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Gut microbiota imbalance plays an important role in the pathogenesis of various diseases. Here, we determined 
microbe–microbe interactions and gut microbiome stability in a Japanese population with varying body mass 
indices (BMIs) and enterotypes. Using 16S ribosomal RNA gene sequencing, we analyzed gut microbial data from 
fecal samples obtained from 3,365 older Japanese individuals. The individuals were divided into lean, normal, and 
obese groups based on their BMIs. They were further categorized according to their gut microbiota enterotypes: 
Bacteroides (enterotype B), Prevotella (enterotype P), and Ruminococcus (enterotype R). We obtained data on 
different host factors, such as age, BMI, and disease status, using a survey questionnaire evaluated by the Mykinso 
gut microbiome testing service. Subsequently, we evaluated the co-occurrence network. Individual differences in 
BMI were associated with differences in co-occurrence networks. By exploring the network topology based on 
BMI status, we observed that the network density was lower in the lean group than that in the normal group. 
Furthermore, a simulation-based stability analysis revealed a lower resistance index in the lean group than those 
in the other two groups. Our results provide insights into various microbe–microbe interactions and gut microbial 
stability and could aid in developing appropriate therapeutic strategies targeting gut microbiota modulation to 
manage frailty.
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INTRODUCTION

The prevalence of obesity has nearly tripled worldwide since 
1975. According to the World Health Organization (WHO), over 
650 million adults were obese in 2016 [1]. Furthermore, an annual 
study on national health and nutrition in Japan by the Ministry of 
Health, Labour and Welfare reported that male obesity has been 
increasing since 2013. According to the 2019 statistics, 33.0% 
of males are overweight, with an average body mass index 
(BMI) of 25 or more, which is 4.4 points higher than that in 2013 
[2]. The study using data from past Japan National Health and 
Nutrition Survey demonstrated a rapid increase in the prevalence 
of obesity among older Japanese men from 1973 to 2016 [3]. 
However, in 2016, the percentages of older men and women who 
had a BMI of 20 kg/m2 or less and tended to be undernourished 
were 13.4% and 22.4%, respectively [4]. A previous study also 
speculated about the sudden increase that has been observed in 

the prevalence of underweight among women in the 65–69 and 
70–79 years age groups in Japan [5]. In addition, according to 
a previous cardiovascular health survey, approximately 12% of 
the Japanese population is considered frail [6], a condition that 
appears to increase with age, notably after the age of 75 [7].

Obesity and overweight are the major risk factors for 
noncommunicable diseases, increasing the likelihood of disability 
and death [8]. The medical costs associated with obesity-related 
disorders have risen dramatically and are expected to rise further. 
Moreover, being underweight is an independent predictor of 
increased morbidity and mortality because it is thought to result 
from body wasting [9, 10]. Individuals with a lower normal-BMI 
range (18.5–19.9) have a statistically higher risk of mortality 
among older Japanese individuals [9]. Moreover, some reports 
suggest that weight gain is linked to a good prognosis for 
diseases such as heart failure, and this phenomenon is known 
as the obesity paradox. Given the link between old-age frailty 
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and sarcopenia, a high degree of weight loss may be detrimental 
to health [11]. The extent to which “obesity” and “thinness” are 
manageable, the health impacts, and age-dependent changes in 
their effects have not yet been fully established when considering 
the prognosis for life [11]. Japan is now among the world leaders 
in terms of longevity, with an increasing average life expectancy 
accompanied by a sharp increase in the ≥65 year-old population 
to 28% [12]. Because this population is susceptible to high 
health and economic burdens, timely and effective measures for 
managing their well-being are required.

Several studies have found strong associations between gut 
microbiota and the energy–balance equation [13, 14]. Clinical 
and basic research have demonstrated that the gut microbiota 
plays a critical role in the pathogenesis of obesity development 
[13–16]. Furthermore, evidence indicates a strong association 
between gut microbiota and being underweight [14, 17]. Because 
the gut microbiota is linked to the progression of obesity and 
underweight, which are becoming increasingly common in 
Japan’s aging society, influencing the gut microbiota is gaining 
attention as a novel therapeutic approach. However, because 
the gut microbiota varies between individuals and can be 
classified into different enterotypes [18], it is debatable whether 
a uniform intervention would benefit individuals with different 
enterotypes. We previously reported a strong association between 
gut microbiota and being underweight [17]. As older adults in 
Japan are commonly underweight and have attracted attention, 
finding clues to preventing underweight via the modulation of gut 
microbiota is important.

The gut microbiota appears to exert a myriad of positive 
functions in metabolism, host protection, and the gut-brain 
axis [19]. Statistically significant differences in gut bacterial 
community diversity, composition, phenotype, function, and 
ecological networks have been reported based on 16S rRNA 
gene sequencing data. The resulting profiles were linked to BMI; 
however, they were sex specific [20]. The gut microbiome is 
often noted for its ecological stability, which is critical for host 
health and well-being because it ensures that beneficial symbionts 
and their associated functions are maintained over time [21, 22]. 
Therefore, it is speculated that investigating how microbial 
interactions influence microbial community dynamics can help 
comprehend the ecological stability of the microbiome. Ecological 
modeling of microbiomes that considers such interactions is a 
crucial step towards a better understanding of community function 
[23], anticipating dynamics [22], and rationally developing 
interventions that change community structure and function 
[24]. Previous studies have reported the association of microflora 
instability with poor health and frailty [25], particularly in older 
individuals [26]. In light of these findings, analyzing the interplay 
of microbes in the gut and simulating temporal changes in gut 
microbiota have considerable relevance. Therefore, we examined 
the data obtained from the Mykinso cohort, one of the largest 
cohorts of gut microbiota data in Japan and part of the product 
services of Cykinso, Inc. (Tokyo, Japan).

We hypothesized that microflora stability could be used to assess 
the frailty of older individuals. To test this hypothesis, in this study, 
we aimed to determine microbe–microbe interactions and gut 
microbiome stability in an older Japanese population with varying 
BMIs and enterotypes. Our findings could be significant because 
Japan has the highest proportion of older adults globally and older 
Japanese adults over 75 years of age are extremely frail [7].

MATERIALS AND METHODS

Study population
The study initially included 4,414 individuals who were 

>64 years old and registered in the Mykinso cohort from January 
2017 to October 2021. Among the registered individuals, 856 
were excluded from the study due to the presence of duplicate 
samples and samples from time points other than the first time 
point in longitudinal studies. Furthermore, 114 individuals were 
excluded due to unknown BMI, and 83 individuals were excluded 
due to lack of compliance with the survey questionnaire. 
Ultimately, 3,361 individuals were included in the study (Fig. 1). 
All participants provided written informed consent for enrollment, 
and the study was conducted according to the principles of the 
Declaration of Helsinki. The study was approved by the Cykinso 
Research Ethics Committee (no. LD-001-04 and LD-002-03) 
and registered with the UMIN Clinical Trials Registry (no. 
UMIN000028887 and UMIN000028888).

BMI stratification
The participants were categorized according to the WHO BMI 

classification as lean (BMI <18.5), normal (18.5≤ BMI <25), or 
obese (25≤ BMI) [21].

Common disease status
Using an original survey (Supplementary Table 1), information 

on the disease statuses of the participants was collected by the 
Mykinso gut microbiome testing service. The original survey 
included questions on lifestyle, bowel habits, and diseases. 
Individuals were scored “positive” for a disease if they replied 
yes to any original survey question, “negative” if they replied 
no, and “unknown” if data were unavailable across all original 
surveys.

Fecal sampling, DNA extraction, sequencing, and sequencing 
data analysis

We performed fecal sampling, DNA extraction, sequencing, 
and sequencing data analysis according to the protocol described 
by Kameoka et al. [27]. Fecal samples were collected using brush-
type collection kits containing guanidine thiocyanate solution 
(TechnoSuruga Laboratory, Shizuoka, Japan), transported at 
ambient temperature, and stored at 4°C. DNA was extracted 
from the fecal samples using a DNeasy PowerSoil Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocol. The 
amplicons of the V1V2 region were prepared using a forward 
primer (16S_27Fmod: TCG GCA GCG TCA GAT GTG TAT 
AAG AGA CAG AGR GTT TGA TYM TGG CTC AG) and 
reverse primer (16S_338R: GTC TCG TGG GCT CGG AGA 
TGT GTA TAA GAG ACA GTG CTG CCT CCC GTA GGA 
GT). Sequencing libraries were prepared according to the 16S 
library preparation protocol provided by Illumina (San Diego, 
CA, USA). Libraries were sequenced in a 250 bp paired-end run 
(500 cycles) using MiSeq Reagent Kit v2 (Illumina).

Bioinformatics analysis
We performed data processing and taxa assignment based 

on the QIIME 2 pipeline (version 2020.8) [28] according to 
the following steps: (1) joining paired-end reads, filtering, 
and denoising using the DADA2 algorithm and (2) assigning 
taxonomic information to each amplicon sequence variant using 
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a naive Bayes classifier in the QIIME 2 classifier. The classifier 
was trained using a robust taxonomy simplifier for SILVA (arts-
SILVA), originally developed from the 16S rRNA taxonomy 
dataset based on SILVA 138 [17]. Relative abundance (RA) was 
calculated as the number of sequenced reads for each taxon in 
a sample and standardized by the total number of sequences 
generated for each sample. Only non-rare taxa that were present 
in at least 30% of the cohort and had an RA of at least 0.01% in at 
least one sample were included in the analyses. Sequence counts 
for taxa that did not meet these requirements were aggregated into 
an “Other” category. These filtering requirements were applied at 
the genus level.

Statistical analysis
Enterotyping

Samples were clustered using the Bray–Curtis distance and 
partitioning around medoid clustering [17]. The optimal number 
of clusters was estimated using the Calinski–Harabasz (CH) 
index. Finally, enterotypes were assigned based on the RA values 
of cluster centroids, encoded as enterotypes B (Bacteroides 
enriched), P (Prevotella enriched), and R (Ruminococcus 
enriched).

Evaluation of genera cross-correlation using SparCC

We used the SparCC network inference approach [29] to infer 
the co-existence networks of bacterial communities from each 
group. We then utilized the relative abundance at the genus level 
to compute associations and prepared one network for each group. 
We selected nodes and edges based on the determined cutoff point 
for the correlation level with a p-value <0.01 (permutation test 
with 200 permutations).

To further evaluate the topological features of each network, 
we used the NetShift software to identify driver nodes between 

case-control association networks [30]. We focused on identifying 
key attributes (e.g., nodes, clusters, and edges). We then detected 
driver nodes from comparisons between different BMI stages 
(normal vs. obese and normal vs. lean) among enterotypes B, P, 
and R.

Simulation-based stability analysis

Microbial community population temporal dynamics were 
simulated using a generalized Lotka–Volterra model [31]. 
The model was evaluated using numerical integration with the 
“lsoda” function in the “miaSim” R package [32]. Growth rates 
were assigned to each species from a uniform distribution from 
>0 to 1 so all species could show positive growth. Carrying 
capacities were assigned to each species by drawing from 
either a β distribution, which allows the simulation of a range 
of distributions from a uniform distribution (with the coefficients 
α=1 and β=1) to an increasingly uneven distribution (with the 
coefficients α=1 and β >1), or from a log-normal distribution to 
simulate an uneven distribution. Carrying capacity distributions 
were scaled to range between 1 and 100. The interaction matrix, 
which determines the topology of the metacommunity network, 
was assigned from correlation coefficients estimated by the 
SparCC program.

The measure of deviation from the baseline for each time point 
was determined based on two stability properties: resistance and 
resilience. Resistance refers to the ability of a system to remain 
mostly unchanged following a disturbance. This property is 
quantified by the maximal deviation from the reference state 
caused by a disturbance [33]. Resilience is the ability of a 
system to return to the reference state after a disturbance. For 
its quantification, we used the definition proposed in a previous 
study [34]. Resilience is computed as an index over time, with 
values ranging between −1 and 1.

Fig. 1. Study population. Types P, B, and R represent enterotypes P (Prevotella enriched), B (Bacteroides enriched), and R (Ruminococcus enriched), 
respectively. BMI: body mass index; n: number of individuals.
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To investigate the associations between stability properties 
and host factors (age, BMI, disease status), we used multiple 
linear regression to explain each stability property (resistance 
and resilience) from the host disease status. The significance of 
each parameter was estimated by comparing the models with 
and without the corresponding factor in predicting each stability 
property using the “glm” function in the R “stats” package. 
The p-values were corrected using the Benjamini–Hochberg 
procedure.

RESULTS

Study population
A total of 4,414 older Japanese participants were enrolled 

in the study. After excluding participants lacking BMI data, 
3,361 participants were included in the analysis and divided 
according to their BMI into lean, normal, and obese groups (Fig. 
1). Baseline characteristics of the participants, including age, 
sex, BMI, and disease status, are shown in Table 1. Mean age 
significantly differed among the three groups, albeit by small 
margins (lean 72.5 ± 6.8, normal 72.2 ± 5.9, obese 71.3 ± 5.8; 
p<0.001). Mean BMI significantly differed among the groups 
(lean 17.16 ± 1.27, normal 21.97 ± 1.71, obese 27.3 ± 2.26; 
p<0.001). In addition, the percentage of females was significantly 
higher in the lean group than in the normal and obese groups (lean 
77%, normal 54%, obese 47%; p<0.001; Table 1). The percentage 
of metabolic diseases, including cardiovascular disease, diabetes, 
dyslipidemia, and hypertension, was significantly higher in the 
obese group than in the lean and normal groups (p<0.001 for 
both; Table 1).

Enterotype
The 3,361 samples were clustered using genus abundance 

profiles. The CH index showed a clear global maximum at three 
clusters in each group dataset (Supplementary Fig. 1). In all group 
datasets, Bacteroides (enterotype B), Prevotella (enterotype 
P), and Ruminococcus (enterotype R) were the drivers of the 
three enterotypes (Supplementary Fig. 2). In the normal group 
dataset, 1,161, 501, and 637 participants possessed enterotypes 
B, P, and R, respectively. The numbers of participants possessing 

enterotypes B, P, and R in the lean group dataset were 157, 54, 
and 87, respectively, and those in the obesity group dataset were 
397, 178, and 189, respectively. In all three groups, enterotype B 
was the most enriched (Fig. 1 and Table 1).

SparCC
Microbial interaction networks in the guts of the normal, obese, 

and lean participants were constructed using a SparCC algorithm. 
We then used NetShift to identify the driver nodes in each case-
control association (lean vs. normal and obese vs. normal among 
enterotypes B, P, and R; Fig. 2). In each comparison, we built 
and compared the network association for each state and obtained 
some topological parameters, such as the network density, cluster 
coefficient, and average path length (Table 2). Together, they are 
called global graph properties because they provide insights into 
the overall organization of the network and enable the assessment 
of its modularity [30].

Table 2 shows that we detected a reduced density of the network 
in the lean condition in lean-normal comparisons for every 
enterotype (almost less than half the normal value). Thus, the low 
network density indicated microbial communities composed of 
scarcely connected groups. Moreover, the clustering coefficient 
quantifies the tendency of a graph to be divided into subunits. 
In other words, a microbial network with a higher number of 
independent units of associated microbes is expected to have 
a higher clustering coefficient value [30]. Our study showed 
consistent, remarkable differences in this parameter between 
comparisons of the lean and normal groups for every enterotype 
(almost less than half the normal value; Table 2).

Figure 2 shows our results for driver nodes and edge 
connections from the pairwise comparisons analyzed in this 
study. In enterotype B, edge connections of driver nodes 
comprising Bacteroides, Collinsella, and Erysipelotrichaceae 
were exhibited only in lean participants. In enterotype P, edge 
connections of driver nodes comprising Prevotella, Collinsella, 
and Streptococcus were only exhibited in lean participants. In 
enterotype R, edge connections of driver nodes comprising 
Ruminococcus and Bifidobacterium were exhibited only in lean 
participants.

Table 1. Characteristics of the study population

Lean group Normal group Obese group
p-value

(n=298) (n=2,299) (n=764)
Age (years) 72.5 (6.8) 72.2 (5.9) 71.3 (5.8) <0.001
Females 228 (77%) 1,234 (54%) 362 (47%) <0.001
Body mass index (kg/m2) 17.16 (1.27) 21.97 (1.71) 27.30 (2.26) <0.001
Enterotype B 157 (53%) 1,161 (51%) 397 (52%) 0.2
Enterotype P 54 (18%) 501 (22%) 178 (23%)
Enterotype R 87 (29%) 637 (28%) 189 (25%)
Common diseases 243 (82%) 1,903 (83%) 687 (90%) <0.001

Gastrointestinal disease 106 (36%) 606 (26%) 205 (27%) 0.003
Liver disease 8 (2.7%) 72 (3.1%) 39 (5.1%) 0.027
Cardiovascular disease 22 (7.4%) 236 (10%) 112 (15%) <0.001
Diabetes 17 (5.7%) 227 (9.9%) 120 (16%) <0.001
Dyslipidemia 46 (15%) 561 (24%) 261 (34%) <0.001
Hypertension 48 (16%) 814 (35%) 433 (57%) <0.001

n: number of individuals; data show mean ± standard deviation (SD) values.



S. Watanabe, et al. 68

doi: 10.12938/bmfh.2022-047 ©2024 BMFH Press

Fig. 2. Microbial interaction networks and driver nodes from pairwise comparisons of the groups based on BMI (normal vs. lean and normal vs. 
obesity) among enterotypes B (a), P (b), and R (c). Driver nodes were obtained using NetShift analysis; those shown in red indicate that the edges 
are exclusive to case data. All comparisons are based on a control-case order (normal vs. lean or normal vs. obesity). BMI: body mass index.
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Simulation-based stability analysis
We simulated each enterotype microbial temporal 

variation using generalized Lotka–Volterra (gLV) dynamics 
(Supplementary Fig. 3a–3c). Non-rare genera subsampled from 
a metacommunity were used to produce local communities, and 
community population dynamics were simulated until steady-
state abundances were reached. We then evaluated the stability 
properties of the ecosystems using mathematical criteria from 
dynamical systems theory.

Multiple linear regression analyses revealed that for enterotype 
P, the lean group had a significantly lower resistance value 
(coefficient=−0.12 [−0.18 to −0.05], p<0.001) than the normal 
group (Table 3 and Fig. 3). Additionally, for enterotype B, the lean 
group had a significantly lower resilience value (coefficient=−0.02 
[−0.03 to −0.00], p=0.042) than the normal group (Table 3). We 
did not observed significant associations between stability indices 
and BMI status for enterotype R (Table 3).

DISCUSSION

Life expectancy has increased worldwide, leading to an 
increased incidence of frailty. Several studies have demonstrated 
the potential role of gut microbiota on frailty pathophysiology. In 
this large observational study, we studied the interplay of BMI, 
age, and disease status in an older adult Japanese cohort. We 
demonstrated that gut microbiota enterotypes and BMI are the key 
determinants for microbe–microbe interactions and microbiota 
stability in the older Japanese population. Our findings could 
be informative in the development of therapeutic approaches 
aimed at reducing frailty and involving the modulation of gut 
microbiota.

In this study, the proportion of females was considerably higher 
in the lean group than those in the normal and obese groups. This 
trend toward lean women (BMI <25 kg/m2) has previously been 
reported in Japan [5]; however, its precise cause is not known. 
Previous studies on the distribution of gut bacterial communities 
among healthy individuals reported a higher abundance of genus 
Bifidobacterium in the gut microbiome of Japanese individuals 
than that in the gut microbiome of other individuals [17, 35–37]. 
Similarly, we found that enterotype B was the most enriched in 

the Japanese cohort analyzed in the present study.
Microorganisms form ecosystems through interspecies 

interactions (such as reciprocity and competition). In addition, 
it is known that gut microbiota ecosystems affect our health; 
therefore, understanding the gut microbial network is important 
in the field of medicine. Predicting microbial associations from 
microbial abundance data is known as network inference, and 
this is widely applied in bioinformatics and is beginning to be 
adopted in ecology [25, 38]. In addition, co-occurrence networks 
have also been used to build dynamic models of microbial 
communities. A dynamic model consists of the gLV equation 
and makes it possible to simulate the temporal changes in the 
abundance of community members. Application of the Lotka–
Volterra model to metagenomic analysis has been shown to be 
successful for predicting the temporal dynamics of microbiota 
in the presence of known interspecific interactions (quantified 
microbial interactions) [30]. Therefore, we performed a realistic 
simulation using the gLV equation to evaluate the co-occurrence 
network of intestinal flora and its stability [39].

Improving microbiota resilience could have significant health 
implications [40]. Moreover, a genus-level correlation network 
has different microbe–microbe interactions associated with age 
and BMI [17]. SparCC have been estimated from microbiome 
data collected using a case-control design for interactions between 
bacterial species [29]. A previous study [39] reported that when 
the interaction between bacterial species is estimated using 
relative-amount data, the coefficients obtained by SparCC and the 
gLV model have high similarity. The co-occurrence coefficients 
between core genera and other minor genera of the microbial 
community network are frequently used to evaluate the keystone 
bacterial species and the interactions among the community 
members [39]. In the present study, we calculated the SparCC 
interaction coefficient for each cohort stratified by enterotype and 
BMI and compared the network association for each BMI status 
using a NetShift analysis. In a microbial community, density 
corresponds to the proportion of observed microbial associations 
(edges) out of all theoretically possible associations (all the nodes 
in the network). Therefore, a greater density value indicates 
higher crosstalk among the resident microbes represented in the 
network nodes [31]. This behavior was expected due to the scarce 

Table 2. Network statistics for all pairwise comparisons between groups (normal, obesity, and lean)

Host factors
Enterotype Case–Control comparisons BMI status Density ClusterC AvgPath
B Normal vs. Lean Normal 0.50 0.61 1.50

Lean 0.12 0.31 2.86
Normal vs. Obesity Normal 0.49 0.60 1.51

Obesity 0.30 0.44 1.80
P Normal vs. Lean Normal 0.37 0.39 1.67

Lean 0.11 0.12 3.19
Normal vs. Obesity Normal 0.38 0.41 1.64

Obesity 0.23 0.44 2.04
R Normal vs. Lean Normal 0.41 0.61 1.72

Lean 0.13 0.44 2.75
Normal vs. Obesity Normal 0.38 0.58 1.72

Obesity 0.15 0.47 2.31

The left column indicates network statistics. AvgPath: Average Path; ClusterC: Cluster coefficient, and Density; 
BMI: body mass index.
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Table 3. Comparison of the stability values across the BMI groups at each enterotype

Host factors Host parameters Enterotype Resilience Resistance
Coefficient (multivariable) Coefficient (multivariable)

BMI Normal B −−− −−−
Obesity 0.000 [−0.01 to 0.01], p=0.872 0.000 [−0.03 to 0.04], p=0.792
Lean −0.020 [−0.03 to −0.00], p=0.042 * 0.040 [−0.01 to 0.10], p=0.111

Age 60S −−− −−−
70S 0.010 [−0.00 to 0.02], p=0.199 0.010 [−0.03 to 0.04], p=0.742
80S or more 0.010 [−0.01 to 0.02], p=0.547 −0.030 [−0.08 to 0.03], p=0.319

Sex Female −−− −−−
Male 0.000 [−0.01 to 0.01], p=0.548 0.010 [−0.02 to 0.04], p=0.438

Gastrointestinal disease Absence −−− −−−
Presence 0.000 [−0.01 to 0.01], p=0.644 0.010 [−0.02 to 0.04], p=0.46

Metabolic disease Absence −−− −−−
Presence 0.000 [−0.01 to 0.01], p=0.756 −0.020 [−0.05 to 0.01], p=0.199

BMI Normal P −−− −−−
Obesity 0.010 [−0.01 to 0.02],p=0.381 −0.040 [−0.08 to 0.00], p=0.067
Lean 0.010 [−0.01 to 0.04], p=0.348 −0.120 [−0.18 to −0.05], p<0.001 *

Age 60S −−− −−−
70S −0.000 [−0.02 to 0.01], p=0.827 0.010 [−0.02 to 0.05], p=0.521
80S or more −0.010 [−0.04 to 0.01], p=0.213 0.020 [−0.03 to 0.08], p=0.41

Sex Female −−− −−−
Male 0.000 [−0.02 to 0.01], p=0.804 0.010 [−0.03 to 0.04], p=0.711

Gastrointestinal disease Absence −−− −−−
Presence 0.000 [−0.01 to 0.02], p=0.57 −0.020 [−0.05 to 0.02], p=0.374

Metabolic disease Absence −−− −−−
Presence 0.000 [−0.01 to 0.01], p=0.911 0.030 [−0.01 to 0.06], p=0.148

BMI Normal R −−− −−−
Obesity −0.010 [−0.02 to 0.01], p=0.42 −0.000 [−0.04 to 0.03], p=0.807
Lean 0.020 [−0.01 to 0.04], p=0.184 −0.040 [−0.08 to 0.01], p=0.131

Age 60S −−− −−−
70S 0.000 [−0.01 to 0.02], p=0.85 0.010 [−0.02 to 0.04], p=0.705
80S or more −0.010 [−0.03 to 0.01], p=0.225 0.030 [−0.01 to 0.07], p=0.152

Sex Female −−− −−−
Male 0.010 [−0.01 to 0.02], p=0.419 −0.010 [−0.04 to 0.01], p=0.345

Gastrointestinal disease Absence −−− −−−
Presence 0.000 [−0.01 to 0.02], p=0.599 0.010 [−0.02 to 0.04], p=0.417

Metabolic disease Absence −−− −−−
Presence 0.000 [−0.01 to 0.02], p=0.744 −0.030 [−0.05 to 0.00], p=0.058

To account for variations in participant characteristics or disease factors between the BMI groups, we estimated the statistical significance based on 
multiple linear regression corrected for age, gender, and disease status using a coefficient test followed by Benjamini–Hochberg correction. *p<0.05.
BMI: body mass index.

Fig. 3. Effect of overweight and underweight on simulation-based resistance value. Resistance values range from 0 (low) to 1 (high). **p<0.001 by 
multiple regression coefficient tests followed by Benjamini–Hochberg correction.
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resilience of the system, as a poorly connected network is less 
robust to changes than high-density networks [30]. This behavior 
is in agreement with our results for the density and clustering 
coefficient in the lean status.

In many diseases, a set of key microbial groups likely acts 
as a “driver” for facilitating several changes in the microbial 
community structure and hence becomes an essential factor for 
understanding the microbial basis of the disease [30]. In our 
NetShift analysis, we detected driver taxa for facilitating BMI 
differences present in our older Japanese cohort. This driver genus 
captures several ecological insights that will be explained next. 
The edge connections of driver nodes comprising Bacteroides, 
Collinsella, and Erysipelotrichaceae among enterotype B 
have been related to metabolic interactions involving L-lactate 
and monosaccharides [41]. The edge connections of driver 
nodes comprising Prevotella, Collinsella, and Streptococcus 
among enterotype P have been related to metabolic interactions 
involving NH3 and monosaccharides [41]. The edge connections 
of driver nodes comprising Ruminococcus and Bifidobacterium 
among enterotype R have been related to metabolic interactions 
involving Omega-6 fatty acid and Vitamin Bs (Vitamin B2, B6, 
B7, B12) [41]. In agreement with our findings, Prevotella was 
also decreased in older adults with frailty in an older Chinese 
Cohort [42]. In addition, other studies showed that the association 
with frailty was strongest for sugars added during food production 
[43]. These results indicate that decreased Prevotella occupation 
and abnormal monosaccharide metabolism could be closely 
related to frailty progression.

Furthermore, we performed a simulation-based stability 
analysis and calculated the gut microbial stability for each 
enterotype-body type among the older individuals using the 
interaction coefficient of each cohort obtained by SparCC 
estimation and the individual gut microbial composition 
according to the gLV model. The simulation-based stability 
analysis revealed a lower resistance index, which is one of the 
gut microbial stability indices [33], in the lean group than those in 
the other two groups, even after controlling for the covariation in 
age, sex, or disease status between the BMI groups, especially for 
enterotype P. Furthermore, being underweight is thought to result 
from body wasting [9, 10]. However, whether the low resistance 
or the instability of the gut microflora is a result of therapeutic 
interventions to treat frailty or caused by being underweight 
has yet to be explored. Further research is needed to understand 
the gut microbiome ecosystem and develop a novel method of 
microbiome manipulation to prevent frailty.

Many diseases, including inflammatory bowel disease, liver 
cirrhosis, rheumatoid arthritis, type 2 diabetes, and cardiovascular 
disease, are influenced by gut microbiota imbalance. However, to 
date, the mechanism by which gut microbiota instability affects 
disease progression remains unclear. Our findings shed light on 
gut microbial instability as a new marker for disease progression, 
in addition to gut microbial differences. Furthermore, our findings 
provide insights into various microbe–microbe interactions, as 
well as gut microbial stability in older Japanese populations. These 
findings could assist in determining gut microbial modulations 
for designing novel therapeutic approaches for obesity and frailty.

This study has some limitations that should be considered when 
interpreting the findings. First, this case-control study was limited 
to an evaluation of bacterial flora stability by correlation-based 
methods, hindering estimation of the directionality of ecological 

interactions. Therefore, a longitudinal study to estimate microbial 
interactions with more accuracy is necessary. Second, data from 
the Mykinso cohort may or may not be representative of the 
Japanese population. However, this study uses one of Japan’s 
largest microbiome databases, and the use of this database 
eliminates bias caused by the small sample size. Third, we did not 
exclude from our dataset individuals who had common diseases 
because it is rather normal for some or most individuals to have 
one or more diseases, such as back pain and hypertension, when 
the target population is older adults (>64 years old). Therefore, 
the confounding effects of the prevalence of certain diseases on 
the association of microbiome stability and BMI classifications 
cannot be ruled out.

In conclusion, we demonstrated the microbe–microbe 
interactions and gut microbiome stability in older Japanese people 
and suggested an association between the reductions in microbiota 
resilience and BMI. Furthermore, we showed that changes in BMI 
are frequently associated with changes in a core set of covarying 
taxa. Our findings also revealed a low resistance index in the 
lean group. These findings could be useful for determining the 
types of gut microbiota and specific gut microbial target species 
for successful gut microbiota modulation in the development of 
appropriate therapeutic strategies to manage frailty and promote 
healthy aging.
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