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Abstract

Organizational growth processes have consistently been shown to exhibit a fatter-than-Gaussian growth-rate distribution in
a variety of settings. Long periods of relatively small changes are interrupted by sudden changes in all size scales. This kind
of extreme events can have important consequences for the development of biological and socio-economic systems.
Existing models do not derive this aggregated pattern from agent actions at the micro level. We develop an agent-based
simulation model on a social network. We take our departure in a model by a Schwarzkopf et al. on a scale-free network. We
reproduce the fat-tailed pattern out of internal dynamics alone, and also find that it is robust with respect to network
topology. Thus, the social network and the local interactions are a prerequisite for generating the pattern, but not the
network topology itself. We further extend the model with a parameter d that weights the relative fraction of an individual’s
neighbours belonging to a given organization, representing a contextual aspect of social influence. In the lower limit of this
parameter, the fraction is irrelevant and choice of organization is random. In the upper limit of the parameter, the largest
fraction quickly dominates, leading to a winner-takes-all situation. We recover the real pattern as an intermediate case
between these two extremes.
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Introduction

The social world is populated by organizations. The organiza-

tional landscape is changing all the time, with organizations being

created, restructured and dissolved. In this dynamical environ-

ment, potentially several thousands of agents interact following

different motivations, both at the individual level and at the

collective level. The coevolution of various institutional settings,

private and public, as well as the existence of actors and activities

at different levels of aggregation, makes research on organizational

dynamics a complex subject matter.

We study organizational growth processes, that is to say, the time

evolution of company size for a system of organizations. These

processes exhibit statistical regularities, despite their complexity

[1]. One main striking regularity concerns the nature of the

probability distribution for the growth rate, i.e. how fast the size

changes in time. This distribution has two features. First, it follows

a fat-tailed pattern, meaning that organizational size changes very

little most of the time, but dramatically every once in a while,

leading to rare (yet possible) booms and catastrophic crashes. The

second feature is that fluctuations (i.e. the variance) in growth rates

are less severe for larger organizations, so that the variance in

growth is not uniform across all size scales.

These empirical regularities are relevant for several reasons.

The large fluctuations observed in real systems are rare, but

certainly more likely than if the process were governed by a

Gaussian distribution. This kind of behaviour constitutes a

counter-intuitive observation, since traditional models (in eco-

nomics, for example) would expect it to be Gaussian. The fat-

tailed pattern adds unpredictability to the system, allowing for

extreme events to take place in a short period of time. This has

practical consequences for economic development and societal

stability. Finally, similar growth statistics have been observed in a

wide variety of natural and artificial systems, which makes the

understanding of underlying mechanisms behind growth processes

an interdisciplinary topic. The reported systems can be mapped

along several dimensions, as we illustrate below:

Country. US [1–8], Italy [9–14], Japan [15–17], United

Kingdom [18,19], Brazil [6], Sweden [20],

Profitability. Commercial e.g. [1,13,18] and voluntary [20]

organizations,

Industrial sector. Pharmaceutical [9,21–23], furniture [13],

printing [5,13], shoes [13], textiles [11,12], metals [5,11],

chemicals [5], food [5],

Process. Industrial production [1,8,11,24], firm growth of

countries in the G7 [25], investments in mutual funds [26], stock

price fluctuations [7], country Gross Domestic Product (GDP)

[24,27,28], exports/imports [29], bird population dynamics [30],

university research output [31].
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Our theoretical approach to the problem is the theory of social

mechanisms in the analytical sociology framework [32]. In this

tradition, models about social phenomena contribute to our

theoretical understanding if they make clear the micro-level

mechanisms that bring about a certain macro-level outcome, in

this case the non-Gaussian growth-rate pattern. It is individuals

that, through their actions, bring about macro-level outcomes

[33]. The network of individual contacts is the setting in which the

actors can influence each other, with activities in economic life

being embedded in social networks [34]. Our proposed model has

thus a focus on individuals in organizations as the relevant actors,

and the network connecting them is of fundamental importance.

This approach makes explicit the interplay between individuality

and social influence, and shows how it can lead to an unexpected

macro outcome.

Within this context, there are at least two possible reasons

contributing to the features we observe in the growth-rate pattern.

The fat tails could be caused by asymmetries in the structure of the

social network that make certain actors more salient or popular

than others. Their involvement in the process of influencing group

membership would generate these occasional large growth

fluctuations. Along this line, the fat-tailed pattern would be a

result of the underlying fat-tailed nature of the network structure.

Concerning fluctuations being smaller for larger companies, there

could be a rich-get-richer phenomenon at play, by which large

organizations become larger by a positive feedback process, and

thus their size fluctuates less, while small organizations are more

sensitive to perturbations caused by member entrance and exit.

This is the firm diversification argument [4,9].

Several models have been proposed over a range of approaches

(see overview below), but there is no general consensus about a

dominant mechanism to account for the emergence of fat-tailed

growth-rate distributions. Additionally, the majority of models in

the literature do not focus on the network of agents that are

members of an organization, but are rather aggregated models

based on economic considerations or on various types of stochastic

processes. For this reason, there is a need for models that describe

the mechanism by which social actions at the micro level generate

the pattern at the macro-level.

We address these two possible reasons by modelling a social

network where agents are subject to social influence when it comes

deciding on organizational membership. We build and simulate a

first model based on [26], the SAF model. This first model

represents the localized, network-dependent aspect of social

influence. Therefore, our first modelling aim is to implement the

SAF model and simulate it on different network topologies, in

order to explore if a fat-tailed network structure is necessary for

observing the non-Gaussian growth pattern. Secondly, we add a

context-dependent aspect of social influence. We implement this

by in the extended SAF model with an influence parameter that

weights an individual’s membership choice by contextual influ-

ence. We propose an alternative to the diversification argument as

a possible explanation of fluctuation dependence with organization

size, in terms of a combination of network-dependent and context-

dependent social influence.

Overview of existing models
In this subsection, we describe existing models. None of the

existing models, except for the one we take our departure from,

incorporate micro-level mechanisms grounded on individuals and

their interactions. We classify models into three categories:

economic, physical and stochastic. We shall use ‘group’ and

‘organization’ as synonyms from here on.

Economic models account for a large fraction of the models of

growth processes in organizations. We find economic models for

firm sizes as far back as the mid-twentieth century. Simon [35–37]

developed the concept of growth opportunities; Sutton later

elaborated on this concept. Lucas [38] considers on the

distribution of managerial talent; more recent models also use

this notion [39]. Jovanovic introduced a model for firm learning

[40] through an evolutionary-like process. In more recent times,

Amaral et al. built a model on the concept of optimal size [1,3]. A

study by Bottazzi [9] used the concept of market diversification.

Finally, Dosi studied the relation of growth with innovation and

production efficiency [14].

Another model category is physical models, which combine

physical and socio-economic concepts. We name three of them:

microcanonical models [41,42], models using Bose-Einstein

statistics [12,13] derived from an urn-and-ball scheme, and

percolation models [43] (see [44] for a much deeper review).

Within the third category of stochastic models is one of the oldest

contributions to the literature, namely the Gibrat model (1931) [45]

(see also the reviews in [46,47]). Many of the classical models

assume Gibrat’s Law, or some more sophisticated version of it

[16,18,19,37,48–50]. Therefore, we describe it in some more

detail. The model is based on the following assumptions:

1. Law of Proportionate Effect or Gibrat’s Law: The absolute

growth rate of a company is independent of its size, i.e.:

StzDt

St

~1zEt, ð1Þ

with Dt the time period between measurements, Et an uncorrelated

random noise, usually taken to be normally distributed with �EE~0
and sE%1,

In order to measure growth, the central variable we look at is

the growth rate, defined as r(t,Dt): log10

St

St{Dt

. The choice of Dt

(typically one year) is conditioned by the sampling frequency in the

data sets. We use here Dt~1 year. Naming S(ti):Si, we write a

rate in general as

r1: log10

S1

S0
, ð2Þ

and call S0 initial size (this term is not to be confused with the size

at the initial time step Sini; it is rather the size from which the

growth rate is computed). We should also note that the statistical

distributions depend on Dt [1]. The size distribution is typically

approximated by a log-normal. On the other hand, the growth

rate in the Gibrat model follows a random-walk-like dynamics,

and its distribution is normal. However, the literature agrees that a

good way to describe at least the body of the growth-rate

distribution for empirical data is through a Laplace (or ‘‘tent-

shaped’’) distribution [1,2,4,12]

p(r1DS0)~
1ffiffiffi

2
p

s1(S0)
exp {

ffiffiffi
2
p

Dr1{�rr1(S0)D
s1(S0)

 !
, ð3Þ
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where �rr1(S0) is the mean value of the growth rates in the bin, and

s1(S0) its standard deviation. This means that the Gibrat pattern

is qualitatively very different from what one observes in real data.

The growth-rate distributions for all initial-size bins are alike (due

to Gibrat’s Law), contrary to real observations, in particular

regarding the decay of the fluctuations s1(S0) as S0 increases. It is

reported in the literature that a power law of the form

s1(S0)*S
{b
0 provides a good description for this decay [1].

Moreover, the Laplace tails are ‘‘fatter’’ than Gaussian, i.e.

extreme values have higher probability. This implies that large

growth rates (both positive and negative) are more likely in reality

than in the Gibrat model. In other words, organizational size

changes very little most of the time, but it can occasionally also

change dramatically.

Additionally, there is a subcategory of models called subunit
models, in which the size of a company is constructed as the sum of

the contributions of internal subunits, e.g. different divisions. One

well-known model is by Amaral et al. [4]. A variation of this model

is the transactional model [51]. Another variation represents

groups as classes composed of subunits [22,52]. In the hierarchical

tree model [1,3] organizational hierarchy comes into play

explicitly.

A final model in this category is based on additive replication in

its general form. We call it general SAF model, for Schwarzkopf,

Axtell and Farmer who first proposed it [26]. A specific case of this

model is the base for ours (see SAF model below). At each time

step, each member of an organization is replaced by x new ones,

this last value taken from a replication distribution p(x). There is a

competition rule: the new element is either taken from another

group with probability j, or created from scratch with probability

1{j. The model is implemented on a social network, where

vertices are individuals and edges are acquaintance relationships.

The general SAF model is the only model among the reviewed

literature that makes an explicit reference to a social network. This

model follows our approach when it comes to designing a micro

simulation model that generates a macro-level pattern through a

defined mechanism.

The range of approaches from different disciplines shows the

interdisciplinary nature of the phenomenon and the potential

application of meaningful generative models to different scientific

fields.

Methods

SAF model
The dynamics by which people become members of an

organization has many different aspects [53]. One of them is

influence through contacts in social networks, which we call

contact influence. The setting for the SAF model consists then of a

contact network. See the illustration in Fig. 1. There are N vertices

representing individuals, and the arcs between them are links of

contact influence. We follow [26] here. We work in the strong-

competition limit (j~0): Each agent added to a group must be

taken from another group. Consequently, the total number of

agents N is constant. The number of groups G is fixed as well.

The only interaction we consider among agents is social

influence, through edges in their contact networks. The network

arc i?j meaning that agent i is influenced by agent j. This

simplification leaves out interactions coming from the formal (or

informal) hierarchical structure of the organization. The under-

lying structure in the model is rather the social network of

individual contacts, which we assume static over the time span of

the problem.

The model variables are the sizes S(a)(t) of each organization a
at time t, with a[f1,2, � � � ,Gg. The size of an organization at a

certain time is the sum of the individuals in that group at that time.

Previous research has shown that other size definitions —for

instance in terms of sales —produce similar statistics (see e.g. Ref.

[1]).

Regarding the time evolution, at each time step t, a vertex is

picked at random. The probability for vertex i to switch to group g
we call switching probability, and is computed as

Pi,g(t)~
~kki,g(t)P
a

~kki,a(t)
, ð4Þ

where ~kki,a is the degree of vertex i in group a, counting its own

group. That is to say, from the number of vertices that influence

vertex i (counting itself), how many belong to group a. This rule

conditions the decision to switch group on the group membership

of network neighbours, and allows for the possibility to stay in the

current organization.

We impose an extra rule stating that no group can die out

permanently. This is done to avoid that groups hit the absorbing

state at size zero and thereby keeping the system in equilibrium.

We implement the rule as follows: every Monte Carlo step a check

is performed; if a group has zero size, a random vertex is switched

to the empty group. A non-equilibrium version of the model is also

possible. It would lead to different dynamics, with all system

realizations going to a final one-group absorbing state. We tested

this version as well, and found that the fat-tailed pattern is

qualitatively reproduced. The implications are different, though.

For instance, simulation time in the non-equilibrium version of the

model could be translated more directly into some function of real

time, while for an equilibrium model the association is not so

direct.

One advantage with this model is that it has a clear sociological

interpretation: the more close acquaintances a person has in a

certain group, the more likely it is that the person will choose to

become member of that group. The decision is mediated by a

contact network, which puts an emphasis on the relational

component of membership choice.

Extended SAF model
So far we have proposed a model where an individual is more

influenced to join a group the more acquaintances she has in that

group at the time. Influence is exerted via the individual’s contact

neighbourhood. But social influence can be broader than that.

Several models for social influence have been proposed, for

example regarding culture [54], opinion formation [55], informa-

tion sharing in groups [56], etc. Specifically, there is a contextual

aspect of social influence. Different settings can entail different

pressures towards homogeneity of opinions or membership [57].

We add one parameter to our model that represents the degree of

this kind of social influence, which we call contextual influence.

The key element we want to incorporate is that influence in a

certain setting is not a property of individual agents, but rather a

property that affects all the members in the mentioned context.

We assume, for simplicity, a uniform contextual influence. We

model it through a parameter of contextual influence d, with

0ƒdv?. In the limit d?0, the person does not feel any pressure

to align herself with the neighbourhood. On the contrary, in the

limit d?? the person acts solely based on the majority opinion in

her surrounding neighbourhood.

We now define the extended SAF model. The assumptions,

parameters, and variables listed before are still valid. However, the

Fluctuations in the Size of Organizations: Role of Social Influence
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time evolution is now governed by the following switching

probability:

Pi,g(t)~
~kki,g(t)dP
a

~kki,a(t)d
: ð5Þ

Setting d~1 recovers the first model. In the situation of low

contextual influence (d?0) a vertex can change its state at

random, not being influenced by the groups of the contact vertices,

while still retaining information on the possible groups she can

choose to switch to. The system configuration tends thus to a

random one. This can be thought as analogous to a high-

temperature (disordered) situation in a physical system. In the

situation of high contextual influence (d??) the vertex looks

highly upon her contacts. Configurations where the vertex is not

aligned with the majority of her neighbours become less and less

likely, and the system tends to polarize itself in domains. This is the

analogous of a low-temperature (ordered) situation, the difference

being that a physical unit does not have global information about

the total number of groups in the system.

Results

SAF model
We implement the SAF model in an Erdös-Rényi (ER)

undirected network, by Monte Carlo simulation. The size

distribution fits a log-normal distribution. The growth rate

distribution for the basic case is shown in Fig. 2A. All initial-size

bins fit a Laplace distribution. The variance decay with an

increase of S0 is also verified. Additionally, Fig. 2B plots the so-

called scaled distributions (used in e.g. [2,4,28]). Given the

function in Eq. (3), one can rescale the variables

pscal(r1DS0)~ exp ({Dr1,scalD)

r1,scal:

ffiffiffi
2
p

r1{�rr1(S0)ð Þ
s1(S0)

ð6Þ

pscal(r1DS0):
ffiffiffi
2
p

s1(S0)p(r1DS0):

Figure 1. Setting for SAF model. The vertices of the network represent individuals, and the arcs are relations of contact influence between
individuals. The network is static. An individual is for simplicity assumed to belong to one and only one organization. The size S(a)(t) of organization a
at time t is the number of vertices belonging to that group at that time. At a certain time step, the probability for an individual to switch group
depends on the group membership of its neighbourhood (highlighted in the figure). Note the loop on the individual to represent that the agent
takes into account her own membership in the decision.
doi:10.1371/journal.pone.0100527.g001
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Under this rescaling, the distributions for the different initial-

size bins should collapse onto a single curve close to the Laplace

distribution, as the figure shows.

Looking at the simulated growth-rate distributions, the upper

tail tends in general to underestimate the corresponding Laplace

curve, while the lower tail follows it more closely. We interpret this

as a consequence of working with constant N. In our model,

membership growth in one organization is done at the expense of

membership decline in the rest of the groups. This is reflected in

less frequent positive growth rates. The fit is still good because the

Laplace is a highly-peaked distribution, concentrating much of the

mass around zero, so the main deviations represent a small

fraction of the total deviation. The fact that real systems exhibit

fatter tails on both sides could be due to many factors, including

the fact that growth-rate distributions could be a superposition of

the distributions for different Ns.

We then implement the simulation with different network

properties, in order to see the impact of network structure on the

observables.

As a first change, we change the network from undirected to

directed. We do so, keeping the mean degree constant, which

implies that the number of influence arcs (incoming and outgoing)

to a vertex remains on average unchanged. The reciprocity of each

individual edge is lost, but the situation is still balanced on average,

because the arc distribution along the network is random. That is

to say, each agent on average influences and is influenced by the

same number of alters. The comparison is illustrated by Fig. 3A–B.

We can observe that the pattern is similar, both in terms of

variance and of the ranges of initial-size bins.

Next, we change the network degree distribution from ER to

scale-free (SF), again keeping the mean degree constant. The plots

are shown in Fig. 3C–D. The undirected case is qualitatively

similar, while the difference comes with the scale-free directed

case. In the latter the distributions have larger variance in all

initial-size bins, and more importantly, the higher initial-size bin

comprises a much larger size range. The SF degree distribution

appears to induce this behaviour, and our interpretation of this is

as follows. In a SF network, by definition, there will be few

‘‘popular’’ vertices, and a lot of vertices with low popularity. As

long as the influence is symmetric, the popular vertices drag its

neighbours to their groups, but after a while, the equilibrium

condition turns the tables— the high degree of a few vertices just

makes the process faster in certain moments. Imposing a directed

network breaks the symmetry. In the directed case, some popular

vertices are highly influential (they receive a lot of arcs, and

consequently them changing their group impacts many other

vertices) while other popular vertices are highly susceptible (they

radiate many arcs, but a group change is not as influential). We

understand that this asymmetry manifests itself on the dynamics,

causing the growth-rate distributions to be broader, and a lot of

peaks of high group size reflected in the higher S0 range.

The fact that both ER and SF networks are able to generate the

Laplace pattern can be interpreted in the light of the time-

evolution rule of the model in Eq. (4). In effect, it is a rule

implementing some kind of preferential attachment, with the

probability to switch group becoming greater as the vertex degree

increases.

Extended SAF model
Using the extended SAF model, we now test different contextual

influences. The analysis is done on a square lattice to facilitate the

visualization of domains of vertices belonging to the same

organization. The lattice has periodic boundary conditions, and

we use the Moore neighbourhood (q~8 nearest neighbours). We

do not lose generality by using a square lattice as an example

topology. The growth-rate statistics are qualitatively the same for

all studied topologies. In particular, for dw1, the emergence of

clusters is recovered for ER and SF as well. Thus, the regular

Figure 2. Growth-rate distribution for SAF model. (A) Growth-rate distribution. With S0 the size at one year, and S1 the size after one year, we
define the growth rate r1: log10 (S1=S0). Here we plot the conditional PDF p(r1DS0) to have a growth rate r1 given an initial size S0 , in log-scale. The
data is binned by initial-size ranges, and shown by organization type. We also plot a fit by MLE to the Laplace distribution in Eq. (3). The overall fit is
good, because that distribution carries most of its probabilistic mass in the body. (B) Same information, now in the scaled form of Eq. (6). [Erdös-Rényi
(ER) undirected network, SkT~10, N~3,000, G~60.]
doi:10.1371/journal.pone.0100527.g002
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clustering of the square lattice is not necessary to get the statistical

pattern. It is rather the coefficient d that drives the dynamics.

In Fig. 4, we plot the group spacial distribution across the

lattice, as well as the growth-rate distribution, for three values of d.

The first situation, d~0, corresponds to a situation of low

contextual influence— the system has no clear domains, the

organization assignment tending to a random uniform one. This is

reflected in the growth-rate distribution with a pattern similar to

the one encountered in the Gibrat model. The second situation,

d~1, recovers the original SAF model. The third situation, d~10,

corresponds to a situation of high contextual influence. There are

clear domains where a few organizations absorb the majority of

agents. This is reflected in the growth-rate distribution as a

collapse of all distributions on highly-peaked curves close to r1~0.

Discussion

In our study we show how individual agents, having local

information on membership alternatives and interacting with local

simple rules through their social network, can generate fat-tailed

Figure 3. Changing network parameters in SAF model. We compare the original simulation in (A), with different networks in (B–D). (B) ER
directed network. The average behaviour does not change when changing the directionality. (C) Scale-free (SF) undirected network. When changing
the type keeping the directionality, no qualitative change is observed. (D) SF directed network. The distributions get broader for all initial-size bins,
and the third one concentrates most of the sizes. This reflects the nature of a scale-free directed network, with a few vertices being very influential/
susceptible, and the majority having low degree. [SkT~10, N~3,000, G~60.]
doi:10.1371/journal.pone.0100527.g003
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macro patterns of organizational growth. In doing so, we have not

assumed any institutional constrain or external perturbation.

Rather, it is the internal dynamics of the interaction that bring the

distribution about. Individual agents are subject to contact

influence in their localized network neighbourhoods, but the

aggregation of their individual membership decisions brings about

unexpected macro-level outcomes. Sometimes, like in the case of

large values of growth rates, the consequences at the macro level

are quite extreme. This result is relevant for the design of policies

and regulations, which are usually much more grounded in

traditional approaches. Non-Gaussian patterns tend to challenge

our worldview of how a lot of processes typically work.

The growth-rate fat-tailed pattern shows up in Erdös-Rényi,

scale-free and square-lattice regular networks, both in terms of the

Laplace distribution and in the decrease of the variance with S0.

This suggests that the mechanism driven by influence-based rules

is more relevant to the pattern’s qualitative replication than the

details of network topology. Going back to our aims at the

introduction, we find then that the scale-free character of the

network is not a necessary condition to get a Laplace-like growth-

rate distribution.

Looking at the results from the extended SAF model, the

parameter region around d~1 provides a mechanism able to

replicate the system’s growth process features. When d?0, the

system has no clear group clusters, the organization assignment

tending to a random one. On the contrary, when dw1, there are

clear domains where a few organizations absorb the majority of

agents. The intermediate situation best describes the real system’s

behaviour, and is modelled as a combination of contact and

contextual influence. While the high-d situation produces stable

rich-get-richer dynamics, to the extent that single-group clusters

do not break up, in the intermediate situation the rich-get-richer

dynamics is no more stable. The situation around d~1 is also the

only one where fluctuations are different for different initial sizes.

This addresses our second aim, so that our model does not resort

to the diversification argument to generate the decreasing variance

with initial size.

The sociological interpretation of our results is that the

transition zone where the real system exists is an intermediate

situation, dominated by neither totally random behaviour nor

totally compliant behaviour. It is possible to interpret this from the

point of view of the information an agent has to have in order to

act. One way to implement the SAF model (d~1) is to think that,

at a given time step, an agent chooses a random link amongst her

neighbours, and switches to that contact’s group. Such an

implementation means that, on average, each organization a will

be picked with a probability equal to the corresponding extended

vertex degree ~kki,a of that agent. Each agent needs to know only the

group membership of the contact she last encounters, making this

situation a reasonable model of a dynamics where people

successively meet contacts without any further information. The

high-d situation demands more information, since the agent

should know the membership of all her contacts at a given time to

be able to determine which is the majority membership. On the

side of low contextual influence, choosing at random requires to

know at least how many groups there are. So the intermediate case

offers the agent a localized decision rule with minimal information

requirements. We therefore get to a realistic model without

invoking any argument of the real system being self-organized

around a critical region. The parameter d can thus be

reinterpreted as a way to weight different choice strategies, and

tuning it around d~1 recovers a case of bounded rationality [58].

Therefore, we have two interpretations for d: the degree of

contextual influence, and the tuning of membership choice

strategy. The former is external to the individual, while the latter

is internal. Both have an impact on the agent’s behaviour, and

both produce the aggregate pattern we observe empirically when

tuned around the value for the SAF model. This suggests a duality

between agent and social context, where the two views are

consistent with the statistics we observe, and compatible with each

other. We think this way of thinking exemplifies how to model one

of the core issues in sociology, i.e., the interplay between

individuality and social influence.

Further research should try to identify quantitatively how the

statistical properties of the growth-rate distribution respond to

systematic variations in both model and network parameters. For

instance, in our explorations we found that the typical size of a

group, given by N=G, seems to affect the distribution’s variance. A

significant model extension to consider would be to allow the

system size N to change in time. This variation would have to be

implemented with care in this network approach, because the

properties of the growing network should be monitored dynam-

ically throughout the simulation. Other interesting extensions

could be to incorporate community and hierarchical structure.

The possibility to belong to more than one organization is another

important point.

Another discussion concerns extensions to the parameter d. In

this study we have introduced it as a parameter quantifying the

effect of an agent’s social context. Contextual influence enters as

an exponent that weights the probability to switch group. In our

formulation, the degree of contextual influence is uniform for all

agents and constant in simulation time. There are relevant

extensions to consider. For instance, one could assume that

different types of organizations have particularities as to their

social settings, and model this with a parameter that depends on

organizational type. These different parameters can then be

related to the growth-rate statistics. Additionally, this framework of

analysis should be quite dependent on the size rage of the

organizations under study, i.e. small voluntary-oriented organiza-

tions with local range have a setting where the social networks may

dominate the dynamics, while large formal organizations have

other structural elements in place so that a direct application of

our model would not be advisable.

Finally, a better understanding of organizational growth

processes could be applicable to other processes producing similar

statistical features, from bird populations to financial and

economic systems. This being said, one should still be careful in

signaling the apparent universal presence of these common

features as evidence of the systems belonging to the same class.

On that line, it is reported that the exponent b of the variance

power-law relation, despite its value being similar for different

Figure 4. Group and growth-rate distributions for extended SAF model. We show the distributions on the right side, and on the left side
snapshots of the last time step. As the degree of contextual influence d increases, we observe how domains gradually appear. The higher the
contextual influence, the more likely is that a vertex would align herself with her neighbours. (A) d~0. Low contextual influence, random behaviour
similar to Gibrat model pattern. No domains exist. (B) d~1. Original SAF behaviour. Domains begin to appear. (C) d~10. High contextual influence.
Presence of clear domains. [Square lattice, SkT~q~8, N~10,000, G~200.]
doi:10.1371/journal.pone.0100527.g004
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systems, may not be universal. However, it is likely that different

growth processes share similarities in terms of the underlying

mechanisms driving them.
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