑖∈𝐵

𝑝
2

𝑖
. (1)

Note that 𝛿
𝐷
(𝐵) is the probability that two haplotype

strings chosen at random from 𝐵 are different from each
other. Other measurements of diversity can be obtained by
choosing different diversity functions; for example, to mea-
sure information complexity one can choose the information
entropy (negative-log) function [14–16] as follows:

𝛿
𝐸 (

𝐵) = − ∑

𝑏𝑖∈𝐵

𝑝
𝑖
log𝑝
𝑖
. (2)

Patil et al. [7] and Zhang et al. [10, 18] define a haplotype
block as a region where at least 80% of observed haplotypes
within a block must be common haplotypes. Using the same
definition of common haplotype, the coverage of common
haplotypes of the block can be formulated as a form of
diversity as follows:

𝛿
𝐶 (

𝐵) = 1 −

∑
𝑠𝑖∈𝐶

𝑝
𝑖

∑
𝑠𝑖∈𝑈

𝑝
𝑖

=

∑
𝑠𝑖∈𝑀

1/𝑚

∑
𝑠𝑖∈𝑈

𝑝
𝑖

, (3)

where 𝑈 denotes unambiguous haplotypes, 𝐶 denotes com-
mon haplotypes, and 𝑚 denotes singleton haplotypes. In
other words, Patil’s method requires that 𝛿

𝐶
(𝐵) ≤ 20%.

Some methods [6, 22, 23] presented a definition of a
haplotype block based on the LDmeasure𝐷

; however, there
is no consensus definition as yet. Zhang and Jin [22] defined a
haplotype block as a region in which no pairwise |𝐷


| values

are lower than a threshold𝛼. Let 𝑆 denote a haplotype interval
[𝑖, 𝑗]. We define the diversity as the complement of minimal
|𝐷

| of 𝐵. By this definition, 𝐵 is a haplotype block if its

diversity is lower than 1 − 𝛼. Consider

𝛿
𝐿1 (

𝐵) = 1 −min{(

𝐷


𝑖

𝑗







) | 𝑖 < 𝑖


< 𝑗

< 𝑗} . (4)

Zhang et al. [22] also propose a definition for haplotype
block; they require a proportion at least 𝛼 of SNP pairs having
strong LD (pairwise |𝐷


| greater than a threshold) in each

block. We use this definition to redefine the function as the
proportion of SNP pairs without strong LD. 𝑁(𝑖, 𝑗) denotes
the number of SNP pairs without strong LD in the interval
[𝑖, 𝑗]. The diversity function is as follows:

𝛿
𝐿2 (

𝐵) =

𝑁
(𝑖,𝑗)

(
(𝑗−𝑖)+1

2

)

=

𝑁
(𝑖,𝑗)

(1/2) [(𝑗 − 𝑖)
2
+ 𝑗 − 𝑖]

. (5)

Diversity measurement usually reflects recombination events
that occurred during evolution. Generally, haplotype blocks
with low diversity indicate conserved regions of the genome.

Definition 2 (monotonic diversity). A diversity function 𝛿 is
said to be monotonic if for any haplotype block (interval)
𝐼 = [𝑖, 𝑗] of haplotype matrix A, it follows that 𝛿(𝑖


, 𝑗

) ≤

𝛿(𝑖, 𝑗) whenever [𝑖

, 𝑗

] ⊂ [𝑖, 𝑗]; that is, the diversity of any

subinterval of 𝐼 is no larger than the diversity of 𝐼.

The diversity functions (1) and (2) are monotonic.
However, the evaluation function for common haplotypes

http://www.cs.pu.edu.tw/~yawlin/


BioMed Research International 3

219072190221900

n n n n n n n n

a a c g g t g a
n n n n n n n n

n n n n g n g a
g g g g g n n n

n n n n n n n n

g g g g g t c g
g g g g g t c g
n n n n g n n n

n n n n n n n n

g n g n n c c n

g g n g g c c n

a g n t a c c g
a g c t a c c g
n a n g g t g a
n n n n n n n n

n g n n n n n n

n n n n g n n n

g g g n g t c g
a a c g g t n g

Figure 1: The evaluation function of common haplotypes does not
satisfy the monotonic property when the haplotype sample has
missing data.

proposed by Patil et al. [7] does not satisfy the monotonic
property when the haplotype sample has missing data. For
example, Figure 1 shows a small portion of human chromo-
some 21 haplotype sample provided in [7], where 𝑛 denotes
missing data. In the sample, the common-haplotype coverage
of interval [21900, 21907] is 9/10, which is greater than
80%. Therefore, according to the definition, it is a feasible
haplotype block. In contrast, the commonhaplotype coverage
of interval [21902, 21907] is 3/7, which is less than 80%,
so that it is not a feasible haplotype block. Both interval
[21900, 21907] and interval [21902, 21907] terminate at the
same SNP locus, and the interval [21900, 21907], which has
more SNPs, is a feasible haplotype block, whereas interval
[21902, 21907] is not. Tag SNPs can capture most of the
haplotype diversity in blocks and thereby could potentially
capture most of the information about association between a
trait and the SNP marker loci. The diversity and features of
each haplotype block can be described easily and econom-
ically with tag SNPs. For these reasons, we want to define
the haplotype structure using as few tag SNPs as possible.
In previous studies, Patil et al. [7] defined a haplotype block
as a region in which a fraction of percent or more of all the
observed haplotypes are represented at least 𝑛 times or at a
given threshold in the sample. They applied the optimization
criteria outlined by Zhang et al. [10, 18] and described a
general algorithm that defined block boundaries in a way
that minimizes the number of tag SNPs that are required to

0 0 0 1
1 0 0 0
1 1 0 1
1 1 1 0

Block a

Block b

Figure 2: Illustration of the idea of good partner.

distinguish uniquely a certain percentage of all the haplotypes
in a region.The greedy algorithm [7] identified a total of 4,563
tag SNPs and a total of 4,135 blocks to define the haplotype
structure of human chromosome 21. In each block, they
required that at least 80% of haplotypes are represented more
than once in the block. In addition, Zhang et al. [10] used a
dynamic programming approach to reduce the numbers of
blocks and tag SNPs to 2,575 and 3,582, respectively.

Both of the algorithms [7, 10] fully partition the haplotype
sample into blocks with the objective of minimizing the tag
SNPs. However, when the resources are limited, investigators
and biologists may be unable to genotype all the tag SNPs
and instead must restrict the number of tag SNPs to be
identified by the algorithms. In this paper, we propose two
dynamic programming algorithms for the haplotype-block
partitioning problem.

Problem 3 (longest-𝑘-blocks). Given a haplotype matrix A
and a diversity upper limitD, we wish to find 𝑘 disjoint blocks
whose diversity is less then D such that the total length is
maximized. That is, output the set 𝑆 = {𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑘
}, with

𝛿(𝐵) ≤ 𝐷 for each 𝐵 ∈ 𝑆, such that |𝐵
1
| + |𝐵
2
| + ⋅ ⋅ ⋅ + |𝐵

𝑘
| is

maximized. Here |𝐵
𝑖
| denote the length of block 𝐵

𝑖
.

Assuming that the given diversity function is monotonic
and the given haplotype matrix is preprocessed for finding
the indices of the farthest site, called good partner site, indices
from current site, the longest-𝑘-block problem can be solved
in 𝑂(𝑛) space and 𝑂(𝑘𝑛) time. The good partner of locus 𝑖

refers to the left farthest locus from 𝑖, 𝐿𝑖 such that [𝐿𝑖, 𝑖] is a
haplotype block whose diversity is less then the upper limit
constraint.The idea of left good partner is shown in Figure 2.

Problem 4 (longest-blocks-𝑡-tags). Given a haplotype matrix
A and a diversity upper limit D, we wish to find a list of
disjoint blocks whose total tag SNP number is less than 𝑡

such that the total length is maximized. That is, output the
set 𝑆 = {𝐵

1
, 𝐵
2
, . . . , 𝐵

|𝑆|
} such that (for all 𝐵

𝑖
∈ 𝑆) (𝛿(𝐵

𝑖
) ≤ 𝐷)

and ∑ tag(𝐵
𝑖
) ≤ 𝑡; tag(𝐵

𝑖
) denote the number of tag SNPs

required for block 𝐵
𝑖
, so that |𝐵

1
| + |𝐵

2
| + ⋅ ⋅ ⋅ + |𝐵

|𝑆|
| is

maximized. Here |𝐵
𝑖
| denote the length of block 𝐵

𝑖
.

Assuming that all of the feasible blocks and tag SNPs
required for each block have been preprocessed, the longest-
blocks-𝑡-tags problem can be solved in 𝑂(𝑡𝐿) time, where
𝐿 denotes the total number of feasible blocks. For the same
sample used, based on the same criteria adopted by [23],
our algorithm identifies a total of 2,266 blocks, which can
be tagged by 3,260 tag SNPs. The number of blocks and tag
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Figure 3: An example of a long block requiring only a few tag SNPs.
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Figure 4: The idea behind the Zhang et al.’s dynamic programming
algorithm.

SNPs we identified are 45.2% and 28.6% fewer than those
identified by [7]. These results are also better than those by
Zhang’s method with respect to the number of tag SNPs used
and the total block numbers.

The definition of the haplotype-block diversity evaluation
function (𝛿) we use in this paper is equal to the ratio
of singleton haplotypes to unambiguous haplotypes in the
blocks. It is also equal to 1 minus the ratio of common
haplotypes to unambiguous haplotypes; in other words, 80%
of common-haplotype coverage is equal to 20% (or 0.2) of
haplotype diversity by the definition presented in [7]. That is,
we require the diversity of each block to be ≤ 0.2. Here we
propose two linear-space algorithms for these two problems.

3. Method

We propose two dynamic programming algorithms to par-
tition haplotype blocks with constraints on diversity and
number of tag SNPs. The proposed algorithms are able to
find the longest segmentation 𝑆 into blocks such that the
diversity of each block is less than an upper limit 𝐷 and
the total number of tag SNPs required for these blocks does
not exceed a specified number 𝑡, and they are time-efficient
and linear-space algorithms for solving Problems 3 and 4. In
the first algorithm, the longest segmentation consisting of 𝑘
feasible blocks can be found in 𝑂(𝑘𝑛) time and linear space
after the preprocessing of the leftmost site 𝐿[𝑖] (good partner
site) and the rightmost site 𝑅[𝑖] for each SNP marker 𝑖. After
partitioning blocks, we select tag SNPs in each block. Using
this method, we can partition a haplotype into a minimum
number of blocks with a modest number of tag SNPs. In
the second algorithm, the longest segmentation covered by
𝑡 tag SNPs can be found in𝑂(𝑡𝐿) time after the preprocessing
of left good partners 𝐿[𝑖] for each marker 𝑖 and tag SNPs
required for each feasible block. Using this method, we can
partition a haplotype into a minimum number of blocks with
a minimum number of tag SNPs.

3.1. Tag SNP Selection Algorithm. Our algorithms begin with
the preprocessing of the farthest site (good partner) for each
SNP marker. According to the haplotype block definition
defined by [7], at least 80% of unambiguous haplotypes must
be represented more than once. Using the same criteria as in
[7], for each block we want to minimize the number of SNPs
that distinguish uniquely at least 80% of the unambiguous
haplotypes in the block. Those SNPs can be thought of as a
signature of the haplotype-block partition.

In general, the number of tag SNPs required increases as
the length of the haplotype block increases. But an exception
is shown in Figure 3. The block consisting of 3 SNPs needs
3 tag SNPs to distinguish each haplotype uniquely, but the
block 𝑏 consisting of 4 SNPs needs only 2 tag SNPs (column
2 and column 4).

Theproblemof finding theminimumnumber of tag SNPs
within a block that uniquely distinguishes all the haplotypes
is known as theMINIMUMTEST SET problem and has been
proven to be NP complete [24].Thus, there is no polynomial-
time algorithm that guarantees to find the optimal solution
for any input, though approximate, greedy algorithms have
been proposed [25–27]. In order to find the optimal solution,
we adopt a brute-force method to find tag SNPs within a
block. Our strategy for selecting the tag SNPs in haplotype
blocks is as follows. First, the common haplotypes are
grouped into 𝑘 distinct patterns by merging the compatible
haplotypes in each block. After the missing data are assigned
in each group, we determine the smallest number of tag SNPs
required based on the smallest number of haplotype groups
needing to be distinguished such that haplotypes in these
groups contain at least 80% of the unambiguous haplotypes
in the block. Finally, we select a locus set consisting of the
minimumnumber of SNPs in the haplotypes such that at least
80% of the unambiguous haplotypes can be uniquely distin-
guished. An exhaustive search can be used very efficiently,
given that the number of tag SNPs needed for each block is
usually modest. The exhaustive-search algorithm shown in
Algorithm 1 enumerates the 𝑡-combinations in lexicographic
order to generate the next candidate tag SNP set until each
pattern can be uniquely distinguished.

3.2. A Linear-Space Algorithm for Haplotype Block Partition-
ing. Patil et al. [7] studied the global haplotype structure
on chromosome 21 and identified 20 haplotypes for 24,047
SNPs (MAF ≥ 0.1) spanning over about 32.4 Mbps. By
the sample, they applied a greedy algorithm to partition the
haplotype into blocks of limited haplotype diversity. Using
the same criteria as in Patil et al., Zhang et al. [18, 23, 28]
provided a dynamic programming algorithm to partition the
same sample totally into 2.575 blocks and identify a total of
3,582 tag SNPs that are 37.7% and 21.5% smaller, respectively,
then those identified by Patil et al. The space complexity for
Zhang et al.’s algorithm is 𝑂(𝑡 ⋅ 𝑛) and the time complexity is
𝑂(𝑁 ⋅ 𝑡 ⋅ 𝑛), where 𝑡 is the total number of tag SNPs, 𝑛 is the
total length of haplotype sample, and𝑁 is the number of SNPs
contained in the largest block. The idea behind the Zhang
et al.’s algorithm is illustrated in Figure 4. The maximized
segmentation 𝑆 consisting of 𝑛 disjoint blocks between sites
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FindTag(𝐵, 𝜌) ⊳ Find the number of tag SNPs required for haplotype block 𝐵

such that 𝜌 percentage of unambiguous haplotypes in 𝐵 can be
distinguished uniquely.

Input: A percentage 𝜌 and haplotype block 𝐵 with unambiguous haplotype pattern
𝑃 = {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑘
}; the haplotypes number in each pattern is 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑘
.

Output: The tag SNPs required for haplotype block 𝐵.
(1) Sort 𝑘 haplotype patterns in 𝑃 = ⟨𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑘
⟩.

⊳ 𝑝
𝑖
’s are listed in decreasing order of the number of haplotype strings.

(2) 𝑈 = 𝜌 ⋅ (∑
𝑘

𝑖=1
𝑛
𝑖
) ⊳ 𝑈 is the number of 𝜌 percentage of unambiguous haplotypes.

(3) Find the minimum number 𝑔 such that ∑𝑔
𝑖=1

𝑛
𝑖
≥ 𝑈

(4) 𝑡 ← ⌈log
2
𝑔⌉ ⊳ 𝑡 is the minimum number of tag SNPs required.

(5) for 𝑖 ← 1 to 𝑡 − 1 do ⊳ initiate the tag SNP loci set {𝑎[1], 𝑎[2], . . . , 𝑎[𝑡]}.
(6) 𝑎[𝑖] ← 𝑖

(7) 𝑎[𝑡] ← 𝑎[𝑡 − 1]; ℎ ← 0

(8) while ℎ < 𝑈 do ⊳ ℎ is the total haplotype strings that can be distinguished.
(9) 𝑖 ← 𝑡 ⊳ generate the next 𝑡-combination in lexicographic order.
(10) while 𝑎[𝑖] = 𝑙 − 𝑡 + 𝑖 do ⊳ 𝑙 is the length of haplotype string.
(11) 𝑖 ← 𝑖 − 1

(12) if 𝑖 = 0

(13) 𝑡 ← 𝑡 + 1

(14) for 𝑖 ← 1 to 𝑡 do
(15) 𝑎[𝑖] ← 𝑖

(16) else
(17) 𝑎[𝑖] ← 𝑎[𝑖] + 1

(18) for 𝑗 ← 𝑖 + 1 to 𝑡 do
(19) 𝑎[𝑗] ← 𝑎[𝑖] + 𝑗 − 𝑖

(20) ℎ ← ∑𝑛
𝑥
, 𝑥 ∈ {𝑥 | 𝑝

𝑥
is the haplotype that can be distinguished by tag SNP.}

(21) return 𝑡

Algorithm 1: The exhaustive searching algorithm for tag SNP selection.

1 and 𝑖 with the constraint of using at most 𝑡 tag SNPs will
have two cases, either the site 𝑖 is included in the last block of
𝑆 or not. If site 𝑖 is not included in the last block of 𝑆, it will
find 𝑆 between sites 1 and 𝑖−1; otherwise there will exist a site
𝑘, 1 ≤ 𝑘 ≤ 𝑖, such that [𝑘, 𝑖] is the last block of 𝑆. In the latter
case, the tag SNPs required for block [𝑘, 𝑖] is tag(𝑘, 𝑖), so it can
find other blocks which are covered by other 𝑡 − tag(𝑘, 𝑖) tag
SNPs between site 1 and site 𝑘 − 1.

Assuming amonotonic diversity function, the recurrence
relation is

𝑓 (𝑘, 1, 𝑗) = max {𝑓 (𝑘, 1, 𝑗 − 1) , 𝑓 (𝑘 − 1, 1, 𝐿 [𝑗] − 1)

+𝑗 − 𝐿 [𝑗] + 1} .

(6)

The idea behind the recurrence relation is that either the
𝑘th block of the maximal segment 𝑆 in [1, 𝑗] does not include
site 𝑗 or the block [𝐿[𝑗], 𝑗] must be the last block of 𝑆. Note
that 𝑓(𝑘, 1, 𝑗) can be determined in 𝑂(1) time if all of the
𝑓(𝑘 − 1, 1, . . .) and 𝑓(𝑘, 1, 1 ⋅ ⋅ ⋅ (𝑗 − 1)) have been calculated.
It follows that 𝑓((𝑘, 1, . . .))’s can be calculated from the (𝑘 −

1, 1, . . .) in 𝑂(𝑛) time. Thus a computation proceeding from
the 𝑓(1, 1, . . .), 𝑓(2, 1, . . .), . . ., to the 𝑓(𝑘, 1, . . .) takes 𝑂(𝑛𝑘)

time. Lemma 5 presents the dynamic programming theory
for the general case.

Lemma 5. Given a submatrix A(𝑖, 𝑗) of an 𝑚 × 𝑛 haplotype
matrix A and a diversity upper limit D, for all constrained
intervals [𝑖, 𝑗

∗
], 𝑖 ≤ 𝑗

∗
≤ 𝑗, find a segmentation consisting

of k feasible blocks such that the total length can be maximized
in 𝑂(|𝑗 − 𝑖|𝑘) time after the preprocessed leftmost markers (tag
SNP selection), 𝐿[𝑖]’s are prepared.

Finding a segmentation that consists of 𝑘 feasible blocks
and maximum total length can be completed using dynamic
programming based on the recurrence relation. However,
it is difficult to retrieve the 𝑘 intervals in linear space. To
solve this problem, we can use a concept similar to that
of [29]. We find a cut point 𝑥

∗ to divide 𝑛 SNP sites into
two parts, 𝑛

1
and 𝑛

2
, and then there are ⌊𝑘/2⌋ blocks in

𝑛
1
and ⌈𝑘/2⌉ blocks in 𝑛

2
and 𝑛

2
= 𝑛 − 𝑛

1
. We now

have the following recursion relation. While 𝑘 = 1, the
boundaries of the block can be found by scanning the leftmost
marker array and appending the longest feasible block in
[𝑖, 𝑗] to a global data structure. The algorithm is shown in
Algorithm 2.

Theorem 6 (longest-𝑘-blocks). Given a haplotype matrix A
and a diversity upper limit D, the longest k-block and their
boundaries can be computed in 𝑂(𝑛𝑘) time and 𝑂(𝑛) space
after the preprocessed left- and rightmostmarkers,𝐿[𝑖] and𝑅[𝑖]

are prepared.
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Lis(𝑘, 𝑖, 𝑗) ⊳ Lis: List 𝑘 blocks in [𝑖, 𝑗] with maximized total length.
Input: Interval [𝑖, 𝑗] and number of blocks 𝑘.
Output: 𝑘’s blocks and their boundaries.
Global variable: 𝐿, 𝑅, 𝑌, 𝐴, 𝐵, 𝐶. ⊳ 𝐿 and 𝑅 are used to store the good partner pointers 𝐿[𝑥]𝑠 and 𝑅[𝑥]


𝑠

which have been preprocessed dependent on diversity constraints 𝐷,𝑌 is used to store the
results of Lis(𝑘, 𝑖, 𝑗), 𝐴, 𝐵, 𝐶 are global temporary working storages.

(1) if 𝑘 ≤ 1 then
(2) Append the boundaries of the longest block in [𝑖, 𝑗] to 𝑌

(3) return
(4) for 𝑥 ← 𝑖 to 𝑗 do ⊳ Initiate the boundary condition of 𝑓(𝑘, 𝑖, 𝑗).
(5) 𝐶[𝑥] ← 0

(6) for 𝑦 ← 1 to ⌊

𝑘

2

⌋ do ⊳ Compute 𝐴[𝑥] = 𝑓(⌊

𝑘

2

⌋ , 𝑖, 𝑥), ∀𝑥 ∈ [𝑖 . . . 𝑗 − 1].

(7) for 𝑥 ← 𝑖 to 𝑗 − 1 do
(8) if 𝑥 = 𝑖 then
(9) 𝑡𝑒𝑚𝑝1 ← 1

(10) else
(11) 𝑡𝑒𝑚𝑝1 ← 𝐴[𝑥 − 1]

(12) if 𝐿[𝑥] ≤ 𝑖 then ⊳ 𝐿 [𝑥] ∉ [𝑖, 𝑗], exceeding the boundary region.
(13) 𝑡𝑒𝑚𝑝2 ← 𝑥 − 𝑖 + 1

(14) else
(15) 𝑡𝑒𝑚𝑝2 ← 𝐶[𝐿[𝑥] − 1] + 𝑥 − 𝐿[𝑥] + 1

(16) 𝐴[𝑥] ← max{𝑡𝑒𝑚𝑝1, 𝑡𝑒𝑚𝑝2}

(17) copy 𝐴[𝑥] to 𝐶[𝑥] for next iteration of 𝑥 ⊳ 𝐶[𝑥] is used to store the temporary results of 𝑓(𝑘, 𝑖, 𝑗).
(18) for 𝑥 ← 𝑖 to 𝑗 do ⊳ Initiate the boundary condition of 𝑓(𝑘, 𝑖, 𝑗).
(19) 𝐶[𝑥] ← 0

(20) for 𝑦 ← 1 to ⌈

𝑘

2

⌉ do ⊳ Compute 𝐵[𝑥] = 𝑓(⌈

𝑘

2

⌉ , 𝑥 + 1, 𝑗) , ∀𝑥 ∈ [𝑖 . . . 𝑗 − 1].

(21) for 𝑥 ← 𝑗 downto 𝑖 + 1 do
(22) if 𝑥 = 𝑗 then
(23) 𝑡𝑒𝑚𝑝1 ← 1

(24) else
(25) 𝑡𝑒𝑚𝑝1 ← 𝐴[𝑥 + 1]

(26) if 𝑅[𝑥] ≥ 𝑗 then ⊳ 𝑅 [𝑥] ∉ [𝑖, 𝑗], exceeding the boundary region.
(27) 𝑡𝑒𝑚𝑝2 ← 𝑗 − 𝑥 + 1

(28) else
(29) 𝑡𝑒𝑚𝑝2 ← 𝐶[𝑅[𝑥] + 1] + 𝑅[𝑥] − 𝑥 + 1

(30) 𝐵[𝑥] ← max{𝑡𝑒𝑚𝑝1, 𝑡𝑒𝑚𝑝2}

(31) copy 𝐵[𝑥] to 𝐶[𝑥] for next iteration of 𝑥 ⊳ 𝐶[𝑥] is used to store the temporary results of 𝑓(𝑘, 𝑖, 𝑗).
(32) 𝑡𝑒𝑚𝑝 ← −∞

(33) for 𝑥 ← 𝑖 to 𝑗 − 1 do ⊳ Find 𝑥
∗
= argmax

𝑖≤𝑥≤𝑗
{𝐴[𝑥] + 𝐵[𝑥]}.

(34) if (𝐴[𝑥] + 𝐵[𝑥 + 1]) > 𝑡𝑒𝑚𝑝 then
(35) 𝑥

∗
← 𝑥

(36) 𝑡𝑒𝑚𝑝 ← (𝐴[𝑥] + 𝐵[𝑥 + 1])

(37) Lis(⌊

𝑘

2

⌋ , 𝑖, 𝑥
∗
) ⊳ recursive call.

(38) Lis(⌈

𝑘

2

⌉ , 𝑥
∗
+ 1, 𝑗) ⊳ recursive call.

Algorithm 2: The 𝑂(𝑛𝑘) time and linear space algorithm for haplotype blocking.

Proof. We propose an 𝑂(𝑛𝑘) time algorithm, Lis(𝑘, 𝑖, 𝑗),
shown in Algorithm 1. Note that 𝑂(𝑚𝑛) time suffices for
preprocessing to find the rightmostmarkers𝑅[𝑖] and leftmost
markers 𝐿[𝑖] for each marker site 𝑖 as shown in [30].

In this algorithm, we use six global data structures
involving arrays 𝐿, 𝑅, 𝐴, 𝐵,C, and 𝑌-list. 𝐿 and 𝑅 are used
to store the good partner points 𝐿[𝑖] and 𝑅[𝑖] that have
been calculated in preprocessing. 𝑌-list is used to store the
boundaries of 𝑘 blocks. Arrays 𝐴 and 𝐵 are used to store the

results of the 𝑓(⌊𝑘/2⌋, 𝑖, 𝑥) and 𝑓(⌈𝑘/2⌉, 𝑥 + 1, 𝑗). During the
computation of the𝑓(⌊𝑘/2⌋, 𝑖, 𝑥) and the𝑓(⌈𝑘/2⌉, 𝑥+1, 𝑗), we
use array 𝐶, replacing a 𝑘 × 𝑛 table to store temporary results
that will be used to calculate further results. The size of each
of arrays 𝑅, 𝐿, 𝐴, 𝐵, and 𝐶 is 𝑛. The size of 𝑌-list is 𝑘, 𝑘 × 𝑛

in the general case, so that the space used by the algorithm is
𝑂(𝑛).

The time complexity of the algorithm is 𝑂(𝑛𝑘) as shown
in the following by induction. Let 𝑇(𝑛, 𝑘) denote the time
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i
n1 n − n1

j

t − t∗t∗

x∗

Figure 5: Illustration of the idea of recurrence 𝑓(𝑖, 𝑗, 𝑡).

needed for Lis(𝑘, 1, 𝑛). Assume that 𝑇(𝑛

; 𝑘

) ≤ 𝑐
2
𝑛

𝑘
 for all

𝑛

< 𝑛, 𝑘


< 𝑘. According to the algorithm, we have

𝑇 (𝑛, 𝑘) = 𝑐
1
𝑛𝑘 + 𝑇(𝑛

1
, ⌊

𝑘

2

⌋)

+ 𝑇(𝑛 − 𝑛
1
, ⌈

𝑘

2

⌉) .

(7)

By induction,

𝑇 (𝑛, 𝑘) ≤ 𝑐
1
𝑛𝑘 + 𝑐

2
𝑛
1
⌊

𝑘

2

⌋ + 𝑐
2
(𝑛 − 𝑛

1
) ⌈

𝑘

2

⌉

≤ (𝑐
1
𝑘 + 𝑐
2
⌈

𝑘

2

⌉) 𝑛 + 𝑐
2
𝑛
1
⌊

𝑘

2

⌋ − 𝑐
2
𝑛
1
⌈

𝑘

2

⌉

≤ (𝑐
1
𝑘 + 𝑐
2
⌈

𝑘

2

⌉) 𝑛, where 𝑘 ≥ 2,

⌈

𝑘

2

⌉ ≤

2

3

𝑘 ≤ 𝑐
2
𝑛𝑘.

(8)

Letting 𝑐
2

= 3𝑐
1
, the above inequality is satisfied, so

that we can prove the time complexity of the algorithm
to be 𝑂(𝑛𝑘). Although we assume that the block diversity
evaluation function we used here is monotonic, we can
modify the algorithm slightly such that it can be applied to
nonmonotonic blocks. In the case of nonmonotonic blocks,
for each SNP 𝑖, we use 𝐿

𝑖
to denote the set of all 𝑥 such that

[𝑥, 𝑖] is a feasible haplotype block. Let 𝐿 = 𝑛𝑙 = ∑
𝑛

𝑖=1
|𝐿
𝑖
|,

where 𝑙 is the average number of |𝐿
𝑖
| for each marker 𝑖. It can

be shown that the modified algorithm uses 𝑂(𝑘𝑛𝑙) time and
𝑂(𝑛𝑙) space.

3.3. A Linear Space Algorithm for Haplotype Block Partitioning
with Limited Number of Tag SNPs. Using a similar concept
as in [31], we find a cut point 𝑥

∗ to divide 𝑛 SNP sites into
two parts, 𝑛

1
and 𝑛
2
, and use 𝑡

∗ tag SNPs for 𝑛
1
and the other

𝑡 − 𝑡
∗tag SNPs for 𝑛

2
such that the total size of blocks covered

by 𝑡
∗ tags in 𝑛

1
and 𝑡 − 𝑡

∗tags in 𝑛
2
is maximized. We obtain

the following recurrence relation:

𝑓 (𝑖, 𝑗, 𝑡) = 𝑓 (𝑖, 𝑥
∗
, 𝑡
∗
) + 𝑓 (𝑥

∗
+ 1, 𝑗, 𝑡 − 𝑡

∗
) . (9)

The idea behind the recurrence relation is illustrated in
Figure 5. Note that in order to maximize the total size of
blocks tagged by 𝑡

∗ SNPs and 𝑡− 𝑡
∗¡sup/¿SNPs, we are unable

to assign half of 𝑡 to 𝑡
∗ directly, because in some cases the

⌊𝑡/2⌋th and the (⌊𝑡/2⌋ + 1)th SNP will be used to tag the

same block that is a member of the longest segmentation. If
we use the first to the ⌊𝑡/2⌋th SNPs to tag the blocks in 𝑛

1

and use the (⌊𝑡/2⌋ + 1)th to the 𝑡th SNPs to tag the blocks in
𝑛
2
, we will not obtain the longest segmentation for 𝑛 SNPs.

In the general case there will be many pairs of 𝑡
∗ and 𝑥

∗

solutions that satisfy our requirement. For time efficiency,
we want to make 𝑥

∗ and 𝑡
∗ approximate half of 𝑛 and 𝑡 as

nearly as possible. Let 𝑡
0
denote the maximum number of

tag SNPs required among all feasible blocks. In order to find
the appropriate value of 𝑥∗ and 𝑡

∗, we can examine 𝑡
∗ in 𝑡
0

continuous possible values, ⌊𝑡/2⌋−⌊𝑡
0
/2⌋ ≤ 𝑡

∗
≤ ⌊𝑡/2⌋+⌊𝑡

0
/2⌋

and examine 𝑥
∗ in all SNPs loci for each selection of 𝑡

∗.
Since 𝑡

0
is small in the general case, we can find 𝑥

∗ and 𝑡
∗

quickly. After finding appropriate values of 𝑥∗ and 𝑡
∗, we can

execute the steps recursively to partition the original problem
to two subproblems repeatedly. Until 𝑡 ≤ 𝑡

0
, we simply use the

dynamic programming algorithm to solve each subproblem.
The algorithm traces back to output the boundaries of each
block. The algorithm is shown in Algorithm 3.

Theorem 7 (longest-blocks-𝑡-tags). Assume that the maxi-
mum number of tag SNPs required among all feasible blocks,
𝑡
0
, is a constant. Given a haplotype matrix𝐴, a diversity upper

limit 𝐷, and a number of tag SNPs t, find a segmentation S
consisting of k feasible blocks such that (for all 𝑖) (𝛿(𝐵𝑖) ≤ 𝐷)

and ∑ tag (𝐵𝑖) ≤ 𝑡, so that maximizing the total length of 𝑆
can be done in 𝑂(𝑡𝑛𝑙) time and using linear space after the
preprocessing of 𝑅

𝑖
, 𝐿
𝑖
, and tag(𝑘, 𝑖)𝑠, 𝑘 ∈ 𝐿

𝑖
, for each SNP

𝑖.

In the algorithm, named HBPTS, we use five global data
structures involving arrays 𝐸, 𝐹, 𝑆, 𝐴, and 𝐵. Arrays 𝐸 and
𝐹 are used to store the good partner points 𝐿

𝑖
and 𝑅

𝑖
for

each SNP 𝑖, and array 𝑆 is used to store the tag SNPs required
for each feasible block. The data in arrays 𝐸, 𝐹, and 𝑆 were
calculated in preprocessing, and the size of each array is 𝐿,
the number of all feasible blocks. In addition, we use a two-
dimensional array 𝐴 for computing the 𝑓(𝑖, 𝑥, 0 ⋅ ⋅ ⋅ ⌊𝑇/2⌋ +

⌊𝑡
0
/2⌋) and 𝐵 for computing the 𝑓(𝑥 + 1, 𝑗, 0 ⋅ ⋅ ⋅ ⌊𝑇/2⌋ +

⌊𝑡
0
/2⌋). Note that the computation of 𝑓(𝑖, 𝑗, 𝑡) will compare

the values of 𝑓(𝑖, 𝑘 − 1; 𝑡 − tag(𝑘, 𝑗)), 𝑘 ∈ 𝐿
𝑗
, and 𝑓(𝑖, 𝑗 − 1, 𝑡).

Therefore, if 𝑡
0
denotes themaximum tag(𝑘, 𝑗), themaximum

number of tag SNPs required among all feasible blocks, we
need to store at most the values of𝑓(. . . , . . . , (𝑡−𝑡

0
) ⋅ ⋅ ⋅ (𝑡−1))

and 𝑓(𝑖, 𝑗 − 1, 𝑡) while computing the value of 𝑓(𝑖, 𝑗, 𝑡). In
our experience, the 𝑡

0
will be equal to 8 at most, as seen, for

example, in the haplotype data of Patil et al. [7]. Thus the
space of two dimensional arrays𝐴 and 𝐵 is 𝑡

0
×𝑛, so the space

complexity for the algorithm is𝑂(𝐿+𝑡
0
𝑛). Since 𝑡

0
is generally

a constant and𝐿 > 𝑛 inmost practical cases, we can prove that
the space used by the algorithm is 𝑂(𝐿 + 𝑛). The flowchart of
HBPTS is shown in Figure 6.

Proof. We propose an𝑂(𝑡𝑛𝑙) time algorithm, HBPTS(𝑖, 𝑗, 𝑇),
shown in Algorithm 2. The time complexity of the algorithm
is 𝑂(𝑛𝑙𝑡) as shown in the following by induction. Let 𝑇(𝑛, 𝑡)

denote the time needed for HBPTS(1, 𝑛, 𝑡). Assume that



8 BioMed Research International

HBPTS(𝑖, 𝑗, 𝑇) ⊳ Lis: List blocks covered by 𝑇 tag SNPs in [𝑖, 𝑗] with maximized total length.
Input: Interval [𝑖, 𝑗] and number of tag SNPs 𝑇.
Output:The boundaries of blocks covered by 𝑇 tag SNPs.
Global variable: 𝐿, 𝑅, 𝑆, 𝐴, 𝐵. ⊳ 𝐿 and 𝑅 are used to store the good partner pointers 𝐿

𝑖
and

𝑅
𝑖
which have been preprocessed dependent on diversity constraints 𝐷,

𝑆 is used to store the tag SNPs required for each feasible blocks,
two dimensional array 𝐴 and 𝐵 are global temporary working storages.

(1) if 𝑇 ≤ 𝑡
0
then

(2) for 𝑡 ← 0 to T do
(3) for 𝑥 ← 𝑖 to 𝑗 do
(4) Directly compute 𝐴[𝑡, 𝑥] = 𝑓(𝑖, 𝑥, 𝑡) according to recursion relation 3.
(5) Trace back on 𝐴 array to output the boundaries of blocks covered by 𝑇 tag SNPs.
(6) return
(7) for 𝑡 ← 0 to ⌊

𝑇

2

⌋ + ⌈

𝑡
0

2

⌉ do

⊳ Compute 𝐴[𝑡 mod (𝑡
0
+ 1), 𝑥] = 𝑓(𝑖, 𝑥, 𝑡), ∀𝑥 ∈ [𝑖 ⋅ ⋅ ⋅ 𝑗 − 1], 𝑡 ∈ [⌊

𝑇

2

⌋ − ⌊

𝑡
0

2

⌋ . . . ⌊

𝑇

2

⌋ + ⌈

𝑡
0

2

⌉].
(8) for 𝑥 ← 𝑖 to 𝑗 − 1 do
(9) Compute 𝐴[𝑡 mod (𝑡

0
+ 1), 𝑥] = 𝑓(𝑖, 𝑥, 𝑡) by formula 3.

(10) for 𝑡 ← 0 to ⌊

𝑇

2

⌋ + ⌈

𝑡
0

2

⌉ do

⊳ Compute 𝐵[𝑡 mod (𝑡
0

+ 1), 𝑥] = 𝑓(𝑥 + 1, 𝑗, 𝑡), ∀𝑥 ∈ [𝑖 ⋅ ⋅ ⋅ 𝑗 − 1], 𝑡 ∈ [⌊

𝑇

2

⌋ − ⌊

𝑡
0

2

⌋ . . . ⌊

𝑇

2

⌋ + ⌈

𝑡
0

2

⌉].
(11) for 𝑥 ← 𝑗 down to 𝑖 + 1 do
(12) Compute 𝐵[𝑡 mod (𝑡

0
+ 1), 𝑥] = 𝑓(𝑥, 𝑗, 𝑡) by formula 3 with opposite direction.

(13) Find (𝑥
∗
, 𝑡
∗
) = arg max

𝑖≤𝑥≤𝑗,⌊𝑇/2⌋−⌊𝑡0/2⌋≤𝑡≤⌊𝑇/2⌋+⌈𝑡0/2⌉
{𝐴 [𝑡, 𝑥] + 𝐵 [𝑇 − 𝑡, 𝑥]}.

⊳ Pointer back tracking to find the 𝑥
∗, and 𝑡

∗

(14)HBPTS(𝑖, 𝑥∗, 𝑡∗) ⊳ recursive call to report blocks in interval [i, x∗] with t∗ tags.
(15)HBPTS(𝑥∗ + 1, 𝑗, 𝑇 − 𝑡

∗
) ⊳ recursive call to report blocks in interval [𝑥∗, 𝑗] with 𝑇 − 𝑡

∗ tags.

Algorithm 3:The𝑂(𝑛𝑙𝑡) time and linear-space algorithm for haplotype blocking with constraints on diversity and the number of tag SNPs.

𝑇(𝑛
0
, 𝑡
0
) ≤ 𝑐
2
𝑛
0
𝑙𝑡
0
for all 𝑛

0
< 𝑛, 𝑡

0
< 𝑡. According to the

algorithm, we have

𝑇 (𝑛, 𝑡) = 𝑐
1
𝑛𝑙𝑡 + 𝑇 (𝑛

1
, 𝑡
∗
) + 𝑇 (𝑛 − 𝑛

1
, 𝑡 − 𝑡
∗
) . (10)

By induction,

𝑇 (𝑛, 𝑡) ≤ 𝑐
1
𝑛𝑙𝑡 + 𝑇 (𝑛

1
, 𝑡
∗
) + 𝑇 (𝑛 − 𝑛

1
, 𝑡 − 𝑡
∗
)

≤ 𝑙 (𝑐
2
𝑛𝑡 + 𝑐
1
𝑛𝑡 + 2𝑐

2
𝑛
1
𝑡
∗
− 𝑐
2
𝑛
1
𝑡 − 𝑐
2
𝑛𝑡
∗
)

≤ 𝑙 [𝑐
2
𝑛𝑡 + (

5

3

𝑐
2
𝑛
1
𝑡
∗
− 𝑐
2
𝑛
1
𝑡)

+ (𝑐
1
𝑛𝑡 +

1

3

𝑐
2
𝑛
1
𝑡
∗
− 𝑐
2
𝑛𝑡
∗
)]

≤ 𝑙 [𝑐
2
𝑛𝑡 + 𝑐
2
𝑛
1
(

5

3

𝑡
∗
− 𝑡)

+ (𝑐
1
𝑛𝑡 +

1

3

𝑐
2
𝑛
1
𝑡
∗
− 𝑐
2
𝑛𝑡
∗
)]

≤ 𝑙 {𝑐
2
𝑛𝑡 + 𝑐
2
𝑛
1
[

5

3

(⌊

𝑡

2

⌋ + ⌈

𝑡
0

2

⌉) − 𝑡]
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(11)

Letting 𝑡 ≥ 5𝑡
0
+ 10, the above inequality will be satisfied, so

that we can prove the time complexity of the algorithm to be
𝑂(𝑛𝑙𝑡).

4. Experiments

We applied our dynamic programming algorithms, which
find the longest segmentation covered by a specific number of
tag SNPs, to the haplotype data for chromosome 21 provided
by Patil et al. [7]. The data contain 20 haplotype samples and
each contains 24,047 SNPs spanning 32.4Mb of chromosome
21.Theminor-allele frequency at each marker locus is at least
10%. Using the proposed algorithms with the same criteria as
in [7] with ≥ 80% coverage of common haplotypes in blocks,



BioMed Research International 9

YN

  (Preprocessing data)
The number of tag SNPs required 

for each haplotype block.

Trace back to output the boundaries of 

(Preprocessing data)
Left good partner Li

Li

for each SNPs
locus i.

i

(Preprocessing data)
Right good partner Ri

Ri

for each SNPs
locus i.

i

If T ≤ t0

Tabular computing forA[t, x] = f(i, x, t)

blocks covered by T tag SNPs

Tabular computing for A[t mod(t0 + 1), x] = f(i, x, t),

such that A[t, x] + B[T − t, x] is maximized.

LisTag(i, x∗, t∗), LisTag(x∗ + 1, j, T − t∗), recursive call

to report blocks in interval [i, x∗] with t∗ tags and

blocks in interval [x∗, j] with T − t∗ tags.

t ∈ [⌊T/2⌋ − ⌊t0/2⌋ · · · ⌊T/2⌋ + ⌈t0/2⌉]

t ∈ [⌊T/2⌋ − ⌊t0/2⌋ · · · ⌊T/2⌋ + ⌈t0/2⌉]

and B[t mod(t0 + 1), x] = f(x + 1, j, t), ∀x ∈ [i · · · j − 1],

∀x ∈ [i · · · j − 1],

Find (x∗, ), i ≤ x∗ ≤ j, ⌊T/2⌋ − ⌊t0/2⌋ ≤ t∗t∗ ≤ ⌊T/2⌋ + ⌈t0/2⌉

Figure 6: The flowchart of HBPTS.

3,260 tag SNPs and 2,266 haplotype blocks are identified. In
contrast, 4,563 tag SNPs and 4,135 blocks are identified in
[7], and 3,582 tag SNPs and 2,575 blocks are identified in
[10].The proposed algorithms reduce the number of tag SNPs
and blocks by 28.6% and 45.2% compared to [7]. We also
demonstrate that the results shown in [10] are not optimal.

Table 1 shows a comparison of properties of haplotype
blocks found by [7, 10] and our algorithmswith 80% coverage
of common haplotypes. The proposed algorithms discover
736 blocks containing more than 10 SNPs per block. Blocks
with >10 SNPs account for 32.5% of all blocks. The average
number of SNPs for all of the blocks is 10.6. The largest block
contains 128 common SNPs, which is longer than the largest
block (containing 114 SNPs) identified by [7] and the same
as identified by [10]. Tables 2 and 3 show more experimental
results. According to these results, we can partition 38.6% of
the genome region into blocks that require no tag SNPs. This
is because most of these blocks contain only a few common
SNPs, and 80% of the unambiguous haplotypes have the
same haplotype pattern (are compatible) in these blocks. We
term these SNP loci as uninformative markers because they

are the same among most (80%) of the population. These
data also show that as the covered genome region increases,
we need to add more and more tag SNPs to capture the
haplotype information of the blocks, and the number of zero-
tagged blocks becomes fewer. Although the average length
of non-zero-tagged blocks becomes shorter as the covered
chromosome region increases, the average length of all blocks
becomes longer.

Figure 7(a) shows the percentage of tag SNPs identified
by the proposed algorithms when blocks cover a specified
percent of the genome region. According to our experimental
results, when blocks cover 70% of the genome region, the
proposed algorithm required only 19.1% (about 623) of the tag
SNPs to capture most of the haplotype information.This also
indicates that the proposed method discovers that only a few
tag SNPs are needed to capture most of the genome-region
information. Figure 7(b) shows that the percentage of covered
genome region increases while the tag SNPs identified by the
proposedmethods increase by 5%.Note that as the number of
tag SNPs increases, themarginal percentage of genome region
covered decreases. This indicates that, as the genome region
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Table 1: Comparison of properties of haplotype blocks defined by Zhang, Patil, and us with 80% of common haplotype coverage, using the
chromosome 21 haplotype sample proposed by Patil.

Method Common SNPs
per block No. of blocks No. of blocks

requiring ≥1 tagSNPs
Average no. of common
haplotype per block

Block
frequency (%)

SNP frequency
(%)

HBPTS

>10 736 733 4.32 32.5 77.8
3–10 751 686 3.16 33.1 18.0
<3 779 216 2.12 34.4 4.2

Total 2,266 1,635 3.18 100.0 100.00

Zhang’s

>10 742 738 4.23 28.8 75.5
3–10 909 842 3.03 35.3 19.5
<3 924 274 2.12 35.9 5.0

Total 2,575 1,854 3.05 100.0 100.0

Patil’s

>10 589 589 3.75 14.2 56.8
3–10 1,408 1,396 2.92 34.1 30.7
<3 2,138 1,776 2.30 51.7 12.4

Total 4,135 3,761 2.72 100.0 100.0

Table 2: Analysis results based on numbers of tag SNPs required (using the chromosome 21 haplotype sample proposed by Patil).

Tag SNPs used Genome region
covered (%)

Extra genome region
increased (%) 0-tagged blocks Blocks with tags

number >0
Avg. length of

non-0-tagged blocks
0% (0) 38.55 38.55 6136 0 1.51 (0-tagged blocks)
10% (326) 59.99 21.44 4991 192 35.52
20% (652) 70.85 10.86 4145 367 29.37
30% (978) 78.62 7.77 3387 516 26.79
40% (1304) 84.61 5.99 2897 712 22.38
50% (1630) 89.02 4.41 2250 844 21.29
60% (1956) 92.59 3.57 1814 1002 19.41
70% (2282) 95.30 2.71 1478 1159 17.79
80% (2608) 97.29 1.99 1014 1289 16.90
90% (2934) 98.64 1.35 719 1421 15.89
100% (3260) 100.00 1.36 631 1635 14.10

Table 3: Analysis results based on percentage of genome region covered (using the chromosome 21 haplotype sample proposed by Patil).

Genome region
covered (%)

Tag SNPs
required

Extra tag SNPs
required

0-tagged blocks
number

Blocks with tags
number >0

Avg. length of
non-0-tagged blocks

38.55 0 0 6136 0 1.51 (0-tagged blocks)
40 8 8 6111 6 67.17
50 127 119 5630 80 43.75
60 327 200 4991 193 35.39
70 623 296 4213 347 30.22
80 1045 422 3307 567 25.14
90 1709 664 2208 888 20.58
100 3260 1551 631 1635 14.10

coverage increases, fewer common SNPs are covered by each
tag SNP on average. Figure 7(c) shows the added tag SNPs
needed to increase the genome-region coverage by 5%. We
find that as genome-region coverage increases, many more
tag SNPs are needed to capture the haplotype information. In
particular, when the genome-region coverage increases from

95% to 100%, we need to use another extra 1,014 tag SNPs,
about 31.1% of the total tag SNPs. It is interesting to note that
the proposedmethod discovers that themarginal utility of tag
SNPs decreases as genome-region coverage increases. From
the results, our algorithms obtain better results than those
by the other methods [7, 10] on the same haplotype sample.
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Figure 7: (a) The percentage of genome region covered by the percentage of tag SNPs, (b) the increase in percentage of covered genome
region corresponding to a 5% increase in number of tag SNPs, and (c) the increase in number of tag SNPs needed to increase the covered
genome region by 5%.

One of the main reasons is that their algorithms presume
that the common-haplotypes evaluation function satisfies the
monotonic property. However, when the haplotype sample
has missing data, the diversity function does not satisfy the
monotonic property. For example, Table 5 shows the analysis
results of Zhang’s and our algorithms on the same haplotype
sample; this sample has just 69 SNPs, which is a small part
of Patil’s haplotype data [7]; the contig number is NT 001035.
Using the sample criteria (80% of common haplotype), our
methods partition the sample into 20 blocks and identify 18
tag SNPs, whereas Zhang’s algorithm partitions the sample
into 23 blocks and uses 22 tag SNPs. The results are similar
in interval [21840, 21875], but in interval [21876, 21899], our
methods discover 3 blocks and 3 tag SNPs, whereas Zhang’s
gives 6 blocks and 6 tag SNPs. In interval [21900, 21908], both
Zhang’s and ourmethods find 2 blocks, but ourmethod needs
only 3 tag SNPs rather than the 4 found by Zhang’s method.
These cases demonstrate that Zhang’s algorithm fails to find
the optimal solution owing to the nonmonotonic property of
the common-haplotype evaluation function.

We also apply our algorithm on biological data set
from chromosome 20 from HapMap data bulk (http://www
.hapmap.org), respectively. The data set contains 120 individ-
uals that include 71,539 SNPs from the Yoruba in Ibadan,
Nigeria (abbreviated YRI). We select the first 30 individuals
and the first 5,000 SNPs for the input sample of the algorithm.
Using the diversity function (3) with ≥ 80% coverage of
common haplotypes in blocks, the total number of blocks
and tag SNPs identified by the algorithm is 293 and 1,047.The
haplotype sample also being applied to Zhang’s method with
minimum number of tag SNPs implemented on HapBlock
[23], using the same criteria, 344 blocks and 1,184 tag SNPs
are obtained by Zhang’s algorithm.

Table 4 shows a comparison of properties of haplotype
blocks identified by Zhang’s and our algorithms with 80%
coverage of commonhaplotypes.Our algorithmdiscovers 168
blocks containing more than 10 SNPs per block. Blocks with
>10 SNPs account for 57.3% of all blocks.The average number
of SNPs for all of the blocks is 17.1. The largest block contains
92 common SNPs, which is longer than the largest block

http://www.hapmap.org
http://www.hapmap.org
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Table 4: Comparison of properties of haplotype blocks defined by Zhang and us with 80% of common haplotype coverage, using the
chromosome 20 haplotype sample from HapMap.

Method Common SNPs per block No. of blocks No. of blocks requiring ≥1 tagSNPs Block frequency (%) SNP frequency (%)

HBPTS

>10 168 168 57.3 84.8
3–10 103 103 35.2 14.5
<3 22 21 7.5 0.7

Total 293 292 100.0 100.00

Zhang’s

>10 170 170 49.4 80.2
3–10 141 141 41.0 18.9
<3 33 33 9.6 0.9

Total 344 344 100.0 100.0

Table 5:The experimental results of Zhang’s and our algorithms on
a small part of Patil’s data.

Id Zhang’s result Our result
(Start, end) Tag used (Start, end) Tag used

1 (21840, 21840) 0 (21840, 21840) 0
2 (21841, 21842) 1 (21841, 21843) 1
3 (21843, 21844) 0 (21844, 21844) 0
4 (21845, 21845) 0 (21845, 21845) 0
5 (21846, 21846) 0 (21846, 21846) 0
6 (21847, 21853) 3 (21847, 21853) 3
7 (21854, 21855) 1 (21854, 21855) 1
8 (21856, 21856) 0 (21856, 21856) 0
9 (21857, 21860) 2 (21857, 21860) 2
10 (21861, 21863) 2 (21861, 21863) 2
11 (21864, 21865) 1 (21864, 21865) 1
12 (21866, 21869) 1 (21866, 21869) 1
13 (21870, 21870) 0 (21870, 21871) 1
14 (21871, 21874) 1 (21872, 21874) 0
15 (21875, 21875) 0 (21875, 21875) 0
16 (21876, 21889) 2 (21876, 21876) 0
17 (21890, 21891) 0 (21877, 21882) 1
18 (21892, 21894) 1 (21883, 21899) 2
19 (21895, 21895) 1 (21900, 21907) 2
20 (21896, 21897) 0 (21908, 21908) 1
21 (21898, 21899) 2
22 (21900, 21902) 2
23 (21903, 21908) 2
Total 23 22 20 18

(containing 79 SNPs) identified by Zhang’s algorithm. Note
that the haplotype sample has no missing data, and using the
data set, the diversity function (3) will satisfy the monotonic
property.

5. Conclusion

In this paper, we examine several haplotype diversity evalua-
tion functions. By use of appropriate diversity functions, the
block selection problem can be viewed as finding a segmen-
tation of a given haplotype matrix such that the diversities

of chosen blocks satisfy a given value constraint. Tag SNPs
can capture most of the haplotype diversity in the blocks
and thereby can potentially capture most of the information
for association between a trait and the SNP marker loci.
Instead of genotyping all of the SNPs on the chromosome, one
may wish to use only the genotype information of tag SNPs.
We can infer the haplotype features of most populations
by genotyping only a few SNPs. Thus, identifying tag SNPs
can dramatically reduce the time and effort needed for
genotyping, without loss of much haplotype information.

We present two dynamic programming algorithms for
haplotype-block partitioning such that total block length is
maximized and the total tag SNPs required are minimized.
We also show in Theorem 6 that finding the longest 𝑘-block
segmentation with diversity constraints can be done in𝑂(𝑛𝑘)

time and 𝑂(𝑛) space. In Theorem 7, we show that finding
a maximum segmentation with limited tag SNPs number
can be done in 𝑂(𝑛𝑙𝑡) time; furthermore, we reduce the
space complexity into 𝑂(𝐿 + 𝑛). We point out that these
efficiency results of our algorithms can be applied in many
different definitions of diversity functions, provided that we
can precompute the boundaries of all feasible blocks and tag
SNPs required for these blocks.

We also show that the experimental results discovered by
our methods are superior to those by Zhang’s algorithm. We
demonstrate that owing to the nonmonotonic property of the
common-haplotype evaluation function, Zhang’s algorithm
will not find an optimal solution when the haplotype samples
have missing data.
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