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ABSTRACT

Motivation: The challenge of template-based modeling lies in
the recognition of correct templates and generation of accurate
sequence-template alignments. Homologous information has proved
to be very powerful in detecting remote homologs, as demonstrated
by the state-of-the-art profile-based method HHpred. However,
HHpred does not fare well when proteins under consideration
are low-homology. A protein is low-homology if we cannot obtain
sufficient amount of homologous information for it from existing
protein sequence databases.
Results: We present a profile-entropy dependent scoring function
for low-homology protein threading. This method will model
correlation among various protein features and determine their
relative importance according to the amount of homologous
information available. When proteins under consideration are low-
homology, our method will rely more on structure information;
otherwise, homologous information. Experimental results indicate
that our threading method greatly outperforms the best profile-
based method HHpred and all the top CASP8 servers on low-
homology proteins. Tested on the CASP8 hard targets, our threading
method is also better than all the top CASP8 servers but slightly
worse than Zhang-Server. This is significant considering that
Zhang-Server and other top CASP8 servers use a combination
of multiple structure-prediction techniques including consensus
method, multiple-template modeling, template-free modeling and
model refinement while our method is a classical single-template-
based threading method without any post-threading refinement.
Contact: jinboxu@gmail.com

1 INTRODUCTION
Template-based modeling (i.e. homology modeling and protein
threading) is becoming more powerful and important for structure
prediction along with the PDB growth and the improvement of
prediction protocols. Current PDB may contain all templates for
single-domain proteins according to the seminal studies in Zhang
and Skolnick (2005a). This implies that the structures of many new
proteins can be predicted using template-based methods.

The error of a template-based model comes from template
selection and sequence-template alignment, in addition to the
structure difference between the sequence and template. At higher
sequence identity (>50%), template-based models can be accurate
enough to be useful in virtual ligand screening (Bjelic and Aqvist,
2004; Caffrey et al., 2005), designing site-directed mutagenesis
experiments (Skowronek et al., 2006; Wells et al., 2006), small
ligand docking prediction, and function prediction (Baker and Sali,
2001; Skolnick et al., 2000). When sequence identity is below 30%,
it is difficult to recognize the best template and generate accurate
sequence-template alignments, so the resultant models have a wide
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range of accuracies (Chakravarty et al., 2008; Sanchez et al., 2000).
Pieper et al. have shown that 76% of all the models in MODBASE
are from alignments in which the sequence and template share <30%
sequence identity (Pieper et al., 2006). Therefore, to greatly enlarge
the pool of useful models, it is essential to improve fold recognition
and alignment method for the sequence and template with <30%
sequence identity. Considering that currently there are millions of
proteins without experimental structures, even a slight improvement
in prediction accuracy can have a significant impact on large-scale
structure prediction and its applications.As reported in Melo and Sali
(2007), even 1% improvement in the accuracy of fold assessment
for the ∼4.2 million models in MODBASE can correctly identify
∼42 000 more models.

The alignment accuracy is determined by a scoring function
used to drive sequence-template alignment. When the sequence and
template are not close homologs, their alignment can be significantly
improved by incorporating homologous information (i.e. sequence
profile) into the scoring function. HHpred (Soding, 2005), possibly
the best profile-based method, is such a representative. HHpred
uses only sequence profile and predicted secondary structure for
remote homolog detection. It works very well when proteins under
consideration have a large amount of homologous information in
the public sequence databases, but not as well when proteins under
consideration are low-homology. A protein is low-homology if
there is no sufficient homologous information available for it in
the sequence databases (see Section 2 for quantitative definition).
Many threading methods, such as MUSTER (Wu and Zhang, 2008),
Phyre2 (Kelley and Sternberg, 2009) and SPARKS/SP3/SP5 (Zhang
et al., 2004, 2008; Zhou and Zhou 2004, 2005), aim at going beyond
profile-based methods by combining homologous information with a
variety of structure information. However, recent CASP evaluations
(Moult et al., 2005, 2007) demonstrate that HHpred actually is
as good as if not better than these threading methods. Clearly,
it is very challenging to outperform HHpred by simply adding
structure information into template-based methods. In fact, Ginalski
et al. (2005) claimed that ‘presently, the advantage of including
the structural information in the fitness function cannot be clearly
proven in benchmarks’.

This article describes a new scoring function for protein threading.
In this function, the relative importance of structure information
is determined according to the amount of homologous information
available. When proteins under consideration are low-homology,
our method will rely more on structure information; otherwise,
homologous information. This method enables us to significantly
advance template-based modeling over profile-based methods such
as HHpred, especially for low-homology proteins.

The capability of predicting low-homology proteins without close
homologs in the PDB is particularly important because (i) a large
portion of proteins in the PDB, which will be used as templates,
belong to this class; and (ii) a majority number of the Pfam (Finn
et al., 2008; Sammut et al., 2008) families without solved structures
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are low-homology (see Section 2 for exact numbers). Therefore, to
predict structure for proteins in Pfam using templates, it is essential
to have a method that can work well on low-homology proteins.
In addition, the class of low-homology proteins may represent a
substantial portion of metagenomics sequences of microbes (e.g.
Staphylococcus aureus) generated from numerous metagenomic
projects. It is very challenging to predict structure of a low-
homology protein because (i) its sequence profile is not diverse
enough to link it to remote homologs in the PDB; and (ii) its
predicted secondary structure usually has low accuracy as secondary
structure is usually predicted from homologous information.

Experimental results indicate that our method greatly outperforms
the best profile-based method HHpred and the top CASP8 servers
on low-homology proteins. Tested on the CASP8 hard targets,
our method also outperforms nine of the top 10 CASP8 servers
and is very close to the best Zhang-Server (Zhang, 2009). This is
significant considering that the top CASP8 servers use a combination
of multiple structure prediction techniques including consensus
method, multiple-template modeling, template-free modeling and
model refinement while our method is a classical single-template-
based threading method without any post-threading refinement.

2 METHODS

2.1 NEFF: measuring the amount of homologous
information

NEFF is not a new concept. It has already been used by PSI-BLAST (Altschul
et al., 1997) to measure the amount of homologous information available
for a protein. The relationship between NEFF and the modeling capability
of a profile-based method has also been studied before (Casbon and Saqi,
2004; Sadreyev and Grishin, 2004). NEFF can be interpreted as the effective
number of non-redundant homologs of a given protein and be calculated
from the multiple-alignment of the homologs. The homologs are detected in
the NCBI NR database by PSI-BLAST (five iterations and E-value 0.001).
NEFF is calculated as the exponential of entropy averaged over all columns
of the multiple-alignment, so in this sense NEFF can also be interpreted
as the entropy of a sequence profile derived from the multiple-alignment.
NEFF is a real value ranging from 1 to 20. A protein with small NEFF is
low-homology since we cannot obtain sufficient homologous information
for it from existing protein sequence databases.

The Pfam (version: 23.0) contains ∼10 000 families covering ∼75%
protein sequences in UniProt (Sammut et al., 2008). Among the ∼6600
Pfam families without solved structures, ∼90, ∼78, ∼58 and ∼33% of them
have NEFF smaller than 6, 5, 4 and 3, respectively.1 Among the ∼18 000
HHpred templates (i.e. a set of representative structures in the PDB), ∼36%
of them have NEFF <6. Later we will show that when either the sequence
or template has NEFF ≤6, our method can generate much better alignments
than HHpred. There are also ∼25% protein sequences in UnitProt not covered
by the Pfam database. Many of these sequences are singletons (i.e. products
of orphan genes) and thus, have NEFF = 1. In the foreseeable future, many
of the low-homology proteins or protein families (i.e. NEFF ≤6) will not
have solved structures. Therefore, to elucidate the structure of these proteins
(or protein families), it is important to develop a protein threading method
that can work well on low-homology proteins.

2.2 Method for protein alignment
Existing protein threading methods use a linear scoring function to guide
sequence-template alignment. A linear function cannot accurately model

1The NEFF of a Pfam family and an HHpred template is directly taken from
the HHpred web site. We can also compute NEFF using the HHpred package.

correlation among protein features, although it has been observed that many
features are correlated, e.g. secondary structure versus solvent accessibility.
A linear function fixes the relative importance of various protein features
without taking into consideration the special properties of proteins under
consideration. However, the importance of structure information is not
uniform across all threading instances. When the sequence and template
are very similar at sequence (profile) level, using structure information
may introduce noise. When the sequence and template are distantly related,
structure information becomes more important.

We have recently developed a non-linear scoring function for protein
threading (Peng and Xu, 2009). This scoring function measures the sequence-
template similarity using a set of regression trees, which take as input protein
features and output the log-likelihood of an alignment state (i.e. match or
gap). A regression tree consists of many paths, each specifying a rule to
calculate the probability of an alignment state. One path can be as simple as
‘if (mutation score <−50), then the log-likelihood of a match state is ln0.9’
or as complex as ‘if (−50< mutation score <−10) and (secondary-structure
score >0.9) and (solvent accessibility score > 0.6), then the log-likelihood
of a match state is ln0.7’. Thus, a regression tree can model the non-linear
relationship between an alignment state and protein features. Here we briefly
describe this method as follows.

Let s denote the target protein (i.e. sequence) and its associated features,
e.g. sequence profile, predicted secondary-structure and solvent accessibility.
Let t denote the template and its associated information, e.g. position-
specific scoring matrix, solvent accessibility and secondary structure. Let
X ={M,Is,It} be a set of three possible alignment states. Meanwhile, M
indicates that two positions are aligned and Is and It indicate insertion at
sequence and template, respectively. Let a={a1,a2,...,aL} (ai ∈X) denote
an alignment between s and t where ai represents the state at position i. Our
threading model defines the conditional probability of a given s and t as
follows:

p
(
a|s,t)= exp

(∑
i F

(
ai−1 →ai|s,t

))

Z
(
s,t

) .

Meanwhile, Z(s,t) is a normalizing factor and F
(
ai−1 →ai|s,t

)
is a function

that calculates the log-likelihood of the state transition from ai−1 to ai given
target and template features at position i. To model nonlinear relationship
between an alignment state and protein features, we represent F(ai−1 →
ai|s,t) as a linear combination of regression trees. Each regression tree is a
nonlinear function of protein features, so the final threading scoring function
is non-linear. This model is much more powerful than existing methods
because a state transition in this model depends on a complex function of
protein features while existing methods use only a linear function. Since
this method considers only state transition between two adjacent positions,
the optimal alignment can still be efficiently calculated using dynamic
programming.

2.2.1 Features for a match state In addition to the features (profile
similarity, secondary-structure similarity, solvent accessibility similarity and
environmental fitness score) described in our previous work (Peng and Xu,
2009), we use the following extra information to estimate the probability of
one template position being aligned to one target position.

In order to determine the relative importance of homologous and structure
information, the NEFF values of both the sequence and template are used
as features. When NEFF is large, our threading method will count more on
homologous information, otherwise on structure information.

We use the CC50 matrix developed by Kihara group (Tan et al., 2006)
to calculate similarity between the sequence and template. This matrix is a
statistical potential-based amino acid similarity matrix, originally designed
for aligning distantly related protein sequences. One element CC50[a][b] in
this matrix is the similarity score between two amino acids a and b, which
is computed as the correlation coefficient of the pairwise contact potentials
of these two amino acids.

We also use a structure-based substitution matrix (Prlic et al., 2000; Tan
et al., 2006) to improve alignment accuracy when the sequence and template
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are distantly related. This matrix is more sensitive than BLOSUM in remote
homolog detection. This scoring matrix is derived by a similar procedure as
the BLOSUM matrices (Henikoff and Henikoff, 1992, 1993) are done, based
upon the structure alignments of structurally similar protein pairs.

2.2.2 Features for a gap state The gap event is related to multiple factors.
Some studies indicate that a gap event is related to its local sequence and
structure context. For example, SSALN (Qiu and Elber, 2006) uses a context-
specific gap penalty model, in which a gap event depends on secondary
structure and solvent accessibility. Other methods, such as HHpred and
Ellrott et al. (Ellrott et al., 2007) use a position-specific gap penalty model,
which contains evolutionary information of a protein.

In our previous work (Peng and Xu, 2009), only context-specific gap
penalty is used. In this work, we use both context-specific and position-
specific gap penalty and then use NEFF to determine their relative
importance. If NEFF is large, we will rely more on position-specific
gap penalty (i.e. homologous information); otherwise, context-specific gap
penalty (i.e. structure information). To calculate the position-specific gap
penalty of a protein, we run PSI-BLAST on it (with five iterations and E-value
0.001) against the NCBI NR database and generate a multiple sequence
alignment. Then we calculate the probability of a gap event at each residue as
the ratio between the number of the gap events and the number of sequences
in the multiple sequence alignment.

For context-specific gap penalty, we estimate the occurring probability
of an insertion at the template using secondary-structure type, solvent
accessibility, amino acid identity and hydropathy count (Do et al., 2006).
In addition, we use a binary value to indicate if a residue is in the core region
or not. A core residue is usually more conserved and shall be. Similarly,
we estimate the occurring probability of an insertion at the target using
predicted secondary, predicted solvent accessibility, amino acid identity and
hydropathy count.

We train our threading model by maximizing the occurring probability of
a set of reference alignments. See Peng and Xu (2009) for a detailed account.

2.2.3 Geometric constraints When the sequence and template are not
close homologs, their alignment usually contains displaced gap opening or
ending positions. Even a single displaced gap in an alignment may result
in a big quality drop of the resultant 3D model. The template provides
some geometric information that can be used to improve alignment accuracy.
Suppose that two adjacent sequence positions are aligned to two template
positions j1 and j2

(
j2 > j1 +1

)
, respectively. Since the distance between two

adjacent Cα atoms is around 3.8 Å, the two Cα atoms at j1 and j2 should not
be far apart. To tolerate some alignment errors, we use 7 Å (instead of 3.8 Å)
as the distance threshold for such two Cα atoms. We enforce this physical
constraint when generating the optimal alignment between the sequence and
template. All the alignments violating this physical constraint is discarded.2

Our experiments indicate that by applying this constraint, we can improve
alignment accuracy dramatically for some threading instances.

2.3 Training datasets
We choose 66 protein pairs from the PDB as the training set and 50 pairs as
the validation set. The NEFF (i.e. the diversity of sequence profiles) values
of these 66 pairs of proteins are distributed uniformly between 1 and 11. This
is very important in order to avoid structure information being dominated by
homologous information. In the training set, 46 pairs are in the same fold but
different superfamily level by the SCOP classification (Murzin et al., 1995).
The other 20 pairs are in the same superfamily but different family level.
Any two proteins in the training and validation set have sequence identity
<30%. The proteins used for model training and validation have no high
sequence identity (<30%) with the proteins in the Prosup (Lackner et al.,
2000) and SALIGN (Marti-Renom et al., 2004) benchmarks and the CASP8

2The optimal alignment satisfying the physical constraint can still be
efficiently calculated using dynamic programming.

targets. We use TM-align (Zhang and Skolnick, 2005b) to build a reference
alignment for a protein pair in SALIGN.

2.4 Method for template selection
After aligning a given sequence (i.e. target) to all the templates in the
database, we need to pick up the best alignment, from which we can build a
3D model for the target. We use a neural network to predict the quality,
measured by TM-score3 (Zhang and Skolnick, 2007), of the 3D model
built by MODELLER from a sequence-template alignment and then use
the predicted quality to rank all the alignments for a given target. In this
work, we predict the TM-score using the following alignment-dependent
features: sequence identity, distribution of various per-position scores such
as mutation score, solvent accessibility score, secondary-structure similarity
score and distribution of gap sizes. In addition, we feed the NEFF values of
both the sequence and template into our neural network, in order to determine
the relative importance of homologous and structure information.

We trained our template selection method using the data set generated by
RAPTOR for both CASP6 and CASP7 targets. Tested on these targets (using
cross-validation), the absolute prediction error of TM-score is ∼0.045 on
average (data not shown). The correlation coefficient between the predicted
TM-score and the real one is above 0.9 on all alignments and 0.8 on low-
quality ones (data not shown).

3 RESULTS

3.1 Performance on public benchmarks
We tested our method on two public benchmarks: Prosup (Lackner
et al., 2000) and SALIGN (Marti-Renom et al., 2004), which contain
127 and 200 protein pairs, respectively. On average, two proteins in a
pair share 20% sequence identity and 65% of structurally equivalent
Cα atoms superposed with RMSD 3.5 Å. The SALIGN set is much
more challenging than Prosup, as the former includes many pairs of
proteins of very different sizes.

We evaluate our method using both reference-dependent
and reference-independent alignment accuracy. The reference-
dependent alignment accuracy is calculated as the percentage of
correctly aligned positions judged by reference alignments, which
are generated by structural alignment programs. To evaluate the
reference-independent alignment accuracy, we first build a 3D model
for the sequence in a protein pair using MODELLER (Sali, 1995)
from its alignment to the template and then evaluate the quality
of the resultant 3D model using TM-score (Zhang and Skolnick,
2005b). Since our ultimate goal is to predict 3D structure for a target,
reference-independent alignment accuracy is a better measurement
than reference-dependent alignment accuracy.

3.1.1 Reference-dependent alignment accuracy As shown in
Table 1, our method shows a significant advantage over the others.
The absolute improvement over our own RAPTOR threading
program (Xu et al., 2003) is at least 24%. Our method is also better
than the CASP-winning methods SP3 and SP5 by 16.5% (14.4%)
and 10.7% (7.9%) on ProSup (SALIGN), respectively. The results
of SPARKS/SP3/SP5 are taken from Zhang et al. (2008).

3.1.2 Reference-independent alignment accuracy The models
generated by our new method in total have TM-score 66.77 and

3TM-score evaluates the quality of a model by comparing it to the native
structure and yields a number between 0 and 1. The higher the number, the
better quality the model has.
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Table 1. Reference-dependent alignment accuracy (%) on Prosup and
SALIGN

ProSup SALIGN

Methods Acc Methods Acc

PSIBLAST 35.60 PSIBLAST 26.10
ContraAlign 52.79 ContraAlign 44.38
SPARKS 57.20 SPARKS 53.10
SSALGN 58.30 SALIGN 56.40
RAPTOR 61.30 RAPTOR 40.20
SP3 65.30 SP3 56.30
SP5 68.70 SP5 59.70
HHpred 69.04 HHpred 62.98
Our work 76.08 Our work 64.40

132.85 on Prosup and SALIGN, respectively. By contrast, HHpred
achieves TM-score 56.44 and 119.83 on Prosup and SALIGN,
respectively. Our method is better than HHpred by 18.3 and 10.9%
on ProSup and SALIGN, respectively. A Student’s t-test indicates
that our method excels HHpred with P-values being 3.77E−11 and
9.83E−13, respectively.

To examine the performance of our method and HHpred with
respect to the amount of homologous information, we divide the
test protein pairs in the ProSup and SALIGN sets into 10 groups
according to their NEFF values: [1,2), [2,3),…, [9,10), [10,20]. The
NEFF of a protein pair is defined as the minimum NEFF of the
sequence and template. Out of the 327 test protein pairs, 15, 26,
53, 72 and 114 pairs have NEFF smaller than 2, 3, 4, 5 and 6,
respectively.

Then we calculate the average reference-independent alignment
accuracy (measured by TM-score) of all the pairs in each group.
As shown in Figure 1, when either the sequence or template has
a small NEFF (<6), on average our method can generate much
better 3D models than HHpred. When NEFF <2, the model quality
of our method is almost 100% better than HHpred. When NEFF
<3, the model quality of our method is at least 50% better than
HHpred. Our method also performs as well as HHpred on high-
homology targets (i.e. NEFF >7). According to Skolnick group a
model with TM-score ∼0.4 can be used for functional study while
a model with TM-score ∼0.2 is almost random. This implies that
when NEFF <2, the HHpred models are almost random while our
method can generate models useable for functional study. Since
∼90% of the Pfam families without solved structures have NEFF
<6, our method can improve over HHpred on a majority number
of Pfam families. This study indicates that we can significantly
advance the modeling capability of low-homology proteins with
NEFF≤3, which represents approximately one-third of the Pfam
families without solved structures.

3.2 Performance on CASP8 targets
To further demonstrate the advantage of our method, we compare
it with the top 14 CASP8 servers (see Table 2). Among these
servers, only HHpred2, MUSTER and Phyre2 are pure threading-
based methods. Other servers use a combination of multiple structure
prediction techniques including consensus method, multiple-
template modeling, template-free modeling and model refinement.

TM-score of models with respect to NEFF
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Fig. 1. The average TM-score of the 3D models with respect to NEFF. The
models are generated by our method and HHpred on Prosup and SALIGN.

Table 2. Average TM-score of our method and the CASP8 top servers on
119 CASP8 targets with respect to NEFF

NEFF ≤2 ≤3 ≤4 ≤5 All

#targets 2 6 16 33 119
Zhang-Server 0.243 0.278 0.505 0.501 0.711
Our work 0.291 0.336 0.521 0.486 0.694
pro-sp3-TASSER 0.248 0.247 0.471 0.476 0.691
RAPTOR++ 0.264 0.279 0.491 0.469 0.683
METATASSER 0.262 0.275 0.478 0.457 0.678
ROBETTA 0.270 0.262 0.489 0.470 0.676
HHpred2 0.265 0.238 0.480 0.459 0.675
Phyre-de-novo 0.229 0.267 0.475 0.455 0.670
MUSTER 0.207 0.250 0.477 0.452 0.670
MC-REFINE 0.255 0.286 0.485 0.454 0.668
HHpred5 0.275 0.225 0.475 0.446 0.668
MC-CLUSTER 0.212 0.286 0.489 0.455 0.667
HHpred4 0.264 0.222 0.475 0.454 0.667
MUProt 0.254 0.271 0.478 0.454 0.664
Phyre2 0.258 0.254 0.473 0.448 0.653

For example, Zhang-Server (Zhang, 2009) first does a consensus
analysis of the results generated by ∼10 individual threading
programs and then refines models using distance restraints extracted
from top templates. Similar to Zhang-Server, the two TASSER
programs (Zhou et al., 2009) uses the results from two threading
programs PROSPECTOR (Skolnick and Kihara, 2001) and SP3.
Robetta (Raman et al., 2009) first generates a template-based
model using HHpred and then does model refinement. Robetta
also runs template-free modeling if a reliable template cannot
be detected. Phyre-de-novo combines the output of both HHpred
and Phyre2 and in case no good template identified, also does
template-free modeling. The three MULTICOM programs (Cheng,
2008) (MUProt, MC-CLUSTER and MC-REFINE) use multiple
threading programs, multiple-template techniques, model clustering
and template-free modeling. Our RAPTOR++ (Xu et al., 2009)
program uses three in-house threading programs and then employs
multiple-template technique for easy targets and template-free
modeling for very hard targets.

To do a fair comparison, our new threading method used the NCBI
NR and a template database generated before CASP8 started (i.e.
May 2008). We evaluated the model quality of the 119 CASP8
targets using both GDT-TS and TM-score. GDT-TS is similar to
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Table 3. Average GDT-TS of our method and the CASP8 top servers on 119
CASP8 targets with respect to NEFF

NEFF ≤2 ≤3 ≤4 ≤5 All

#targets 2 6 16 33 119
Zhang-Server 0.263 0.282 0.470 0.453 0.630
Our work 0.289 0.337 0.489 0.440 0.615
RAPTOR++ 0.272 0.297 0.468 0.431 0.608
pro-sp3-TASSER 0.260 0.268 0.446 0.427 0.607
Phyre-de-novo 0.221 0.269 0.444 0.412 0.596
ROBETTA 0.274 0.273 0.458 0.426 0.595
METATASSER 0.265 0.282 0.442 0.411 0.594
HHpred2 0.259 0.256 0.452 0.417 0.594
MC-REFINE 0.234 0.287 0.452 0.407 0.592
MC-CLUSTER 0.217 0.289 0.456 0.412 0.591
HHpred5 0.273 0.244 0.447 0.408 0.591
MUProt 0.235 0.274 0.448 0.411 0.589
MUSTER 0.213 0.260 0.449 0.408 0.588
HHpred4 0.258 0.232 0.446 0.411 0.587
Phyre2 0.254 0.276 0.446 0.407 0.571

and also highly correlated with TM-score.4 The model quality of
the CASP8 servers is downloaded from Zhang’s CASP8 website.5

We exclude T0498 and T0499 from evaluation because they have
been discussed inAlexander et al. (2007) well before CASP8 started.
Due to space limitation, we evaluate only the #1 models generated
by one.

By comparing our method with Zhang-Server, we can see
how far away our new method is from the best server in the
community, although it is unfair to compare our single-template-
based method with a modeling method using multiple techniques.
By comparing our method with the three mainly-threading-based
methods HHpred2, MUSTER and Phyre2, we can see how much
we have advanced the state-of-the-art of protein threading. This is
important since all the top CASP8 servers including Zhang-Server
heavily depend on single-template-based threading methods.

3.2.1 Performance on low-homology targets As shown in
Tables 2 and 3, if only the low-homology targets (NEFF ≤4)
are evaluated, our method outperforms all the top CASP8 servers
including Zhang-Server. In particular, when only the targets with
NEFF ≤3 are considered, our method outperforms HHpred2,
MUSTER and Phyre2 by 41.2, 34.4 and 32.3%, respectively.
When only the targets with NEFF ≤4 are considered, our method
outperforms HHpred2, MUSTER and Phyre2 by 8.5, 9.2 and 10.1%,
respectively. When only the targets with NEFF ≤3 and ≤4 are
evaluated, our method is better than Zhang-Server by 20.8 and 3.2%,
respectively. If we exclude the five easy targets6 (i.e. T0390, T0442,
T0447, T0458 and T0471) from evaluation, then our method is better
than Zhang-Server, HHpred2, MUSTER and Phyre2 by 10.5, 15.9,
14.5 and 18.0%, respectively, on the 11 hard targets with NEFF
≤4. The performance of our method on low-homology targets is
significant considering that our method is a pure single-template-
based threading method while Zhang-Server combines results from

4GDT-TS is normalized by 100 to have scale [0, 1].
5http://zhang.bioinformatics.ku.edu/casp8/.
6In this article we use the target classification by Zhang at
http://zhang.bioinformatics.ku.edu/casp8/.

Table 4. P-values of our method with respect to the top CASP8 servers on
all the CASP8 targets

GDT-TS P-value TM-score P-value

Phyre2 2.38E−10 2.05E−09
MUSTER 9.89E−07 2.62E−06
HHpred4 3.25E−05 0.000412
HHpred2 0.00032 0.00149
ROBETTA 0.000828 0.00266
MUProt 0.00128 0.000701
MC-CLUSTER 0.00347 0.000846
HHpred5 0.00547 0.00358
MC-REFINE 0.00659 0.00313
Phyre-de-novo 0.0142 0.00139
METATASSER 0.0252 0.228
RAPTOR++ 0.187 0.0620
pro-sp3-TASSER 0.217 0.681
Zhang-Server −0.00198 −0.000671

Table 5. Performance of our method and the CASP8 top servers on
25 CASP8 hard targets

GDT-TS TM-score

Zhang-Server 8.096 9.309
Our work 7.793 8.946
pro-sp3-TASSER 7.590 8.779
ROBETTA 7.413 8.407
METATASSER 7.281 8.404
MC-CLUSTER 7.248 8.250
MUProt 7.193 8.180
MC-REFINE 7.156 8.263
RAPTOR++ 7.052 7.805
HHpred2 6.824 7.763
MUSTER 6.784 7.793
HHpred4 6.749 7.784
Phyre-de-novo 6.614 7.536
HHpred5 6.605 7.517
Phyre2 6.477 7.268

∼10 threading programs and also refines models extensively. Our
new method is also better than our own RAPTOR++ program on
low-homology targets. In CASP8, RAPTOR++ uses three in-house
threading methods, a multiple-template method for easy targets and
also a template-free method for hard targets.

When all the targets are considered, our new method outperforms
all the top CASP8 servers but Zhang-Server in terms of both GDT-
TS and TM-score. A paired Student’s t-test between our method
and each of the top CASP8 servers indicates that the difference
between our method and all the top servers excluding RAPTOR++
and TASSER is significant (P<0.05), as shown in Table 4.

3.2.2 Performance on hard targets Table 5 shows the
performance of our method on the 25 hard targets. Our method
is very close to Zhang-Server on the hard targets and better than
all the other servers. In particular, our method outperforms our
own RAPTOR++ server by ∼10% on hard targets. Our method
is better than the three threading methods HHpred2, MUSTER
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Table 6. The list of 25 CASP8 hard targets and their NEFF

Targets NEFF Targets NEFF

T0397 3.6 T0474 4.3
T0409 6.4 T0476 1.5
T0419 4.8 T0478 4.2
T0421 4.6 T0480 3.0
T0429 2.6 T0482 2.9
T0443 4.8 T0484 2.5
T0460 1.2 T0489 5.0
T0462 5.6 T0495 3.3
T0464 4.2 T0496 4.6
T0465 4.2 T0504 3.5
T0466 3.5 T0510 7.6
T0467 5.5 T0514 7.6
T0468 4.2

Table 7. Performance of our method and the CASP8 top servers on
94 CASP8 easy

GDT-TS TM-score

Zhang-Server 66.872 75.303
Our work 65.354 73.619
RAPTOR++ 65.273 73.485
Phyre-de-novo 64.864 72.950
pro-sp3-TASSER 64.710 73.479
HHpred5 64.536 72.986
METATASSER 64.215 73.350
MC-REFINE 64.182 72.288
MC-CLUSTER 63.994 72.160
HHpred4 63.959 72.593
HHpred2 63.925 72.566
MUProt 63.771 71.975
ROBETTA 63.445 72.004
MUSTER 63.191 71.919
Phyre2 61.474 70.430

and Phyre2 by 14.2, 14.9 and 20.3%, respectively. Among the 25
hard targets, our method is better than, worse than and comparable
to Zhang-Server on 10, 13 and 2 of them, respectively. It is not
unexpected that our method performs well on hard targets since
many of them are low-homology, as shown in Table 6. If the targets
with NEFF ≥5 are excluded, the difference between our method
and Zhang-Server will further reduce.

As shown in Table 7, our method is better than HHpred2,
MUSTER and Phyre2 by 2.2, 3.4 and 6.3%, respectively, on the
94 easy targets. Zhang-Server is better than our method, partially
because Zhang-Server uses multiple templates to model an easy
target. By using multiple templates for a single target, it is possible
to generate a model with accuracy higher than any single-template-
based models.

4 DISCUSSION
Homologous information is very effective in detecting remote
homologs, as evidenced by the profile-based method HHpred, which
performed better than or as well as several top threading methods in

recent CASP events. This paper proposes a new threading method
and shows that homologous information is not sufficient for low-
homology protein threading. In particular, when NEFF ≤6 we
can improve alignment accuracy over profile-based methods by
using more structure information. Our experimental result indicates
that our method outperforms all the top CASP8 servers on low-
homology targets (NEFF ≤4). Our method also performs well on
both the CASP8 hard and easy targets and is slightly worse than
the best CASP8 server. This result is encouraging considering that
the top CASP8 servers use a combination of multiple techniques
to do structure prediction while our method is only a classical
single-template-based threading method. Our method is clearly
better than several threading-based methods such as MUSTER,
HHpred and Phyre2 on both low-homology and hard CASP8
targets.

The capability of predicting structures for low-homology proteins
is very important. The Pfam database contains ∼6600 families
without solved structures. To predict structures for these families, we
have to rely on templates remotely similar to these families. A simple
statistics shows that ∼33, 58 and 90% of the 6600 Pfam families
have NEFF <3, 4 and 6, respectively. In our current template
database, approximately one-third of the templates have NEFF <6.
Therefore, if we align the 6600 Pfam families to our templates one-
by-one, around 93% of the threading pairs will contain at least one
protein with NEFF <6. This is surprising given that the NCBI NR
sequence database currently contains millions of protein sequences.
Along with the NCBI NR growth, the NEFF values of the Pfam
families are also likely to increase. It will be interesting to study
how fast the NEFF values will increase.

The percentage of low-homology proteins in CASP8 is much
smaller than that in Pfam. Only 16 (13.4%) and 43 (36.1%) of
the 119 CASP8 targets have NEFF <4 and 6, respectively. That
is, the CASP8 targets are biased towards high-homology proteins.
This is not unexpected since the CASP organizers obtain most of
the targets from the worldwide structure genomics centers. These
centers tend to solve structures for the targets in a large Pfam
family to maximize the number of sequences within (homology)
modeling distance of the structures in the PDB. A large Pfam family
contains many proteins and thus, is more likely to have a large
NEFF.

Our data also show that most CASP8 hard targets are low-
homology. This is reasonable since it is very challenging to
predict structures for a low-homology target. However, not all low-
homology targets are hard. We can easily predict structures for
low-homology targets (i.e. T0471, T0458, T0447, T0442 and T0390)
as long as they have good templates. The major challenge we are
facing now is to identify the best template for a given target. As long
as the best template can be identified, we can generate a reasonable
alignment as shown in Figure 1.

Since our new threading method demonstrates its superiority
over other similar methods such as HHpred, MUSTER, Phyre2
and SP3/SP5, in particular on low-homology targets without close
homologs in the PDB. A natural extension of this work is to
incorporate our new method into Zhang-Server to see how much
we can advance the state-of-the-art of protein modeling.
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