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In.To. COVID-19
socio-epidemiological co-causality

Elroy Galbraith?, Jie Li'2, Victor J. Del Rio-Vilas® & Matteo Convertino* 5"

Social media can forecast disease dynamics, but infoveillance remains focused on infection

spread, with little consideration of media content reliability and its relationship to behavior-driven
epidemiological outcomes. Sentiment-encoded social media indicators have been poorly developed
for expressed text to forecast healthcare pressure and infer population risk-perception patterns.
Here we introduce Infodemic Tomography (InTo) as the first web-based interactive infoveillance
cybertechnology that forecasts and visualizes spatio-temporal sentiments and healthcare pressure
as a function of social media positivity (i.e., Twitter here), considering both epidemic information and
potential misinformation. Information spread is measured on volume and retweets, and the Value

of Misinformation (VoMi) is introduced as the impact on forecast accuracy where misinformation

has the highest dissimilarity in information dynamics. We validated InTo for COVID-19 in New

Delhi and Mumbai by inferring distinct socio-epidemiological risk-perception patterns. We forecast
weekly hospitalization and cases using ARIMA models and interpolate spatial hospitalization using
geostatistical kriging on inferred risk perception curves between tweet positivity and epidemiological
outcomes. Geospatial tweet positivity tracks accurately ~60% of hospitalizations and forecasts
hospitalization risk hotspots along risk aversion gradients. VoMi is higher for risk-prone areas and
time periods, where misinformation has the highest non-linear predictability, with high incidence and
positivity manifesting popularity-seeking social dynamics. Hospitalization gradients, VoMi, effective
healthcare pressure and spatial model-data gaps can be used to predict hospitalization fluxes,
misinformation, healthcare capacity gaps and surveillance uncertainty. Thus, InTo is a participatory
instrument to better prepare and respond to public health crises by extracting and combining salient
epidemiological and social surveillance at any desired space-time scale.

“Not everything that can be counted counts and not everything that counts can be counted”
Albert Einstein.

COVID-19 and infoveillance. The spread and magnitude of COVID-19 is reflected in social media pro-
duction and sentiments with the lowest ever recorded trend in population positivity (see the Hedonometer at
https://hedonometer.org/timeseries/en_all/). Not only are social media messages the saddest they have been since
happiness monitoring began (see Dodds et al.!), but the volume of misinformation has grown exponentially>>.
These observations provide evidence of the relevance of socio-technological systems like social media to predict
epidemiology. Empirical evidence for many diseases before COVID-19 and previous analytical findings made
clear the linkage between risk perception and infection patterns*; thus, highlighting the co-causality of social and
epidemiological information beyond their predictability.

Aware of these linkages, global response to COVID-19 by health authorities includes risk communication
messages, e.g. on increasing social distancing and using masks to reduce inter-person transmission. Similarly,
messages on enhancing early identification, isolation and care for patients all in a bid to “flatten the curve” shed
light on the importance of surveillance and public health capacities®. The search for social surveillance tools that
could help public health officials to monitor, forecast, plan, evaluate and prepare for public health demand started
well before COVID, e.g. with seasonal influenza in USA coupled to predictive multimodeling (see Paul et al.?,
Santillana et al.” and McGowan et al.8), due to the recognition of the limitations—e.g. delays, misreporting—of
traditional epidemiological surveillance systems. In analogy, social media signals are also used to forecast, a priori
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or in near real-time, extreme environmental phenomena such as earthquakes’, which highlights the relevance
of temporal and spatial social media for surveillance.

Concurrently to the spread of COVID-19 epidemic, health authorities are combating an infodemic, strictly
defined as the rapid exponential increase in the volume of potentially misleading information about an event'.
Misinformation, considered as objectively false or inaccurate information, is of difficult detection and classifica-
tion because it is highly affected by perception bias. Misinformation can tangibly and negatively impact response
strategies and health-seeking behaviors''>!* which may lead to increased infections and hospitalization. Against
this background, infodemiology and infoveillance'* are strong public health responses to the COVID-19 pan-
demic and its simultaneous infodemic. Infodemiology is the study of the emergent volume, spread, and quality
(among other features) of socially-produced information—both accurate and inaccurate—usually related to
public health. Infoveillance is the surveillance of such social information with health saliency, with the additional
aim of detecting and forecasting disease outbreaks that is also the core aim of traditional epidemiological surveil-
lance by using epidemiological data'®. Both disciplines take behaviors and messages (in text, image, video and
sound data) on electronic media, such as the internet as their focus of analysis, along with additional data such
as metadata and message sentiments extracted from the primary information. Prior to COVID-19, scientists
have been able to use internet dynamics and message sentiments measured as categorical emotions to monitor
public health related phenomena and forecast disease spread'>!®!*17!%7_Our work improves on the previous by
incorporating a model and information system that uses social media sentiments to forecast sentiments as con-
tinuous variables and healthcare pressure (cases and hospitalization) together, over space and time; we combine
epidemiology and information patterns, and quantify the effective impact of information, and misinformation
alike, on populations.

Information-prediction nexus. A different perspective on public health forecasting is brought by propos-
ing an assumption-free minimalist model that is focused on patterns rather than processes of the phenomena
considered. The employed information-theoretic models (perfectly fitting the general aims of infoveillance) are
using the necessary and sufficient social data as sentinels of change, coupled to epidemiological information,
to maximize prediction accuracy for the patterns investigated. Information theoretic models like the one pro-
posed here are the least biased models (mechanisms-free) for capturing which set of information is relevant for
predicting patterns. Other underlying causal factors, such as local language and socio-environmental factors of
the population considered, are certainly important in the domain of physical reality but not in the information
domain of predictions. Therefore, the focus is on predictive causality rather than true causality'®; a principle that,
however, should be associated to any model considering the fundamental reality of any model as a microscope
of reality rather than its utopian replica.

With the aforementioned reasoning in mind, social and epidemiological processes (and yet data about them)
are linked by information and misinformation that is revealing patterns of people behavior in terms of sentiments
(informative of risk perception) and cases, respectively. Additionally, strong predictive causality in process-
related variables has been shown to coincide with physical causality; yet, computation that screens and weights
information can be used to infer co-causality between two signals robustly, without imposing any assumption
a priori on model structure.

In the current COVID-19 context, we are interested in knowing whether modern social media are predictive
of explosive epidemics, and more precisely which social chatter features are the most predictive of epidemiologi-
cal patterns. Moreover, whether social chatter features can be accurately used as early warning predictors of risk
before cases occur, and how early can forecasts be made. Motivated by these questions we developed InTo as an
exploratory tool to quantify how much perceived risk inferred from social chatter in advance was predictive of
actual observed risk in cases and extreme cases (or hospitalization) reported by official public health surveillance.
This modus operandi and modern infoveillance tool, beyond assessing how much waves in socio- and health-
scapes copredict each other via joint “infoscapes”, can validate classical surveillance systems (which provide
data that are byproducts of behavioral models, oftentimes affected by strong bias) considering the temporal
gap between model and data for multiple surveillance criteria®®. Theoretically, the smaller the gap over time the
higher the surveillance accuracy.

InTo: infodemic tomography. Infodemic Tomography (In.To. or InTo hereafter) was developed as a
cybertechnology to forecast one week in advance COVID-19 related cases, hospitalizations, population positiv-
ity, misinformation impact and spreading, healthcare satisfaction and space-time surveillance uncertainty by
leveraging geospatial Tweets and epidemiological data in New Delhi and Mumbai as case studies. InTo analyzes
and visualizes “tomograms’, as snapshots of epidemiological and information dynamics, for the selected geog-
raphies. Thus, InTo is proposed as a pattern-oriented Digital Health platform for Participatory, Predictive, Per-
sonalized, Preventive and Precise Health (“P5”), that is an “upgrade” with respect to the “P4” purview of health,
such as in Alonso et al.?!, via the precise identification and provision of systemic health-related information to
individuals and populations alike. Weather forecasting is the general epitome of InTo considering its focus on
predicting patterns of healthcare pressure as a function of dynamically updated information; thus the InTo dash-
board is ideally like an App visualizing the most updated weather forecasts.

Previous efforts have focused on internet-based social media for incidence surveillance and outbreak
forecasting?. Some of these efforts incorporated hospital visit data in their models* but none of them coupled
social and epidemiological or healthcare information together. Other process-based models, e.g. Kastalskiy
et al.*, have numerically explored the linkage between social stress and COVID-19 infections, but these models
explored hypothetical mechanisms through assumed analytics that is not inferred a priori from assumption-free
models. Therefore, prediction accuracy of these models is not a "gold standard” to claim their representativeness
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of real processes. InTo goes beyond temporal incidence predictions because it aims to investigate changes in
socio-epi patterns over time and space, and the value of spatial “social chatter” by dynamically calibrating
the model as data from social and epidemiological surveillance is updated. Note that InTo does not make any
assumption but the choice of the model (e.g. ARIMA) is based on inferred socio-epidemiological relationships.
In this optic and in relation to the early forecasting nature of InTo, the predicted hospitalization is informative
of people potentially in need of hospitalization one week in advance. Gradients of hospitalization over space are
indicative of patient hospital loads. In an hydroclimatological analogy, gradients of healthcare pressure are like
gradients in atmospheric pressure dictating where ill people/rain will likely flow, and exceedance of pressure
over healthcare capacity are like floods.

Considering previous efforts, InTo is the first cyberinfrastructure to forecast COVID-19 specific healthcare
pressure (as difference between point- and city-scale predicted cases and hospitalization) as a function of text
positivity where the latter is a variable quantifying potential happiness in words shared via social media, i.e.
Twitter in this context. Although InTo is not the first to examine the relationship between Twitter sentiments
and diseases, previous efforts were based on extracting few categorical emotions or using volume of social media
entries as predictive functions'®?>?%?’. InTo instead is the first effort, set of models and participatory dashboard
to use quantitative measures of continuous sentiments (associated also to potential misinformation) as positivity
to forecast healthcare pressure over space and one week in advance, coupled to the evaluation of those forecasts
within an information-theoretic framework.

In the development of InTo we chose to call happiness, introduced by Dodds et al.. as positivity because it
is semantically a more general word that does not imply happiness (strict sensu) and relates more effectively to
risk behavioral patterns (related to the objective relative risk conditional to the geographical area considered),
at least conceptually. Gradients in positivity as a function of cases or hospitalizations define risk perception pat-
terns on which predictive models are calibrated to produce forecasts. Linear predictive models (selected upon
linear socio-epidemiological relationships inferred on weekly data) are used to perform infection case and
hospitalization forecasts whose predictive power is tested via non-linear predictability indicators (i.e., Transfer
Entropy, TE, measuring the time-delayed uncertainty reduction between positivity and epidemiological infor-
mation (see Li and Convertino®® for details of TE as information flow), as discussed in the Material, Methods
and Implementation section). These indicators are based on probability distribution functions of the variables of
interest and yet they implicitly consider uncertainty distributions that are also attributable to other unexplained
uncertainty sources. In this broad framework, properly calibrated positivity fluctuations are good sentinels of
relative hospitalization risks—and yet good predictors—as much as heat index fluctuations are good sentinels
of extreme temperature hospitalization®, to mention an analogous public health effort focused on detecting
optimal indicators for risk communication.

The paper presents the workflow in Fig. 1 and implementation of InTo by using the case study of New Delhi
and Mumbai to demonstrate its applicability and utility for COVID-19 and in general for any disease. Part of
the demonstration includes results of validation exercises conducted to evaluate the developed models. We then
discuss limitations of InTo, especially in terms of data availability, representativeness and model complexity. We
conclude by outlining future work for InTo.

Case study results

Here we present InTo as an infoveillance system for the case of New Delhi and Mumbai during the COVID-19
pandemic between April and July 2020. New Delhi is chosen as the prototypical city to display because of its
highly coupled social and epidemiological dynamics as empirically found from data (see Figs. 2, 3, 4, 5, 6). We
included Mumbai to explore the external validity of our system when applied to a different city (see Supp. Figs. 1-
4). In InTo, once the user selects their city of interest, results of analyses are displayed as a series of visualizations
divided into four main sections corresponding to tabs of the dashboard: Healthcare Pressure, Emotions and
Misinformation, Predictability and Tweet Spread (Figs. 2, 3, 4, 5, 6).

Healthcare pressure. The layout and meaning of the Healthcare Pressure tab is displayed in Figs. 2 and
3, respectively. In Fig. 8 we present the results of using positivity from all tweets to forecast daily new hospi-
talization and daily new cases. Spatial forecasts related to misinformation are not shown spatially. The numbers
displayed on the top of the dashboard refer to expected new hospitalization and hospitalization change from
ARIMA (Eq. 5.3) for the entire city. Figure 3 illustrates, for New Delhi, how healthcare pressure Hp, can be
interpreted as spatial gradients of hospitalization (meaningful of potential mobility gradients of people in need
of hospitalization mediated by the presence of healthcare facilities), which is calculated as the difference between
locally expected hospitalization and average hospitalization (E.q. 5.8). Hp, is visualized in a green-red color shade
(where red is for the highest Hp,) for M randomly generated points (10,000) over the city which are interpolated
using the geokriging model (Egs. 5.4-5.7) using the semivariogram of positivity. Positivity fluctuates around the
same city-specific mean, while cumulative hospitalization grows exponentially over the course of the epidemic.
Theoretical Gaussian and exponential variograms were the best fit for positivity and for cumulative hospitaliza-
tion, as expected considering their time dynamics (left plots in the dashboard in Fig. 2). The area encompassed
by each point is in the range 0.5-1.0 km?, depending on the spacing between points; thus, our forecasts provide a
high spatial resolution compared to other surveillance systems. The total number of hospitalizations in a selected
area can be calculate as sum of new hospitalizations for all the points in that area. Figure S1 shows healthcare
pressure for Mumbai.

For example, the user is shown that in New Delhi between April 15 and July 30 public positivity cap-
tured from COVID-19 related tweets ranged between 5.6 and 6.0 with a slight downtrend from 5.85 at
the beginning of the period to 5.73 at the end. Meanwhile, there was a trend reversal in new cases and the
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Figure 1. Conceptual and computational workflow of InTo. The process begins with downloading both

social media content and epidemiological data. Social media data is then disaggregated into content related to
healthcare and misinformation, with the aggregated content retained for analysis as well. As for epidemiological
data, the dashboard makes use of hospitalization and cases data for the disease considered. The next process

is the extraction of features from social media content: for each subset, bi-grams, count information and
sentiments are quantified. Metrics quantifying the relationships between sentiment and epidemiological data
are then calculated. Once the linear regression coefficients are estimated (considering the linearity found at
the weekly scale between positivity and hospitalization as well as cases; however further non-linear models
can be used), these are used to forecast the spatial and temporal variation of healthcare pressure, which is then
visualized for users on the dashboard. To illustrate the process and output of InTo we examine the case of New
Delhi and Mumbai in India.
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cumulative hospitalization, with new hospitalizations showing an increase in the magnitude of fluctuations closer
to the end of the period. Positivity was at its lowest in June when cumulative hospitalizations was at its highest
but positivity was highest in July when hospitalization began to increase again. By using the linear relationship
between hospitalization and positivity (see ARIMA model at Eq. 5.3), on July 30th we predicted the next week’s
hospitalization to decrease by 381 hospitalizations (i.e. new hospitalizations displayed in the left plot of the
dashboard), and cases to increase by 549. Cumulative hospitalization and cases were about 20,000 and 1500 on
July 30th (left plots in the dashboard). Considering the spatial distribution of positivity and hospitalization in the
two weeks before forecasting, via geostatistical kriging we forecasted two large clusters of hospitalization in the
North-West and South-East and a smaller cluster in the center of New Delhi. In the high healthcare pressure areas
colored in red, we estimated that there would be almost 200 new individuals in need of hospitalization (see color
bar in the dashboard screen). The 200 newly predicted hospitalizations displayed in the dashboard constitute the
peaks above the average (or the maximum healthcare pressure) in the entire city. The average is ~12 according
to the geokriging, and that corresponds to the ARIMA average shown on the top of the dashboard (see Fig. 2).
The average new hospitalizations matches matches very closely the observed hospitalizations from surveillance
(i.e. 11). Note that ~200 hospitalizations are for few areas in the city and these extreme values are well above the
average value for the period considered. For New Delhi, considering these results for the week displayed, hos-
pital managers may wish to focus their attention to the North-West and South-East areas of New Delhi (lacking
healthcare capacity as displayed by the geolocated and visualized hospitals in Fig. 2) where individuals in need of
hospitalizations are potentially looking for treatment in other areas, and thus establishing hospitalization fluxes.

In Mumbai (Fig. S1), between mid-April and early-August 2020, tweet positivity from COVID-19 related
tweets ranged between 5.6 and 6.1, but trended downwards over the period from 5.9 at the beginning to the 5.8
by the end. This downtrend occurred as new hospitalizations and cumulative cases increased, with large fluctua-
tions in positivity coinciding with large fluctuations in new hospitalizations. Positivity was at its lowest in August
when cumulative cases was at its highest, and new hospitalizations ended a downtrend and restarted increasing.
We forecasted an increase of 140 new hospitalizations and over 2000 new cases for the week following August
8. At that time, cumulative hospitalizations and cases were 500 and 30,000 respectively. The spatial forecasts
identified three clusters of cases hospitalizations located in the South, North, and East of Mumbai, with as many
as 400 new individuals potentially in need of hospitalization. The cluster to the North appeared to have many
more facilities to deal with the coming need than the cluster in the South and East (hospitals are indicated by a
red H retrieved from a Google Map search of “hospital”). Consequently, managers could focus more resources
to the north and east to maintain service levels.

Emotions, top words, and misinformation. In the Emotions and Misinformation tab (Fig. 4), emo-
tions—from emotion inference algorithms (see Sect. 5.3)—are extracted from the systemic information (all the
tweets), misinformation-related tweets, and healthcare-specific tweets throughout the epidemic. Tweets for each
category are reported on the right of the tab and some of these tweets can be directly reported to InTo as mis-
information by social media (Twitter) users. Below we report results that can be inferred by using InTo, such as
specific events, word pairs, users and associated emotions for New Delhi and Mumbai. These emotional catego-
ries were not included in the forecasting process, but assist users with interpreting high or low positivity scores.

In New Delhi, when considering all tweets, the dominant emotion over time was trust, followed by fear and
anticipation; joy and sadness were the next most frequent; surprise and disgust were expressed the least. This
distribution was observed for the subset of tweets related to misinformation as well; however there was one day,
June 10th, when these tweets expressed more fear than they did trust. Tweet positivity was low on this day (see
Fig. 2). As for tweets related to healthcare, trust was usually most expressed, but it was not as dominant as in
the case of all tweets or misinformation. Furthermore, sadness seemed to be expressed much more among these
tweets, especially in early June. June 10 was the saddest day considering healthcare tweets. On July 22nd, the most
frequent pairs of words referenced were about “public health advice” and “self-quarantine at home”. A review of
the raw tweets showed that many of the tweets were actually tweets of news articles made by organizations rather
than individuals. Such tweets tended to be “neutral” in their positivity (i.e. centered around 5 without an increas-
ing or decreasing trend), with values ranging between 4 and 6. This emphasizes the tendency of organizations,
versus individuals, in manifesting risk-neutral perception patterns corresponding to average values of positivity.

In Mumbai (Fig. S2), the dominant emotion in the unfiltered set of tweets was trust, following by fear and
anticipation; surprise was least abundant. A similar pattern was observed for tweets about healthcare, but the
misinformation tweets appeared to harbor more sadness and fear. The top words in Mumbai referenced govern-
ment advisories for social distancing and testing. Tweets with the lowest positivity were about a suicide believed
to be associated with the societal stress (isolations, job losses, deaths, etc.) associated with the pandemic. Among
the healthcare tweets were many messages related to increased testing at the facilities, but that those found posi-
tive were being sent home to quarantine nonetheless. The misinformation tweets largely contained accusations
or identifications of false claims being spread on Twitter, and other social media platforms like Facebook, as yet
unfulfilled promises of the government.

Predictability and forecasting. Predictability indices (Sect. 5.5) are reported in the Predictability tab
(Fig. 5) for both cases and hospitalizations as values over 100; yet, percentage changes are easily quantifiable.
These metrics aid users in monitoring the accuracy of the model using all tweets and only misinformation-
related tweets, as well as the value of misinformation-related tweets. The risk index in particular will show the
same trend for the full tweet and misinformation-related datasets because it is based on the same data (the time
series are reported twice to compare infection and hospitalization trends against systemic information and mis-
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information indices). A model-based risk indicator can be calculated to visualize the risk in terms of predicted
values rather than data only.

For New Delhi, the risk index confirmed that cases were declining over time, despite momentary increases.
Between May and June tweet positivity was under-predicting cases but then began to over-predict cases in July.
Tweet positivity and cases showed a mostly moderately negative correlation (mean corr= —0.24). Although the
value of the correlation was constant, suggesting a reliable model or stable dynamics, predictability was not stable
until late June, when the predictability indicator became very small indicating lack of non-linearity, and thus
implying high reliability in the linear forecasting of cases via the ARIMA model. All results suggest that tweet
positivity from all downloaded tweets was most meaningful for forecasting the spatio-temporal spread in July,
with relatively high uncertainty earlier. July has the highest correlation coefficient (in magnitude), lowest gap and
non-linear predictability, as well as the lowest VoMi (Eq. 5.13). The subset of tweets related to misinformation
showed a similarly negative though much weaker correlation with cases (mean corr = —0.01). This is concordant
to the much higher non-linear predictability of misinformation manifesting the decreasing forecasting accuracy
of ARIMA for this tweet subset. When considering all tweets, the model mostly under-predicted hospitaliza-
tions in New Delhi, with its largest under-prediction occurring in late June after hospitalization became the
largest in the end of May (bottom left plot of Fig. 5). The largest over-prediction was observed in late July after
hospitalization risk became very large. Yet, very large spikes in risk seemed to produce very large gaps in pre-
dictions. These large gaps are driven by misinformation as shown by the VoMi assessment that is higher at the
end of the monitored period. The value of misinformation (Eq. 5.13) showed a gradual uptrend, indicating that
tweets related to misinformation were decreasing the forecasting accuracy (based on linear correlation) of all
tweets for cases and hospitalization as time progressed. Tweet positivity was mostly negatively correlated with
hospitalization but predictability was low, especially for hospitalization.

For Mumbai (Fig. S3), the risk index displayed a decline in cases between the beginning and end of the period,
while the hospitalization risk remained relatively stable, notwithstanding the decline closer to the end of the
period. The accuracy of the model when predicting all cases trended upwards as indicated by the uptrend in the
gap index, which varied around zero, slightly under-predicting cases. The predictability index when forecasting
hospitalization was stable for the entirety of the series; it trended downwards until July, when it stabilized as well.
Positivity was negatively correlated with cases (mean corr. ~ —0.3). Using the positivity from all tweets tended
to under-predict hospitalizations, despite two periods of relatively large over-predictions in May and July; the
gap between predicted and observed hospitalizations was mostly close to zero. These large over-predictions
coincided with spikes in the VoMI index, implicating the misinformation-related tweets as the source of this
inaccuracy. Tweet positivity showed a slightly negative correlation with hospitalizations (mean corr. ~ -0.01),
with a predictability of index very close to zero indicating high linearity between positivity and hospitalizations.

The results from both cities underline the fact that there is more linearity between new hospitalization and
positivity than cases and positivity, such that the ARIMA forecasts are more reliable for new hospitalization.
Despite this average result we observe that larger fluctuations in indicators are seen for hospitalization than cases,
likely underlying the necessity to include other predictors for extreme hospitalization events. Lastly, time series
of indicators for all tweets and misinformative tweets are quite similar due to the low detection of misinforma-
tion; nonetheless time-point values are different as manifested by VoMi because misinformation, although small,
exist and impact forecasts.

Tweet spread. The Tweet Spread tab (Fig. 6) shows the volume of tweets and retweets, as well as their posi-
tivity, for the systemic information and misinformation set. Users are also able to identify the most popular tweet
from the full set and the misinformation-related subset.

There were between 10,000 and 100,000 tweets per week related to COVID-19 in New Delhi. The volume
of retweets was much lower in comparison, not exceeding 10 retweets, and had positivity values approach 6
meaning they were more positive than the average neutral value of 5. Additionally, both tweet volume, retweets
and positivity are slowly decreasing over time which manifest the lower COVID information production and
decreasing positivity. The number of misinformation-related tweets was the highest in the early days of the
pandemic descending relatively rapidly as time progressed. The retweet volume was very low compared to the
full tweet set (the difference is about three orders of magnitude) and most of the popular misinformative tweets
had low positivity.

From Mumbai (Fig. S4) we observed between 1000 and 100,000 COVID-19 related tweets per weeks, with
less than 10 retweets per week measuring between 5.7 and 5.9 positivity. The misinformation set contained
between 10 and 400 tweets per week, with less than 5 retweets per week of positivity 5.0 to 5.4. The number of
misinformation related tweets was highest in May and mid-June.

The most popular misinformation-related tweets underline the fact that misinformation is not necessarily
carrying deceiving information but also information about perceived wrong behavior in populations. Thus,
misinformation can capture more the dichotomy between common and divergent groups in the area analyzed.
Additionally, the large difference in volume of all tweets (~ 10°) and misinformative tweets (that are less than 103,
two orders of magnitude less than all Tweets) explains why time series dynamics of predictability indicators for
the systemic information and misinformation predictors (Fig. 5) is very similar but time point values are different.

Model calibration and validation. Results of the model validation over space (for the optimal predictor
set) are displayed in Fig. 7. Plot A shows the forecast of spatial hospitalization based on geospatial tweet positiv-
ity and city scale hospitalization. Predicted hospitalization based on Tweet positivity suggested there would be
high hospitalization pressure Hp (Eq. 5.8) in areas, such as Narella, Gurugram and Dwarka (SW part of the city),
which were unaccounted for by the monitoring system just focused on bed occupancy (and yet on models based
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City H, I Vi R b, corr(P, H) VoMi
New Delhi 100 1000 10,600 9 5.75 —0.5 0.00
Mumbai 500 1250 10,500 10 585 —0.1 0.10

Table 1. Average socio-epidemiological values for the New Delhi and Mumbai. Average weekly values for
hospitalization H, cases I, tweet volume, retweet and positivity (V, R, and P), as well as Pearson correlation
between positivity and hospitalization. Average VoMi also provided. The Pearson correlation is proportional
to the first regression coefficient of the ARIMA forecasting model and the geokriging factor of hospitalization
predictions. The higher corr (P, H) the higher the potential risk aversion for the city (areas and time periods)
considered. It is empirically observed that the higher the risk aversion the lower the social (Twitter) generation
of information and the healthcare pressure defined by combined case and hospitalization magnitude. VoMi

is expected to be higher for less risk-averting city areas (and time periods) with higher incidence (thus
misinformation is more predictive of cases and hospitalization) and these areas/time periods should appear
more local in terms of circulating information.

on that occupancy shown in plot C and D). The highest peak of Hp is 160 and the average of healthcare pressure
over space is very close to the average of hospitalization at the city scale. However, the geographical distribution
of healthcare pressure is different from the distribution of hospitals because geokriging is extending spatially
the positivity-hospitalization relationship (that shows an inverse proportionality between these variables) that
is beyond hospital locations. Nonetheless, tweet locations highly predict hospital locations as binary variables
(Fig. 7B).

When performing interpolation via geokriging based on hospital-scale data alone (Fig. 7D), high hospitaliza-
tion was predicted in the center of the city, with gradients of hospitalization decreasing outwards. This predicted
hospitalization reflects (~ 80%) the distribution of bed occupancy as expected. The predicted hospitalization
considering hospital-scale occupancy and positivity (Fig. 7C) matches 85% the hospitalization based on hospital
data only (Fig. 7D). The former is however predicting higher hospitalization in other areas beyond hospital areas,
and this emphasizes the fact that the model is also predicting healthcare pressure as individuals likely in need
of hospitalization. Note that the range of hospitalization for predictions of plots C and D in Fig. 7 are the same
with maximum cumulative hospitalization equal to ~65 for the period 21 July-11 August 2020.

Figure 8 shows the calibration and validation of the ARIMA model which is useful for selecting the optimal
set of predictors. The results of ARIMA forecasts with different models in terms of predictors are shown for cases,
cumulative and new hospitalizations for New Delhi. ACF is ARIMA based on epidemiological data only, while all
other ARIMA models are based on positivity, Tweet volume, Tweet volume and positivity combined. The model
that minimizes the mean absolute percentage error (MAPE, in insets) is based on positivity only because of its
highest predictive power for fluctuations in healthcare pressure (cases and hospitalization). However, the model
with volume and positivity has similar MAPE because of the ability of volume to predict the largest extreme
variations in hospitalization. MAPE is larger for new hospitalization than cumulative hospitalizations due to the
larger stochasticity of the former than the latter over time. The departure of forecasted values from observations
is the gap index in the dashboard (Fig. 5).

The (p, d, q) parameters of the ARIMA model (Sect. 5.4.1) manifesting seasonality, memory and fluctuations
are on average [0, 1, 1] for all models including ACE, [0, 1, 2] toward the end of the monitored period that high-
lights the increase importance of fluctuations, and [1, 1, 2] for volume and positivity that highlights the higher
seasonality of tweet volume and ability to capture larger extremes. (p, d, q) parameters increase if misinforma-
tion is used when predicting hospitalization and cases, and this is in synchrony with our findings that evidence
how non-linear predictability (via TE) increases because of the higher memory due to long-range time-delayed
effects of misinformation. Average results of social and epidemiological variables for New Delhi and Mumbai
are in Table 1 considering different city areas and time periods.

Discussion

We have demonstrated the use of InTo to calculate tweet positivity to forecast and predict the spatio-temporal
spread of COVID-19 healthcare pressure. However, the model can be applied to any disease or public health
phenomena of interest via properly tuning the forecasting models. In New Delhi we inferred that the population
was relatively positive in the messaging, expressing mostly trust, despite the high case load and hospitalization.
This weak negative correlation manifesting risk aversion—due to the expected decrease in positivity for increases
in hospitalization—was statistically useful for predictability purposes considering both geostatistical kriging and
ARIMA models that use correlation values (Egs. 5.3. and 5.7).

We showed that hospitalizations could be expected to concentrate in certain areas of the city, suggesting those
clusters to be the focus of additional public health surveillance and healthcare resources since new hospitaliza-
tions may occur. We found that misinformation does affect the accuracy of the model and provides another
illustration of the impact of misinformation: it can impact even our ability to properly forecast healthcare pres-
sure but not necessarily negatively (in terms of reduction of prediction accuracy) throughout the pandemic. This
impact was found to be positive, yet improving prediction accuracy, at the beginning of the epidemic (despite
the higher volume of misinformation) and negative at the end of the epidemic likely because the delayed effect
of misinformation spreading.
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Figure 8. Hospitalization and case forecasting for different predictive models. The results of ARIMA forecasts
with different models in terms of predictors are shown for cases, cumulative and new hospitalization (top to
bottom) for New Delhi. ACF is ARIMA based on epidemiological data only, while all other ARIMA models are
based on positivity, Tweet volume, Tweet volume and positivity combined (red, blue, yellow, and green curves).
Black dots are from observations at the city scale. All curves are at the daily resolution.
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Data uncertainty and model transferability. The success of any infoveillance tools rests also on the
availability of data. Better quality data can likely support more accurate and more meaningful forecasts. Better
data refers not only to the representativeness of the data but also to the granularity and compatibility of the data
as well in relation to what is predicted. In terms of granularity, this could be hospital level rather than state or
national level hospitalization data for example. We showed in Fig. 7 that the geostatistical kriging model per-
forms much better—in terms of predicted hospitalization—when spatially explicit hospital data are provided,
particularly when the objective is also to capture reported bed occupancy rather than average expected hospi-
talization at the city scale solely. Compatibility would mean not only using universally accepted terminology,
but formatting the data in the same way to ease data processing. Certainly a huge discrepancy exist between
social and epidemiological data (considering spatial and temporal resolutions as well as data volume), and then
data processing becomes a time consuming process potentially carrying systematic uncertainties. Technology
exists to translate data which is formatted differently, but it remains important that data stewards communicate
with epidemiologists, “infodemiologists” and decision makers to determine a usable design. This is particularly
important in the context of pandemics and emerging infectious diseases although localized.

Our concern is directed more towards epidemiological data rather than social media data, at least in terms
of predicted patterns, i.e. temporal dynamics of cases and hospitalization. Social media users generate terabytes
of data and many platforms have policies that allow restricted access to data, especially for academic purposes
or some other public good purpose. Additionally, social information is country specific, for instance dependent
on available and popular social media as well as local language, and yet it is much more “subjective” and with a
very high degree of uncertainty. Vice versa, despite epidemiological data has proven to be more difficult to collect
and share, they are more objective data to compare among countries since one case or one hospitalization is one
incidence unit everywhere. Officials must also decide on what data is important to collect or monitor, as there
are several epidemiological metrics that are important or valuable for different reasons. For example, whereas a
hospital manager may find hospitalizations or cases most relevant, a public health official may wish to focus on
the ratio of deaths to cases. Our tool can be designed to accommodate as many metrics as are deemed relevant,
although the predictability of these additional metrics would first need to be established (see Sect. 3.3 for more
on this). Beyond these aspects, we emphasize that it would take effective coordination as hospital managers and
public health officials collate and share data via application programming interfaces (API) for highest efficiency
and timeliness in generating results.

The paper methodology is universally applicable to any geographical area of interest at any desired scale
(e.g. from cities, regions and countries) and independently of administrative boundaries. We point out that the
mathematical and computational model infer distinct patterns (in the form of case-positivity and hospitalization-
positivity patterns) potentially underpinning social patterns in terms of risk perception and information flow
that are highly linked to each other®®*'. This is evident considering the case of New Delhi and Mumbai. This
type of modeling, focused on pattern inference, has been widely adopted in many areas of science, particularly
when using probabilistic approaches (such as statistical physics and information-theoretic ones; see Li and
Convertino?®) that are not tight to specific socio-ecological processes but characterizing propagation of prob-
ability distribution functions (or their statistical moments) in order to capture macro-features or mechanisms.
For instance, see Convertino et al.>* in the context of Leptospirosis to link epidemiological and environmental
dynamical patterns. Recently, in relation to COVID-19 Chan et al.*® inferred patterns of intervention effective-
ness from incidence curves over time and portfolio sets of other interventions: risk communication was found
as the most important intervention independently of the media used in spreading risk information as well as
other country specific social features. This stresses even more the applicability of our model (related to spread
information) and the findings of macro-risk perception patterns, by keeping in mind that these patterns are
bounded by the social media used. Certainly, another aspect is related to how much social information is reveal-
ing realistic risk perceptions but that is another issue related to representativeness of social information that
requires further investigations.

Population representativeness of socio-epidemiological data. An issue connected with data avail-
ability is the matter of representation, that is, the extent to which the data include enough heterogeneity to
reflect the complexity of the population for which the data set is assembled. This is particularly relevant to social
media data such as Twitter data. The demographics of users can differ significantly by biology, socio-cultural and
economic class, location and the availability of technological infrastructure’*>**” so individual/community
experiences and perspectives can differ from the wider population®. Even the choice of language might limit
the representativeness of data used in the model: InTo currently uses English, which is spoken in India, but not
by a majority. One also has to consider the inclusivity of the search term. Our use of 'OR’ instead of AND’ made
our search more inclusive rather than restrictive thereby increasing the potential volume of tweets returned.
Other choices would have certainly provided other predictability indices; and then one of the future improve-
ments would be extracting the set of constraining hashtags that maximize predictions overall among all possible
choices of hashtags. However, this choice would require a much higher computational cost and, in addition, fit-
ting data the closest (versus providing the full range of feasible predictions in a Maximum Entropy perspective)
is not always the optimal choice due to the presence of systematic uncertainty in data. Therefore, our current
InTo version is not necessarily bounding the model-data gap considering all feasible factors (from language
to hashtags), nor a fully causal investigation, but a model defining the simplest and most informative inputs
and outputs to represent dynamics of population patterns. Further work will define more clearly importance of
underlying factors and the absolutely optimal model form.

Tweets in a city contain information of spatially separated events about the same process; thus spatial spread
of COVID and top tweeted pairs can be calculated over geolocated Tweets. Posting time and content (related to
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volume and positivity) is very weakly dependent on the social media platform. Additionally, social media users
tend to interact outside of their usual social networks or real-world socio-economic class much more on these
platforms®, creating opportunities for groups absent from these platforms to be heard in a latent way. Further-
more, tweets report information that may not be reported by official media and/or that may circulate in real life
events (e.g. just spoken information). This is also the reason for which InTo can be used by users as a reporting
information/misinformation tool via registering their Twitter account. We suggest this “Digital Health” feature
particularly relevant for healthcare workers.

Twitter penetration can differ between and within countries, but tweets still show high relevance for predict-
ing spatio-temporal patterns of infections and hospitalization. Additionally, emotional affects are highly linked
to local non-Twitter media and languages, as we see high volumetric correlation with local newspapers articles
and retweets of English tweets in local languages. Certainly, demographic and other features of the tweeting
population are relevant for how the virus spread but not the whole complexity is needed for forecasting purposes
in the short and long term. Nonetheless, this version of InTo is a proof of concept version and will likely inves-
tigate and include other social media platforms, languages, information features, visualization options, diseases
and socio-environmental phenomena in future versions for investigating processes and practical applications.

The model is certainly sensitive to the choice of the social media considered and that is also a country-specific
factor. Thus, in principle, one should use the most popular social media in the country analyzed in order to
gather the highest resolution social information to characterize risk perception patterns. However, in terms of
predictions, predictive accuracy is not necessarily related to the most popular social media because even a smaller
volume of information can maximize prediction accuracy. A distinction should be made between predictive
patterns versus patterns reflecting real processes. For instance, for the country analyzed (India) the predictive
accuracy is relatively high (~60% of hospitalizations). As for realistic risk perception patterns it makes sense
to discuss about how much one social media is representative of the whole population rather than what is pro-
portion of users in one social media, since volume of users does not necessarily correlate with representativity.
For instance, Twitter users may report the vast majority of events occurring in a population, considering also
retweets of local newspapers in local languages. Just for statistical information we report that Twitter (during the
study period, i.e., April-July 2020) is used by 6% of the population in India (source https://gs.statcounter.com/
social-media-stats/all/India). It should be noted that these penetration rates are relative to each country’s total
population; in a global perspective India is the 3rd largest countries in terms of Twitter users (https://www.stati
sta.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/). Further studies are however
necessary to understand the variability and representativeness of positivity across social media and its relationship
with usage also for certain social demographies. An important information non-linearity that should be consid-
ered when establishing effective representativeness is also: (i) the interdependence of Twitter with other social
media (where Tweets carry information of these media; e.g. in India Tweets can be found or relate to Facebook,
WhatsApp, Instagram, YouTube, Snapchat, Twitter, LinkedIn, and Quora information that are the other social
media in terms of usage); and (ii) geographical dependencies related to users in a country that are connected to
many other countries’ users, and yet strongly influenced by other countries’ social media production.

Predictive causality versus forecasting, and non-linearity. Even when considering the issues of data
availability and representativeness, the advantage of InTo is that it focuses on patterns rather than causation. InTo
does not purport to have found nor to be exploiting a causal relationship between tweet positivity and healthcare
pressure. Rather, it exploits spatio-temporal patterns and correlations that might not be physically significant
(although arguable in an information dynamic sense), but that are nonetheless practically useful probabilisti-
cally. The relationship between sentiments and behaviors are quite complex, and there are many other variables
in the complex reality of phenomena considered that are however not all needed when forecasting population
outcomes. There are population factors such as sex, socio-economic status, proximity to affordable healthcare
facilities and the availability of insurance or some other means of paying that certainly impact real processes of
individuals. There may even be socio-political realities at play that force individual behavior. However, the key
goal of InTo—in a complex system science purview—is the prediction of population patterns considering the
most essential predictors without making any assumption on the underlying processes. Complicating the model
comes at a cost, not just in the acquisition of data—because such data may not be available or costly to acquire—
but also in the applicability of the resultant model that would be highly sensitive, extremely hard to calibrate and
full of unchartable uncertainties. A model that enables reliable forecasts with a reasonable level of accuracy given
a variety of scenarios should be the aim of any information system model.

In InTo a forecast refers to the estimation of future outcomes (in short term) which uses data from previous
outcomes, combined with recent or future trends. Forecasts like those from the application of ARIMA models
imply time series and future point estimates, while predictions do not. A prediction is based on probabilistic
patterns (e.g. probability distributions, trends, and total uncertainty reductions) and yet of “possible outcomes”
in the long-term. This is the case of geokriging and the pattern that can be obtained by using the predictability
indicator (Eq. 5.12). Forecasting does not imply predictability nor the contrary, but in principle, optimized fore-
casting implies strong predictability for the whole time period considered. Vice versa, predictability of patterns
does not guarantee the ability to have highly accurate time point estimates. InTo is providing both in order to
support public health in almost real-time decision making and long term sensitivity of social surveillance for
epidemiological outcomes.

The accuracy of this system must be monitored if it is to be trusted to inform meaningful public health
measures. Although the general form of the model as described in Egs. 5.3-5.8 remains the same, additional
parameters, such as p, d, and q for the ARIMA model, were allowed to vary. Also, as the entire history of data
is used for forecasting, an ever-increasing data set is available for training which provides more from which to
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learn. For example, our system applies the ARIMA model in an evolutionary way rather than as a static model:
as new data is added, the ARIMA model is recalibrated considering the extended data. This reduces (yet does not
eliminate) concerns like overfitting, which would be more problematic if we used an unchanging model imputed
from an immutable training set. Furthermore, our model does not attempt to make forecasts for values too far
out-of-sample: we make predictions for a single week ahead as longer horizons typically reduces the accuracy
of models. Notwithstanding this, our inclusion of the Gap Index in the Predictability tab provides sufficient
caution to the user: as the Gap index increases, users are alerted to potential issues with the model as designed.

Social stress certainly impacts epidemiological dynamics (as widely reported, e.g. see’® and Campo-Arias and
De Mendieta*) but this aspect was not analyzed in our research. Social stress can be considered as a population-
level factor inducing changes of positivity and social media production over time after prolonged hazard exposure
(in this case the COVID-19 epidemic and controls). Yet, social-stress, likely measurable by consistent decrease
in positivity, may lead to non-linearity such as time-delayed changes in hospitalization. In Kastalskiy et al.** a
model for the COVID-19 epidemic was proposed by combining the dynamics of social stress (as sociophysical
phenomenon in the form of alarm-ignorance-resistance-exhaustion dynamics reflecting populations’ adapta-
tion syndrome) with a classical susceptible-infected-recovered “SIR” epidemic model, where the susceptibles
are split into three social-stress groups. This integrated model described with high accuracy the available epide-
miological data for 13 countries and highlighted the country-dependent non-linear dynamics (driven by social
vs. biological dynamics of the virus) for the whole period considering overall temporal trends and distribution.
However, we emphasize that non-linear dynamics of processes does not imply non-linear patterns and patterns
are scale-dependent. For instance, in our study at the weekly scale we do not observe non-linearity in the socio-
epidemiological relationships (fitted by the ARIMA model), despite real processes are obviously non-linear, but
these relationships and their probability distributions over longer time-scales than a week are non-linear and
non-normal, respectively. Thus, a critical distinction should always be made between patterns and processes and
models are tendentially always pattern-oriented tools even when discretize analytically some selected mecha-
nisms under hypothesized assumptions*"*2.

Value of misinformation. Identifying misinformation is a chief concern in infodemiology via infoveil-
lance, not to mention in other areas of society like sociology and politics. Methods that use the probabilistic
and lexical features of text in order to determine whether they represent misinformation** abound. These meth-
ods depend on datasets that contain messages which have already been labelled misinformation by experts a
priori. Keyword-based strategies, as we employed, are problematic** so it would be more accurate to describe
our results as the value of the topic “misinformation” rather the value of specific misinforming messages. This
notwithstanding, we recommend validating the outcome of any keyword to ensure that the value of the proper
messages are being evaluated (e.g. truly misinforming messages rather than accusations misinformation). The
set of misinforming messages considered by InTo includes tweets already directly labelled as or questioned to
be misinformation by users, having most likely already gone through a vetting process. The advantage of this
approach is the use of a human- and crowd-based classification which overcomes the challenges of assumption-
driven lexical analysis by model. Interestingly, a posteriori we confirmed (via reviewing Tweets one by one and
considering their incorrect or false information) that the vast majority (~ 95%) of misinformative tweets are
truly misinformation and this misinformation set showed much larger dissimilarity—in terms of word diversity,
volume divergence and asynchronicity—with respect to cases and hospitalization than the full tweet set. This
emphasizes how dynamical properties of information are essential in categorizing different types of information,
as well as how crowd-based self-reporting is relevant. In the literature there are still some debates about this topic
but those seem platform dependent. For example, Jiang, S. and Wilson, C.** suggested that user comments do
not provide sufficient predictive power when attempting to classify misinformation, but a recent study (see Ser-
rano et al.*%) successfully utilized user comments on YouTube videos instead of parsing these videos to classify
misinformation with high accuracy. Nonetheless, our attempt at measuring the value of these messages exempli-
fies another useful and customizable feature of our system. For example, a user may be interested in the value of
other topics, such as vaccines. Future versions of this system can enable users to measure the value of any topic or
a set of topics that accompany their disease of interest. Further research may detect keywords in an autonomous
in term of their salience for the investigated topic and/or for increasing prediction accuracy.

Our results found that misinformation-related tweets provided at times more time-point accurate forecasts of
healthcare pressure than forecasts based on all tweets. We observe that misinformation positivity shifts the fore-
cast error based on all tweets to higher positive values (implying positive VoMi); yet, misinformation is slightly
contributing to overprediction but considering its magnitude this overprediction is positive in consideration
of surveillance underreporting and other systematic errors. This is not to say that misinformation is good in an
absolute sense; in fact, it remains important that accurate facts are disseminated to people as the consequence
of acting on incorrect information could imply wrong behavior leading to higher cases and hospitalization.
Rather these findings show that misinformation—in its positivity rather than volume or messages—is useful for
forecasting. This is related to the use of positivity as a novel aspect in characterizing social media content and to
the fact that positivity fluctuations of quickly generated misinformation tend to have long-term consequences
on the predictability of the unfolding epidemic (misinformation that of course can have impact on the social
behavior of populations). This is manifested for instance by a higher predictability indicator of misinformation
(Fig. 5) as well as the higher (p, d, q) parameters of the ARIMA model (Sect. 5.4.1). Additionally, the full tweet
information may contain too much “entropy” of messages that do not quite reflect people sentiments about the
epidemic despite not being misinformation. Thus, public health organization could use positivity embedded in
misinformation to protect the public, and then seek to eradicate.
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Social value of InTo.  The most immediate value to society of InTo is through appropriate social media sig-
nal monitoring and by complementing traditional epidemiological surveillance which allows optimal healthcare
planning during public health crises. As a novel and innovative infoveillance cyberinfrastructure (because avail-
able online and systematized in its function), apart from monitoring the spread of social chatter, InTo enables the
public health system to properly plan for inevitable fluxes of people in need of care.

Public health officials and healthcare institutions need a way to cost-effectively determine whether they are
able to meet the impending healthcare demands via considering both information and disease epidemics that
we showed to be non-trivially and strongly coupled. Additionally, InTo enables public health officials to evaluate
customer satisfaction of the healthcare system during the epidemic/pandemic. This is performed by evaluating
sentiments of words related to healthcare in terms of emotions, positivity and specific content of social chatter.
Content that can point out specific hospitals, physicians and treatments, as well as users. Thus, individuals are
able to review what the general public posts as problems on social media about the local healthcare infrastruc-
ture and global issues. Also, information about which institutions are operating beyond their capacity, and what
particular department may be operating poorly or successfully is available. Yet, InTo responds the need of pre-
dictive, personalized and precise health in an unprecedented way by both capturing information-driven salient
population patterns and individual needs.

By monitoring public expressions, InTo provides some insights into emotional affects of the population in
response to disease spread. This can also illuminate the importance of psychological states in response to these
crises, which may be precursors to post traumatic stress disorders (PTSD). Other studies*”** showed how word
choices reflect mental health states in long term and these may be predicted by performing a systemic functional
network analysis of the tweet text extracted by InTo. This would also further link latent social and epidemiologi-
cal outcomes explicitly.

Finally, InTo enables to monitor the spread of misinformation during public health and social crises, as
well as evaluate the impact of any intervention, in the form of risk communication, they enact. InTo provides
volumetric measures of misinformation generation on social media over time and geographical domain, as well
as quantifies how misinformation affects forecasts of case and hospitalization (i.e. VoMI) that potentially relate
to real-world misbehavior dependent on circulating misinformation. Therefore, the performance of interven-
tions against misinformation can be measured by the volume of misinformation that is reduced as well as by the
uncertainty reduction in forecasts. In this sense, InTo provides an extra evaluation of the surveillance system by
considering misinformation as extra uncertainty or uncertainty reduction, depending on its negative or posi-
tive impact, on prediction accuracy. Comparison of multiple information sources and model predictions across
multiple criteria over time time, is a rigorous and efficient way to evaluate surveillance systems and likely detect
the most reliable source of data®.

Conclusions
Infodemic Tomography (InTo) is proposed as a cybertechnology to monitor and visualize the spatio-temporal
co-causal variability of social media positivity and healthcare pressure (as cases, hospitalization and misinfor-
mation separately) during epidemics and public health crises. The most salient points to mention about InTo
are listed below.

® A clear linkage between epidemiological and information dynamics (in terms of positivity) is detected via
linear and non-linear patterns, inferred through via linear regression and transfer entropy models, respec-
tively—that are potentially revealing risk perception and information randomness in populations. These pat-
terns are useful for predictions of epidemic dynamics, complementing traditional surveillance, and analyses
of social media dynamics (generation, absorption, spreading, diversity and positivity) that have the potential
to design risk communication strategies which aim to enhance or correct information shared in the target
populations. Combined socio-epidemiological patterns can reveal risk perception patterns. For instance,
Mumbai and New Delhi are shown to have the lowest and highest potential risk aversion considering the
average positivity-hospitalization correlation (that is negative in sign, where, vice versa, a positive correlation
would have implied risk seeking behavior).

® Location of tweets is deemed relevant to predict hospitalization where it is officially reported (interestingly,
~60% of predictions of hospitalizations coincide with the reported total bed occupancy (in the test cities of
New Delhi and Mumbai) and in locations where people are potentially in need of hospitalization. Yet, geo-
spatial tweets (and associated positivity) are convenient transfer functions of epidemiological information to
small space-time scales and inform about potential fluxes of healthcare demand that are useful for dynamic
healthcare management. Forecasts of cases and hospitalization are provided at very high resolution (~ m?)
one week in advance by using a linearized ARIMA model. Risk and gap indicators are provided to measure
the trend and model-gap difference of the epidemic weekly. A predictability indicator (normalized transfer
entropy TE over the maximum TE across time) is developed to monitor the uncertainty reduction of Twitter
positivity for epidemiological dynamics, thus to test the non-linear predictive causality in contrast to the
linear forecasting of the ARIMA model. The lower TE the higher the forecasting accuracy due to the low
non-linearity between positivity and cases.

® Misinformation is extracted by directly mining population-reported misinformation (via misinformation-
related hashtags) and can be tested a posteriori via manual classification with public health officers coopera-
tion and automated model-driven testing of dissimilarity (divergence, asynchronicity and diversity) from
the systemic COVID-19 information over time. The Value of Misinformation (VoMi) is introduced as the
impact on forecast accuracy calculated as the difference of gap indices (potentially negative over time) for the
systemic and misinformation datasets. VoMi trends are city-specific and negative if they are increasing over
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time because they imply high impact of misinformation on short-term forecasting. VoM is typically low or
negative because it is highly non-linear, and yet not very informative for forecasting sudden events; however,
it carries higher predictability (as uncertainty reduction) for delayed long-term extremes and probabilistic
patterns as shown by high values of transfer entropy.

In conclusion, InTo encapsulates the future of public health management with the the fusion of multiple surveil-
lance streams: from traditional epidemiological and healthcare data to model-inferred social sentiment data.
As technology develops and the public creates and consumes information via internet, epidemiology will need
to consider the spread of social information not only as a problematic element but as a solution for disease
tracking and optimal risk communication. For instance, ad-hoc social messages by authorities can counteract
misinformation that is sensed online, as well as social media inferred cases (or model predicted) can comple-
ment traditional public health surveillance. InTo shows that sentiments from digital messages can forecast the
incidence and spread of healthcare pressure for areas besieged by a public health crisis. In terms of forecast, it
is near-real time, accurate, reasonably inexpensive and easy to use in a computational sense. Infoveillance tools
like InTo can only get better with higher quality data from traditional surveillance systems on which validation
should be performed, but more importantly with the collaboration between developers and stakeholders to
effectively create solutions that are useful for effective decision and policy making. Future work will potentially
entail expanding social media platforms and diseases to be monitored. Other validation experiments to improve
InTo accuracy and utility are needed in data-rich areas. Via collaborations with public health officers, stakehold-
ers and volunteers with interests in social computing we will seek for releasing InTo as a globally implemented
cyberinfrastructure for public health research and practice.

Material, methods and implementation
Twitter data mining and preprocessing. Data collection occurred weekly beginning in April 2020.
Only English language tweets within a geographical bounding box (reflecting the target geographical area of the
city considered) were retrieved from Twitter using the rtweet package®. The choice of English was dictated
by the lack of robust computational tools usable for other language translations (also considering the big-data
size of tweets) and the complexity of the languages for the country considered (i.e., Hindi and Marathi for New
Delhi and Mumbai, respectively); the latter would make the uncertainty in positivity scoring of words very high.
Search terms are hashtags that were identified given their rank on a list of the most popular Twitter terms on
a daily and weekly scale (the search was done by comparing https://getdaytrends.com/ and https://trends24.in/).
Our search query for the COVID systemic information was constrained to the hashtags “covid OR coronavirus
OR quarantine OR stay home OR hospital OR covid OR covid19 OR covid-19 OR coronavirus OR quarantine
OR stayhome OR hospital”. Thus, we downloaded close to 30,000 tweets daily between April 15 and July 30, 2020
for New Delhi (defined as “National Capital Territory of Delhi” by Twitter in the box 28°41'25.9” N, 76°83/80.7"E
to 28°88'13.4”N,77°34'84.6"E). We identified the misinformation dataset by extracting a subset of our down-
loaded tweets that contained the terms “misinformation”™, “false”, “fake” or “lie”, directly reported by people in
their tweets. These were tweets in which a user either identified information or other messages as misinforma-
tion or questioned whether that message or information was misinformation. We also identified tweets related
to healthcare information by extracting those tweets containing the key terms “hospital” or “test”. To preprocess
these data we removed punctuation marks and uniform resource locators (urls) using the t idytext package®,
and we replaced abbreviations, symbols, contractions, ordinals and numbers with the words they represent using
the gdap package®. tidytext was also used to unnest the unigrams (single words) and bigrams (sequen-
tial word pairs) from each tweet. Lastly, word stemming was conducted using the wordStem function of the
SnowballC package (https://cran.r-project.org/web/packages/SnowballC/SnowballC.pdf) for being able to score
affine words in terms of positivity rather than disregarding these words.

Epidemiological data mining and preprocessing. At the time of our study, epidemiological data was
not available for New Delhi specifically (i.e. the case study shown in this paper) nor for local hospitals within
the analyzed domain, but rather for the state of Delhi, i.e. the National Capital Region (NCR). The dataset®
contained both crowd-sourced and official data from the Ministry of Health and Family Welfare. It included the
number of cases and cured, discharged or migrated individuals in the state since March 15, 2020 when India
registered its first case. For these motivations we calculated the new daily cases AI = I(¢) — I(t — 1) where I
stands for cases, and new hospitalization as AH = H(t) — H(t — 1) where hospitalization H(t) = I(¢) — R(t)
are cases minus the number of patients cured, discharged or migrated. Later we located hospital level data from
information reported by the New Delhi from the Ministry of Health and Family Welfare (https://coronabeds.
jantasamvad.org) which indicated the daily number of hospital beds occupied within a geo-located area. The
vast majority of these hospitals resulted to be private hospitals. We conducted validation of our spatio-temporal
forecasting model by comparing city-scale calculated hospitalization versus hospital-scale data for the same city.
As for Mumbai, the situation was analogous to New Delhi; data of cases and hospitalization was only available at
the state scale, i.e. Maharashtra. Thus, cases and hospitalization of Mumbai was calculated as ~ 50% of the whole
state as evidence supported.

Sentiment quantification. Sentiment analyses performed for InTo involved quantifying both categori-
cal emotions and positivity of each text corpus given unigrams (words) within extracted tweets. The 1abtMT
lexicon', accessed via the gdap package, was used to measure the positivity and the nrc lexicon®, accessed via
the tidytext package, was used to evaluate emotional affects (or categories) in a tweet. The continuous (real
number) positivity of a tweet (P) was quantified as:
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where pgye (w;) is the positivity value of each word (w;) as indicated in the IabMT lexicon, and f; is the frequency
of each word. The daily positivity (P;), given N; number of tweets on day ¢ is calculated by

Nt
_ i1 P
Pt _ 2171 ]

N

(5.2)

where j is indicating all tweets in the day considered. The emotion of a tweet was considered to be the distribution
of the affect categories (for example, anger, surprise, joy, etc.) associated with each word of a tweet. We noted
the affect categories associated with each unigram and then counted the number of times each affect category
appeared in a tweet and in a day. Weekly calculations of positivity and emotion categories are calculated consid-
ering average value of sentiments at the weekly scale.

Forecasting. ARIMA temporal forecasting. InTo perform weekly temporal forecasts of new cases and hos-
pitalizations as a function of tweet positivity and historical epidemiological events. A two-step non-seasonal
ARIMA(p, d, q) model is used for temporal forecasting where parameters p, d, and g are non-negative integers;
p is the order (number of time lags) of the autoregressive model considering long term trends (e.g. seasonality),
d is the degree of differencing (the number of times data are subtracted to past values) that considers memory
for non-seasonal events, and g is the order of the moving-average model for errors establishing their temporal
impact. The ARIMA model was selected due to the validated linear patterns between positivity and hospitaliza-
tion as well as positivity and cases at the weekly scale. Because (p, d, q) parameters and coefficients are updated
weekly in order to optimize forecasts, the model can be considered dynamically "non-linear” in the parameter
space despite its linear formulation. Temporal forecasts were calculated using a non-seasonal ARIMA model as
implemented in the fable package®. The two-step forecast is done because first positivity is forecasted for the
week following the one considered and after cases and hospitalization are forecasted based on future positivity.
The analytic form of the ARIMA model is written for y = AH as new hospitalization that is the primary target
of InTo; however, y can generally be positivity or cases based on the selected predictand. Thus, hospitalization
is forecasted as:

AHY = o+ BiP + p1AHL | + - + o AHL  + 01611 + -+ g1 g + & (5.3)

where AH is differenced to an order of d (not that d is an 1ndex and not a power exponent), B is a constant,
is the regression coefficient for average positivity Py, ¢1yd | + - -- + ¢’p)’t—p is an autoregessive model of order
pand 61 + - + 604614 + & is a moving average model of order gq. The error terms &; of AH are assumed
to be independent and identically distributed sampled from a normal distribution with zero mean. Thus, &; is
a white noise factor.

Default settings of the ARIMA function in the fable package was selected as it automatically determines
the values of p, d and g that minimize the Akaike Information Criterion (AIC). We retrained our model weekly,
using the entire history of positivity and epidemiological data to date. We utilize an ex-post forecasting approach
where we first project the next week’s values of positivity by applying the ARIMA model to tweet positivity.
The ARIMA model is of a similar form to Eq. 5.3, except that positivity is the outcome value and the 81 P; term
is excluded. Following this we used the ARIMA model to forecast cases and hospitalizations considering the
ARIMA linearized relationship between the history of epidemiological factors and tweet positivity and the
projected values of positivity. Equivalently, without altering the ARIMA structural form in Eq. 5.3, we predicted
new hospitalization considering different predictands, i.e. tweet volume, volume and positivity, or hospitalization
only to select the optimal model with the highest prediction accuracy.

We conducted a validation exercise to evaluate the performance of this modeling approach (see Fig. 8).
We split the data into a training and test set such that the training set included a week of data and the test set
contained the same data as the training set and an additional week of data that did not appear in the training
set. Four models were then trained on the training set using different predictors: using the epidemiological data
alone to forecast itself (ACF); using positivity to forecast epidemiological data; using tweet volume to forecast
epidemiological data; and using positivity and tweet volume to forecast epidemiological data. The models were
then used on the test set and the results were compared to the observed data. This process was repeated with
the training set and test sets being increased by one week until the entire data set was used. The mean absolute
percentage error (MAPE) of each model was computed to quantify the accuracy of the model: the lower the
MAPE, the more accurate the model.

Geostatistical forecasting.  We predicted the spatial spread of healthcare pressure with geostatistical kriging con-
sidering the inferred linear relationship between positivity and cumulative hospitalization at the city scale. This
relationship is linked to the 81 exponent in the ARIMA model of Eq. 5.3 and is updated every week. A similar
modeling was performed in the past by Berke, O.>. Geostatistical kriging was performed using the automap
package®®, and the results were visualised as a heatmap overlaying satellite imagery obtained from Google Maps
using the ggmap package version 3.0.0% . We restricted data to the most recent two weeks of tweets and cumu-
lative hospitalization to ensure that there was enough geo-spatial tweet data salient to predict the last observed
hospitalization. This was also supported by the limited “memory” of positivity for hospitalization, reflected by
low values of the ARIMA parameters p and d. As with the double step prediction of ARIMA, first we extrapolate
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positivity over the whole geographical domain and after we perform a second geokriging to predict new hospi-
talization based on the positivity-hospitalization relationship. Given the limited volume of geo-located tweets,
we used ordinary geo-statistical kriging because average is likely constant™® (as in our case) to interpolate positiv-
ity using the semi-variogram:

1 N(5)
_ L _p12
¥p(8) —ZN(S){;[PH—S P } (5.4)
. M
by = Z 2i(P)) - P; (5.5)
i=1

where /;(P)) is a kriging weighting factor for the know value of the variable P at a sampled location i and j # i.
A function is a semivariogram only if it is a conditionally negative definite function, i.e. for all weights 4, ..., Ay
subject to Zf\il 4i(Pj) = 0 and locations i, ..., M it holds: Zﬁ/!:l /i yp(isj) Aj. This establishes the connection
between predictions of Eq. 5.5. and semivariogram of Eq. 5.4. The experimental semi-variogram of the data at the
observation location is fitted against a theoretical semi-variogram model of pp(8p); the latter is an exponential,
Gaussian or spherical semivariogram. One is thus making a distinction between the experimental variogram that
is a visualization of the observed possible spatio-temporal correlation and the variogram model that is further
used to define the weights of the kriging function on which predictions are based. M is the number of (10,000)
randomly generated points which are interpolated using the kriging weighting factor /;(P;) determined by the
semivariogram. .

Next, we applied universal geostatistical kriging® to interpolate the expected hospitalization H over space
considering the forecast based on the relationship between twitter positivity and the state-level cumulative
hospitalization. Universal kriging is used because it assumes that the average is not constant as it is in our case.
This is done by using the following analytics:

1 N(S)
Pr(8) =NG) i;[(HiH —m) — (H; —m)? (5.6)
A M A
Hj=m -+ Ji(H)) - (H; —m) (5.7)

i=1

where 7 (8) is the predicted semivariogram of expected positivity based on m(P) = ZIL:O o) fi(P) that is a slow
and continuous trend function® capturing the linear relationship between hospitalization and tweet positivity
among points [; these points may be different from the whole set of points M over which interpolation is per-
formed. Finally, to determine the healthcare pressure Hp at each point i we used

b g gy XM
Hp — {H,» — (Hrp) = B, — 2= 46> g (5.8)

i 0 otherwise

where (Hr) is the expected average of hospitalization over the selected geographical domain, and M is the num-
ber of interpolated points. We applied the same model to spatially explicit hospital bed occupancy in order to
compare interpolations of hospitalization based on state and hospital level data.

Predictability indicators. Weekly indices are introduced to monitor the evolution of the pandemic, the
short- and long-term predictability of Twitter positivity and the departure between forecasts and observations.
The Risk Index is set to measure the rate of change in epidemiological values, yet in formulating indication of
epidemic trends. The Gap Index is introduced as the difference between forecast predictions and observations
normalized to previous observations. The Correlation Index is calculated by estimating the Pearson correlation
coefficient to quantify the short-term forecast ability of positivity for epidemiological variables (new hospitali-
zations and new cases) via geokriging over space and via ARIMA over time. The first ARIMA component and
geokriging factors are linear functions of the linearized relationship between positivity and epidemiological
variables (Egs. 5.3 and 5.7). To quantify the long-term predictability of highly diverging events, transfer entropy
(TE) as in Li and Convertino? is introduced as the Predictability Index that informs about the probabilistic pre-
dictability of positivity for epidemiological patterns in terms of probability distribution functions (pdfs) rather
than time point values. The higher TE, the higher the time-delayed and/or divergent influence (as pdfs) of posi-
tivity for hospitalization or cases. We did not use TE for predictive purposes because we never forecasted events
beyond one week within which the socio-epidemiological linearity holds. All indices are analytically defined as:

R(Yt) =(yt — y1—1)/yt—1 = AY(5¢)/100 (5.9)

G(Yy) =y(t) — y(t)/y(t) = AY;/100 (5.10)
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whereY =1 or AH is indicating time series of cases or hospitalization, respectively, and y indicates time point
values. P = } Zle prandY =1 Zle ¥t L is the length of time-series of P and Y.
The Value of Misinformation (VoM;i) was defined as the difference of gap indices as:

VoMi(t) = G(Yy)s — G(Ye)m (5.13)

where S and M stand for the systemic Twitter information and classified misinformation set in predicting Y as
cases or hospitalization. VoMi provides users with a measure of how misinformation impact forecasts of epide-
miological variables with respect to the systemic tweet information considering both model and data uncertainty
contained in the gap index.

Increasing values of VoMi (independently of the sign) indicate that the misinformation tweet subset has
increasing importance in forecasting versus the full tweet set. On average, if VoMi is positive, misinformation
does contribute non-negligibly to overpredict epidemiological trends, whereas if it is negative it impacts posi-
tively and substantially the forecasts proportionally to the magnitude of the misinformation gap G(Y;) . This
is evaluated for the same model structure and epidemiological data uncertainty of the full tweet information. It
should be noted that both gap indices G(Y;)sand G(Y;) p can be negative and M C S, yet the relative (non-linear)
balance between full information and misinformation (positivity) predictability contribute to determining VoMi.

In a decision analytical sense VoMi is defined as the amount of resources a decision maker would be willing
to pay for extra information that increase forecast accuracy before an event occurs. The optimal information
set Loyt is defined as the one whose gap is minimized (assuming that data are perfect “error-free” information to
match) and equal to G(Ippr) = G(Igp) — VoMi(Lopt, Lsyp) where VoMi = MI(P, H) that is the mutual informa-
tion MI(P,Y) =) Zy p(p,y) log PI() p{p}z 0 between positivity and cases or hospitalization. Mutual Information
in an information—tﬁeoretic variable measuring the amount of information shared between two variables that
is on average inversely proportional to the predictability indicator in Eq. 5.12 (i.e. the uncertainty reduction
between variables).

Tweet spread. For each week, we calculated and displayed the average daily tweet and retweet volume for
all tweets and the misinformation related tweets. Time series of tweet and retweet volumes, as well as their corre-
sponding average positivity, are displayed by InTo, which serve as indicators of spreading potential of COVID-19
related messages within and beyond the geographical domain considered. Additionally, the Twitter user of the
most popular tweet in a week is shown when hovering over a point on the Tweet spread plot.

Dashboard architecture. The InTo dashboard utilizes a client-server architecture designed and imple-
mented using the shiny package® in R®? that provides a convenient wrapper for interactive HTML widgets.
This is similar to GLEaMviz architecture®. The client component only allows users to visualize the results of
InTo but many outputs, for example predictability indicators, are downloadable by users. All computations on
the server are conducted in R using the established workflow (see Fig. 1).

InTo online

InTo online dashboards and data are at:
https://nexuslab.shinyapps.io/InTo_Delhi/ for the city of New Delhi
https://nexuslab.shinyapps.io/InTo_Mumbai/ for the city of Mumbai
Into online manual, workflow, data sources and codes is at:
https://rpubs.com/elroygl/Into-walkthrough
Into main code is at:
https://github.com/elroyg1/InTo.

Data ethical approval

Twitter data are collected by leveraging Twitter’s free streaming API. A Twitter developer account was obtained
as well as the necessary authentication tokens. The data set is available in compliance with the Twitter’s Terms
and Conditions (https://developer.twitter.com/en/developer-terms/agreement-and-policy), under which we are
unable to publicly release the text of the collected tweets. Twitter developer account was obtained on May 7,
2020. We are, therefore able to release Tweet IDs, which are unique identifiers tied to specific tweets. The Tweet
IDs can be used by researchers to query Twitter’s API and obtain the complete tweet object, including tweet
content (text, URLs, hashtags, etc) and authors’ metadata. Our collection relies upon publicly available data
(both epidemiological and Twitter data) and is hence registered as IRB (institutional review board) exempt by
Hokkaido University.

Satellite images were obtained from Google Maps using their Maps Static APL. Our use is in compliance with
Google’s Google Maps/Google Earth Additional Terms of Service, which allows us to view and annotate maps,
as well as publicly display content with proper attribution online and in print for non-commercial use (https://
www.google.com/help/terms_maps/).
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