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Abstract

Recently, statistical population models using age-at-harvest data have seen increasing use for monitoring of harvested
wildlife populations. Even more recently, detailed evaluation of model performance for long-lived, large game animals
indicated that the use of random effects to incorporate unmeasured environmental variation, as well as second-stage
Horvitz-Thompson-type estimators of abundance, provided more reliable estimates of total abundance than previous
models. We adapt this new modeling framework to small game, age-at-harvest models with only young-of-the-year and
adult age classes. Our Monte Carlo simulation results indicate superior model performance for the new modeling
framework, evidenced by lower bias and proper confidence interval coverage. We apply this method to male wild turkey
harvest in the East Ozarks turkey productivity region, Missouri, USA, where statistical population reconstruction indicates a
relatively stationary population for 1996–2010.
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Introduction

Although the wildlife literature has seen models for age-at-

harvest data in the past [1,2], models for these types of data

entered the forefront of monitoring population status and trends

only recently [3–9]. Some of the most recent developments require

estimation of initial animal cohort abundance as a parameter

[3,4,7,8], or as a latent variable [5] in a frequentist or Bayesian

framework, respectively. Recently, models for statistical population

reconstruction (SPR) of harvested large game animals have been

developed that utilize the same likelihood-based inference

techniques, but instead consider estimating animal abundance

following optimization, outside of the likelihood framework with a

Horvitz-Thompson-type estimator, which adjusts the observed

harvest count by the estimated probability of harvest in

accordance with the assumption of a binomial sampling scheme

[9]. These recent developments constitute improvements over

previous models of this nature, particularly when stochastic

environmental factors may affect population dynamics [9].

Statistical population reconstruction of small game populations,

however, imposes additional challenges. Often, only two age

classes are distinguishable from one another. Adults, which may be

one year or older, typically cannot be distinguished from one

another and only distinguishable from the young-of-the-year. The

older two age classes, then, represent a combination of animals

born in the previous year that survived to the current year, as well

as the adults that survived an additional year or more following

their first year. In comparison to fully aged harvests of many big

game animals, this represents a considerable loss of cohort data

upon which the SPR models of Gove et al. [3], Skalski et al. [4],

Skalski et al. [8], and Gast et al. [9] rely. On the other hand,

Skalski et al. [10] found little loss in precision when big game

population reconstruction was based on pooling adult harvest

information for age classes 3+.

Previous work has examined a modeling framework for small

game animals that provides a way to accommodate the unknown

contribution of prior cohorts to the adult age group of a given

cohort [1,7]. These models, however, suffer from similar

difficulties associated with the big game models of Gove et al.

[3], Skalski et al. [4], and Skalski et al. [8] inasmuch as they

assume constancy of demographic rates across time periods when

additional data are not available to inform estimation of year- or

age-specific rates. In addition, models with only fixed effects have

proven in fully aged simulation studies to provide biased estimates

of annual abundance and poor confidence interval covariate [9]. It

is therefore of interest to extend the modeling framework of Broms

et al. [7] in a manner similar to Gast et al. [9], and to determine

what impact this has on statistical population reconstructions of

small game populations with pooled age classes.

Materials and Methods

Models for Statistical Population Reconstruction of Small
Game Populations

Laake [1], using a model formulation for age-harvest data

originally proposed by Dupont [2], proposed optimizing a
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likelihood via the expectation –maximization (EM) algorithm [11],

wherein components of the age A+ category (the oldest

distinguishable age) in a particular year that belong to different

cohorts are included by weighting the expected catch for each

cohort relative to the total expected catch of all contributing

cohorts. These weights must be estimated and, of course, rely on

the current parameter estimates. Therefore, the expected catch

(being treated as observed data in the likelihood function) changes

during the optimization phase. Optimization of the likelihood

function proceeds as usual, using these expected values of catch

produced by the weighting, until convergence is achieved.

An alternative method [7] involves writing a likelihood that is

conditional on having been observed (harvested), and using the

data and parameters to estimate the probability of having been

harvested in a given year as the ratio of harvest in that year to total

harvest of the cohort and previous cohorts contributing to the A+
category. To see this more clearly, consider a sample age-at-

harvest matrix given in Table 1, and consider the case where

animal age can only be determined as young-of-the-year (age K

year at a fall harvest) and adult (age 1K year at a fall harvest). The

adult category for each year of data is then a composite of the

prior year’s surviving juveniles plus the prior year’s surviving

adults, indicated by the shaded age of prior years to the final

highlighted cell, xz
22~x22zx23z . . . zx2,A, where the ‘‘+’’ in xz

22

indicates it is a composite of all older age classes. Note that cohorts

are numbered chronologically; upon collapsing adult age classes,

N1 indicates the abundance of all adults upon initiation of the

statistical population reconstruction, N2 represents the young-of-

the-year in year 1, N3 represents the initial cohort (recruit)

abundance in year 2, and so on.

Consider the cohort corresponding to the main diagonal of

Table 1. If we express the likelihood of the observed harvest as

conditional on harvest, we may write the binomial likelihood as

follows:

L2
~NN2,~pp,sDX
� �

~
x11zxz

22

x11,xz
22

 !
p 1,2Danyð Þx11 p 2,2Danyð Þx

z
22 , ð1Þ

where xij denotes the number of animals in cohort j that are

harvested in yeari, and the notation p i,jDanyð Þ indicates the

probability of a member of cohort j being harvested in year i, given

that they were ever harvested. This binomial formulation requires

the assumption of independent of fates of each animal within a

given cohort and year.

A reasonable estimate for p i,jDanyð Þ is the percent of total

harvest observed in year i of cohort j. For example, the estimate of

p i,jDanyð Þ (cohort j = 2 begins with initial abundance N2) is

p̂p 1,2Danyð Þ~ x11

x11zxz
22

: ð2Þ

Standard maximum likelihood theory for multinomial models

tell us this is, in fact, the maximum likelihood estimate for the

probability of harvest in the x11 cell of the age-at-harvest table.

In order to rewrite the cohort likelihood in Equation (1) in terms

of the parameters to be estimated, we replaced the observed

harvest values in p i,jDanyð Þ with their expected value, computed as

a function of the parameter values. That is, instead of estimating

p̂p 1,2Danyð Þ as in Equation (2), we instead used

p̂p 1,2Danyð Þ~ E x11ð Þ
E x11ð ÞzE xz

22

� � : ð3Þ

In this case, under an assumption that each harvest count is

marginally binomially distributed, we computed each expected

value as the number of animals from prior cohorts that survived

the prior year’s harvest as well as the nonharvest season, and were

subsequently harvested in the following year:

E x11ð Þ~N2p1

E xz
22

� �
~ N2zN1ð Þq1s1p2,

ð4Þ

where qi~1{pi~ exp { exp cð Þfið Þ is the probability of surviving

the harvest process in year i which is dependent on a harvest

vulnerability parameter, c, and a measure of hunter effort in, and a

measure of hunter effort in year i, fi [12] (pg. 296), and si is the

probability of surviving the nonharvest season immediately

following the harvest season in year i. Similarly, we computed

the expected harvest count for cell (3,2) of the age-at-harvest

matrix as

E xz
32

� �
~ N1zN2ð Þq1s1zN3ð Þq2s2p3:

If sufficient auxiliary data are available, the probabilities may be

made dependent on age class as well as year.

We computed each expected harvest count in this manner, and

we created the joint likelihood of all cohorts as the product of

individual cohort likelihoods. The likelihood contribution for

cohorts 1 (the first observation of age class 2+) and Yz1 (the last

observation of age class 1) cannot be included in the likelihood in

the manner described above, so they are included as binomial

components, such as

L N1,p1Dxz
12

� �
~

N1

xz
12

� �
p

xz
12

1 q
N1{xz

12
1 :

As in Gast et al. [9], we adopted the belief that unmeasured

randomly distributed (and, in the work presented here, mutually

independent) factors affect demographic processes temporally and,

thus, we may include these random effects in the model

formulation. To do so, we created the transformations

Table 1. Example of age-at-harvest data.

NA NA-1 NA-2 NA-2 NA-3 ...

NA+1 x11 x12 x13 x14 … x1,A

NA+2 x21 x22 x23 x24 … x2,A

NA+3 x31 x32 x33 x34 … x3,A

..

. ..
. ..

. ..
. ..

. ..
. P

NA+Y21 xY1

doi:10.1371/journal.pone.0065244.t001

Random Effects Models for Small Game Populations
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si~
exp bzeið Þ

1z exp bzeið Þ ,and

pi~1{ exp { exp cztið Þfið Þ
ð5Þ

and hypothesized that

ei*N 0,s2
b

� �
,and

ti*N 0,s2
c

� � ð6Þ

and substituted the members of (5) into the appropriate locations

in the likelihood function. In these formulations, the parameters b
and c represent base conditions for survival and harvest

vulnerability, respectively, that are modified by random effects.

In general, these random effects need not be independent of one

another or normally distributed. More complex formulations may

be used by considering multivariate formulations for dependence

between ei{1 and ti, or within ~ee and/or ~tt. With the current

formulation, we then must augment the joint likelihood with the

normal distribution components to form the joint likelihood

L ~NN,b,c,se,st,~ee,~ttDX
� �

~ P
Yz1

i~1
Li

~NN,c,b,~ee,~tt,sb,stDX
� �

| P
Y{1

i~1
wsb

eið Þ
� 	

P
Y

i~1
wst tið Þ

� 	 ð7Þ

where ws xð Þ denotes the normal distribution density with mean 0

and variance s2.

The Horvitz-Thompson estimation approach may be employed

to consider reduced-parameter models which avoid the direct

estimation of initial cohort abundance via maximum likelihood in

exchange for a second-stage abundance estimator based on

adjusting the observed harvest count by the estimated harvest

probability. This method of estimating abundance has proven

successful in other fields [13,14], and in models for fully aged

datasets of large game [9]. In this case, we first computed the

estimate of initial recruit abundance using the Horvitz-Thompson

estimator.

N̂Ni~
xi

p̂pi

, ð8Þ

where the current parameter values are used to compute p̂pi. We

simply proceeded to compute the cohort likelihood by first

computing the expected harvest counts as in Equation (4).

Models for statistical population reconstruction based on age-at-

harvest data require auxiliary data sources such that all parameters

are identifiable [3]. For this reason, independent auxiliary data

sources are sought to augment the age-at-harvest likelihood to

provide parameter identifiability and estimability. Potential data

sources include mark-recapture experiments, radiotelemetry stud-

ies, aerial surveys, and many other techniques common to the

wildlife literature whose likelihood, denoted Laux, will share

parameters with the age-at-harvest likelihood. The joint likelihood

of the age-at-harvest and auxiliary likelihood is formed as the

product of the two (or more) components, which is integrated over

the random-effects terms to form the marginal likelihood of the

model parameters,

L ~NN,b,c,se,stDX,Y
� �

~ð
e1

. . .

ð
eY{1

ð
t1

. . .

ð
tY

Lage-at-harvest|Lauxd~eed~tt
ð9Þ

where Y represents the auxiliary data source.

An auxiliary catch-effort likelihood which requires no additional

data is formed by considering total annual harvest to be a binomial

sample from the unknown total annual abundance N̂Ni with the

unknown harvest probability, p̂pi, as in Skalski et al. [4] (Equation

3). The use or omission of this likelihood component constitutes a

dimension of the study presented herein.

This marginal likelihood, integrated over the random-effects

terms, is approximated with the Laplace approximation with

Automatic Differentiation Model Building (ADMB) [15] software

(the only such prepackaged software widely available for fitting

nonlinear mixed-effects models of this nature in a frequentist

framework) and optimized. Empirical Bayes estimates of the

random effects ~ee and ~tt are available once maximum likelihood

estimates of other model parameters are available. When the

Horvitz-Thompson estimator is employed rather than direct

estimation of each initial cohort abundance, the ~NN component is

omitted from the likelihood in Equation (9), and the estimates of

abundance required by the model are obtained with the Horvitz-

Thompson-type abundance estimator during optimization. This

method of first computing an estimated value of the variable N̂Ni

� �
and then using it as data in the auxiliary likelihood takes the form

of an EM algorithm.

Upon completion of likelihood optimization, we estimated

standard errors from the inverse-Hessian matrix (for parameters)

and the delta method (for functions of parameters). When the

absolute quantity of each initial cohort abundance, N̂Ni, directly, we

estimated the age-class abundance of the population by.

N̂Ni2~ N̂Ni{1,1zN̂Ni{1,2

� �
q̂qi{1ŝsi{1:

For the second-stage abundance estimation approach, we used

the Horvitz-Thompson-type estimator of Equation (8) individually

for each cell of the age-at-harvest matrix, xij , with its correspond-

ing estimate of harvest probability, p̂pij , as N̂Nij~xij

.
p̂pij . Uncer-

tainty estimation for the Horvitz-Thompson abundance estimation

approach requires an additional component associated with the

second-stage estimator, which we described in the Appendix of

Gast et al. [9].

We use the codes HTRE and HTFE to refer to models where

abundance is estimated with a Horvitz-Thompson estimator using

random effects (RE) and fixed effects (FE), respectively. The codes

AARE and AAFE are used to refer to models where the initial

absolute abundance (AA) of each cohort is estimated directly,

within the likelihood for random effects and fixed effects,

respectively.

Simulation Model
We conducted a simulation study to assess the ability of the

models described above to produce successful estimates of

population abundance and demographic parameters. Our simu-

lation study involved simulating 1,000 populations with a chosen

set of demographic parameters, along with random interannual

effects, fitting each model to each dataset, and computing

Random Effects Models for Small Game Populations
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summary measures to describe how accurate and precise model-

based estimates were in reconstructing population demographics.

We conducted simulations by first choosing a set of fixed

demographic parameters (levels of b, c, and reproduction) that led

to a population of approximately 40,000 individuals with chosen

characteristics (such as a population with abundance approxi-

mately stationary in expectation), creating an initial stationary

population distribution, evolving this population with random

interannual fluctuations included in the process parameters for 75

years, and then capturing the final 25 years as the harvest data to

be used for reconstruction. We used a stochastic Leslie matrix [16]

formulation to simulate animal populations with a single harvest

vulnerability parameter (c) and a single survival probability

parameter bð Þ for all age classes. We assumed simulated variations

in demographic processes (Table 2) would affect each age class

similarly within a given year, and therefore tij~ti and eij~ei, Vj.

We simulated harvest counts and number surviving as binomial

processes separately for each age class and each year, and we

assumed harvest to be known precisely. We assumed recruit

abundance to be `linearly dependent on the number of prior

breeding-age adults, and this relationship was also assumed to be a

Poisson process, which was also simulated with lognormal

interannual variation in the stock-recruit parameter. We chose

input parameters (Table 2) to produce a stable l~1ð Þ population

at zero, low, medium, and high levels of simulated variation.

Auxiliary data are required to fit the models to data. The

amount of simulated auxiliary data available constituted another

dimension for this simulation study. As small game animals are

often easy to tag, we were interested to examine model

performance under conditions when a relatively large amount of

auxiliary data was available. For this reason, we conducted

simulations with 6 years of radiotelemetry with 30 animals at risk

annually that were used to aid in estimation of harvest probability.

We were also interested to determine how sensitive the simulation

results were to the amount of available data. For this reason, we

conducted simulations with only a single year of radiotelemetry

data comprised of 30 tagged animals. In both cases, the auxiliary

data occurred in the middle of the 25 years of simulated age-at-

harvest data (year 12 for the single-year case, years 9 through 14

when 6 years are available). In both cases, the number of animals

detected as live following the harvest season and the known

number tagged yields (by subtraction) a binomial sample from the

number tagged with probability of harvest equal to the probability

of harvest of untagged animals. These data were included in the

joint likelihood as the product of

Binomial Ni,pi~1{exp { exp cztið Þfið Þð Þ densities.

We examined the quality of reconstructions by comparing the

median of the relative (percent) bias (MRB) in total abundance

MRBi~median
N̂Ni1zN̂Ni2z

� �
{ Ni1zNi2zð Þ

Ni1zNi2zð Þ |100%

 !
,

as well as the estimated confidence interval coverage of the 1,000

simulated samples provided by asymptotic 95% confidence

intervals computed as

N̂Ni1zN̂Ni2z

� �
+1:96|cSESE N̂Ni1zN̂Ni2z

� �
:

We estimated confidence interval coverage as the proportion of

true annual abundances contained within the 95% confidence

interval for each model, for each year of reconstruction,

aggregated across simulations.

Statistical Population Reconstruction for Wild Turkeys in
Missouri, USA

In order to demonstrate the modeling procedure, we examined

an age-at-harvest dataset of male wild turkeys (Meleagris gallopavo)

collected from the East Ozarks turkey productivity region in the

State of Missouri, USA (Table 3). The Ozarks East turkey

productivity region consists of the following counties, which are

located in southeastern Missouri: Butler, Carter, Crawford, Dent,

Iron, Madison, Oregon, Reynolds, Ripley, St. Francois, Shannon,

Washington, and Wayne. Nearly the entire 23,167 km2 region is

located within the Ozark Highlands section. This heavily forested

region is dominated by rugged terrain, which consists of highly

dissected hills and streamside breaks [17]. Oak (Quercus spp.),

hickory (Carya spp.), and shortleaf pine (Pinus echinata) are common

in the Ozark forest [18]. Elevations within the region range from

85 to 540 m.

Two harvests are conducted in this area annually, in spring and

in fall. The larger spring harvest is of males only, while the smaller

fall harvest is of both males and females. In addition, the spring

hunt allows for unpermitted landowner harvest as well as a youth

hunter season, while the fall hunt allows for unpermitted

landowner harvest and an archery harvest (Table 3). Sex and

age class (juvenile or adult) are determined for each harvested

animal at hunter check stations, or more recently, by hunters

themselves through an online check system. Because of the greater

and better records of harvested males, we chose to perform a

statistical population reconstruction of only the male component of

the population. The period of data used for statistical population

reconstruction extends from 1996 to 2010, with 5 years of

auxiliary radiotelemetry data (1996 to 2000, Table 3). In addition,

an independent estimate of the poult-to-hen ratio was available for

each year of reconstruction, as well as an index of abundance

arising from fall archery hunter counts (Table 3). Hunter effort

Table 2. Variation induced in natural demographic parameters of interest for small game simulation study.

Levels of stochasticity Survival probability mS = 0.50
Annual harvest rate
mP = 0.40

Fecundity
mr~exp 2:0ð Þ young/adult

Low se = 0.1 (0.450, 0.550) st = 0.1 (0.338, 0.460) sd = 0.1 (6.050, 9.025)

Medium se = 0.2 (0.401, 0.599) st = 0.2 (0.287, 0.529) sd = 0.2 (4.953, 11.023)

High se = 0.3 (0.354, 0.646) st = 0.3 (0.242, 0.601) sd = 0.3 (4.055, 13.464)

(Harvest probability assessed at mean level of effort.).
doi:10.1371/journal.pone.0065244.t002

Random Effects Models for Small Game Populations
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information for the spring permitted hunt (Table 3) is presented as

the number of hunter trips/10,000, estimated from a post-season

survey.

A joint likelihood model of the multiple data sources was formed

for the male turkey population. The primary likelihood compo-

nent for the age-at-harvest data was formed, as described in

Equations (7) and (9). Separate harvest vulnerability coefficients (cJ

for juveniles, cA for adults) were used to model separate harvest

probabilities for juveniles and adults.

We assumed the auxiliary radiotelemetry harvest data to be

binomially distributed from the number at risk, with probability of

harvest equal to probability of harvest of unmarked animals.

Therefore, the auxiliary likelihood component was included as.

LRadiotelemetry~ P
2,000

i~1996

RJ
i

rJ
i

 !
pJ

i

� �rJ
i 1{pJ

i

� �RJ
i
{rJ

i |

P
2,000

i~1996

RA
i

rA
i

 !
pA

i

� �rA
i 1{pA

i

� �RA
i

{rA
i ,

where RJ
i and RA

i represent the known number of tagged

individual juvenile and adult male turkeys, respectively, at risk in

year i; rJ
i and rA

i represent the known harvest count of the number

of juveniles and adult males, respectively, at risk; and pJ
i and pA

i

represent the harvest probabilities of juveniles and adults,

respectively, in year i.

For both the age-at-harvest and auxiliary radiotelemetry data,

harvest probability was parameterized as

pJ
i ~1{ exp { exp cJztJ

i

� �
fi

� �
and

pA
i ~1{ exp { exp cAztA

i

� �
fi

� �
,

ð11Þ

where we assumed tJ
i *Normal o,s2

tJ

� �
and

tA
i *Normal o,sA

tJ

� �
.

No auxiliary information was available to support examination

of separate natural survival probabilities for juveniles and adults,

so we used a single survival parameter,b, for both age classes. As

there are two survival periods (the period between spring and fall

harvest of year i [22 weeks, summer], and the period between fall

harvest in year i and spring harvest of year i+1 [24 weeks, winter]),

we assumed that the survival rate b was constant across time

within a year, but that interannual variation is present across

years. Survival probability was therefore parameterized as

sS
i ~ exp { exp bzeS

i

� �
|22

� �
sW

i ~ exp { exp bzeW
i

� �
|24

� � ð12Þ

to maintain bounding between (0,1), as well as to make survival

probability dependent on the length of the interval the turkey must

survive, in weeks(S = summer, W = winter). It was assumed that

eS
i *Normal 0,s2

eS

� �
and eW

i *Normal 0,s2
eW

� �
.

Modifications to the age-at-harvest likelihood were necessary to

account for animals taken outside of the general spring permitted

harvest, which were considered known removals for this analysis,

because 1) no measure of effort is available for these harvests or 2)

there was insufficient auxiliary or harvest data. We assumed, for

purposes of the model, that spring known removals occurred prior

to the permitted spring harvest season. We also assumed the turkey

population to have the life history as detailed in Figure 1.

Therefore within our model, in order for juveniles (age .9

months) in year i to be available for harvest as adults (age .1 year)

in year iz1, they must not be removed in the spring landowner or

youth harvest and survive the spring permitted harvest. After the

spring permitted harvest (when turkey are greater than age 1 year),

they are classified as adults, where they then must survive until the

fall harvest, survive the fall harvest, and survive until just prior to

the following year’s spring landowner removal period. As adults

may survive more than 1 year, there is a possibility for older adults

to stay in the adult age class, rather than being removed from the

population. Therefore, the expected number of adults available for

harvest in year iz1 is

NA
iz1~

NJ
i {SRJ

i

� �
1{pJ

i

� �
sS

i

z NA
i {SRA

i

� �
1{pA

i

� �
sS

i {FRA
i

" #
sW

i , ð13Þ

where NA
i = adult abundance in year i, NJ

i = juvenile abundance

in year i, SRJ
i = juvenile spring removals in year i, FRA

i = adult fall

removals in year i.

Note that the number of juveniles removed in fall does not enter

the equation, because fall juvenile removals are confounded with

the number of male poults produced, and the number of these that

survive the summer. Since an estimate of this survival probability

(and data that might be used to estimate this survival probability) is

not available, an estimate of poult abundance is not available.

Abundance of juveniles in year i, then, is the abundance

immediately prior to the spring juvenile removal, when the

turkeys are roughly 1 year old and have already undergone a fall

harvest at age &4 months.

We estimated annual abundance as the total male abundance

prior to the spring harvest season. Therefore, in the age-at-harvest

likelihood component, annual abundance is estimated as

N̂Ni~
xJ

i

pJ
i

zSRJ
i

� �
z

xA
i

pA
i

zSRA
i

� �
, ð14Þ

such that the Horvitz-Thompson estimator is used to scale up the

harvest counts (xJ
i and xA

i for juveniles and adults, respectively) via

the probability of harvest, and the spring landowner removals are

added to this to obtain the total estimated number of turkeys in the

spring of year i. Fall harvest is considered a known removal in this

model (because there is insufficient data across all years of the

study), therefore the estimated count cannot be written as a

function of model parameters. The consequence of this is that

variability in annual abundance will be slightly underestimated,

because the variability associated with the fall juvenile male

removal is not accounted for.

The joint likelihood is written as the product of the age-at-

harvest likelihood, the radiotelemetry likelihood, and the normal

density components associated with the random effects ~tt and ~ee.

The marginal likelihood, integrated over the random-effects

components, is approximated with the Laplace approximation,

which is then optimized numerically with ADMB [15] software.

Results

Simulation Results
We omitted model AAFE from results that do not include the

auxiliary catch-effort likelihood of Skalski et al. [4] (Equation 3)

due to numerical instability during optimization. The absolute-

abundance models depend heavily on the cohort structure of the
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age-at-harvest likelihood, and the catch-effort auxiliary likelihood

helps support that structure. However, Horvitz-Thompson type

estimators (i.e., Equation 8) are first-order, unbiased, without the

need for any information on cohort structure.

Median relative bias of total annual abundance based on 1,000

simulations was lowest for random-effects models employing the

Horvitz-Thompson (HTRE) abundance estimator (Figure 2), par-

ticularly when the auxiliary catch-effort likelihood of Skalski et al.

[4] (Equation 3) is omitted. This model, HTRE, shows bias near 0%

regardless of the level of simulated variation (rows of Figure 2) or

quantity of auxiliary data simulated (two leftmost columns of

Figure 2). The corresponding fixed-effects model, HTFE, also

showed low bias (results overlapped with those of HTRE for the

case when no interannual variation was simulated in demographic

Figure 1. Turkey life-history flowchart. Death is not explicit but can occur at many possible nodes (natural mortality in summer or winter,
harvest in spring or fall).
doi:10.1371/journal.pone.0065244.g001
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processes). The random-effects version of this model showed

nearest-to-nominal confidence interval coverage of the asymptotic

95% confidence intervals, with coverage ranging from approxi-

mately 84% (when a high magnitude of interannual variation was

simulated) to 96% (when no interannual variation was simulated,

and a low amount of auxiliary data was available).

In contrast, the fixed-effects model of Broms et al. [7] that

estimated each initial cohort abundance as an individual

parameter, AAFE (which could only be fitted when the auxiliary

catch-effort likelihood of Skalski et al. [4] (Equation 3) was

incorporated) exhibited low bias, but very poor estimated

confidence interval coverage, which dipped as low as 22% and

was less than 40% in all cases of nonzero simulated environmental

variation. The modification of this model to incorporate random

effects, AARE, produced estimates of total annual abundance that

were negatively biased (except for the case of no simulated

interannual variation), with accompanying subnominal confidence

interval coverage estimates, except for the case of low simulated

variation when the auxiliary catch-effort likelihood was omitted.

In the base-case scenario, when no interannual variation was

present, all models showed some ability to accurately and precisely

reconstruct total annual abundance, provided the correct choice of

Figure 2. Monte Carlo simulation study results. Median relative bias and estimated coverage of asymptotic 95% confidence intervals for
estimated total annual abundance for simulated small game data. Each point represents the mean of the median over 1000 iterations of 25 years of
simulated data. Results indicate lowest bias and optimal coverage for models employing the Horvitz-Thompson abundance estimator and random
effects.
doi:10.1371/journal.pone.0065244.g002

Random Effects Models for Small Game Populations

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e65244



the use of the auxiliary catch-effort likelihood of Skalski et al. [4]

(Equation 3) was made. The model that worked best across all

simulated scenarios was model HTRE.

In addition to simulations where model assumptions were valid,

additional robustness simulations were conducted to assess the

quality of statistical population reconstruction when some model

assumptions were not satisfied. These scenarios were 1) the

‘‘Increasing S’’ scenario, where natural survival probability

exhibits an increasing trend over the course of the reconstruction,

2) a ‘‘Decreasing S’’ scenario, where natural survival probability

gradually declines, and 3) a scenario where overall population

abundance is relatively flat (on average) but there were periodic

pulses of births every fourth year (years 4, 8, 12, etc.) with

accompanying crashes in recruitment rate in alternative four-year

increments (years 2, 6, 10, etc.). All of these simulations were

created with the low level of simulated variability (Table 2). The

overall model performance across these three additional scenarios

(Figure 3) was similar to the previous simulation results when all

model assumptions were satisfied (Figure 2); the random-effects

model employing the Horvitz-Thompson estimation approach

provided nearly-unbiased estimates and near-nominal interval

coverage, provided the auxiliary catch-effort likelihood component

of Skalski et al. [4] (Equation 3) was omitted. The three other

alternatives suffered from subnominal confidence interval cover-

age and/or biased estimates of total annual abundance.

Missouri Wild Turkey Reconstruction Results
Based on the results of the simulation study, we fitted model

HTRE to the Missouri male wild turkey data. Comparisons of

Akaike’s information criterion [19,20] using the conditional

likelihood indicated the best model is that which uses two harvest

vulnerability coefficients (cJ and cA) and a single natural survival

parameter. Subsequent model selection results for random effects

using likelihood ratio tests for bounded parameters [21,22] based

on the conditional likelihood indicated separate random-effects

terms for each age class (~ttJ and ~ttA), and no random effects for

natural survival se~0ð Þ was the optimal model.

Spring abundance estimates of juvenile and adult male turkeys

indicated the population numbered approximately 13,875 indi-

viduals (95% CI: [8789, 18,961]) in the mid-1990s, increased to a

peak of approximately 22,525 individuals (95% CI: [13,959,

31,090]) in 2002, and slowly declined to approximately 15,368

individuals (95% CI: [9,222, 21,514]) in 2010 (Figure 4a). The

decline in estimated abundance corresponded with an increase in

estimated hunter effort between 2001 and 2007 from 76,457

hunter-trips to 80,017 hunter-trips, a decrease in hunter success

and a decrease in productivity (Figure 4a, Table 3). Fall

abundance appeared to track the rescaled fall archer indices well

until approximately 2005, when estimated abundance appeared to

indicate a population that was declining more slowly than the

archer index would suggest.

An estimated poult-to-hen ratio provided another index

available for comparison with estimates arising from the model

fit. To compare this index with a data estimate, we plotted the

estimated spring juvenile male turkey abundance in year i

alongside a rescaled version of the estimated poult-to-hen ratio

from late spring/early summer of year i{1 (Figure 4b). This is

because the poult-to-hen ratio is obtained when turkey are

approximately 1–3 months old, whereas the earliest spring

abundance available from the model fit is juveniles that are

roughly 1 year old and, therefore, there is a lag of approximately 9

to 11 months. Perfect concordance of the two estimates is not

expected, because 1) the poult-to-hen ratio includes both males

and females, and 2) it is possible (likely) that interannual

fluctuations are observed in the percent of male turkeys surviving

from age 1–3 months to age 12 months. In addition, it is possible

that males and females survive at different rates, which would

provide another source of error in the attempt to match the poult-

to-hen ratio with the juvenile male abundance. Despite these

limitations, results indicated a high degree of concordance

between the two estimates Figure (4b). The sample correlation

between these two estimates was quite high, at p = 0.80. This

suggested that increased abundance may be due to conditions

which provided for an increased recruitment rate.

Parameter estimates indicated that male turkey survival was

approximately 58% (95% CI: [29%, 86%]) over the course of one

year, and that adult male turkeys were harvested at a rate of

approximately 40% (95% CI: [29%, 52%]), while juvenile male

turkeys were harvested at approximately 11% (95% CI: [5%,

17%]) at the mean level of hunter effort, 70,500 hunter trips.

Interannual variation in the relationship between hunter effort and

harvest vulnerability appeared to be higher for adults (0.25, 95%

CI: [0.12, 0.39]) than for juveniles (0.18, 95% CI: [0.01, 0.36]),

although both had wide confidence intervals.

Overall, male turkey abundance in the Ozarks East appeared to

be at sustainable levels; the population is estimated to be slightly

larger in 2010 than it was at the beginning of the reconstruction, in

1996. Total annual abundance, however, is estimated to have

increased in the late 1990s, and then declined over the early 2000s

as increased hunting pressure was exerted and productivity

declined. Natural survival (for which only a single parameter

could be fitted for both age classes) as well as harvest rates

(estimated separately for each age class) appeared to be within

expectations for similar populations from a recent study [23].

Confidence intervals around total annual abundance as well as

parameters defining the demographic processes were wide.

Possible reasons for wide confidence intervals include the influence

of the random effects on harvest probabilities and survival

parameters, low availability of cohort information, and the models

themselves as well as the estimation technique employed here. Our

simulation studies also generated confidence interval estimates that

were relatively wide; Figures 2–3 only indicate percent coverage.

A more extensive dataset may permit the same model to be

augmented with data regarding female members of the popula-

tion, which may permit examination of a stock-recruit relation-

ship, which could incorporate extrinsic factors related to

recruitment of poults, such as spring rainfall. In addition,

radiotelemetry studies of survival would provide an auxiliary data

source with which to investigate estimating separate natural

survival parameters for juveniles and adults.

Discussion

The analysis of age-at-harvest data for small game animals

presents a number of challenges in addition to those presented by

large game data. Adult age classes are typically not able to be

separated by age easily, so only two age classes may be available.

In addition to low cohort information, small game animals tend to

be impacted by extrinsic factors related to habitat status and

quality, as well as environmental factors such as temperature and

rainfall. Many such factors may be incorporated as covariates in

the analysis (although this simulation study did not examine it)

through the parameter transformations of (5), but many factors

will remain unmeasured or measured with error. In addition, the

functional relationship between the extrinsic factors affecting a

particular demographic process (such as survival, harvest, or

reproduction) is typically unknown. Despite the low cohort

information, the simulation studies presented above indicate that

Random Effects Models for Small Game Populations
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the extension to mixed-effects statistical population reconstruction

models and second-stage Horvitz-Thompson-type abundance

estimates described here provide successful estimates of animal

abundance, with respect to accuracy and precision of maximum

likelihood estimates. Estimation accuracy and precision were

generally improved with the greater amount of auxiliary data

simulated. Clearly, specific cases will warrant unique consider-

ations and additional simulation studies, such as gender-specific

reconstructions, different types and amounts of available data, and

availability of measured extrinsic factors that are known or

hypothesized to influence population dynamics. It appears that the

auxiliary catch-effort likelihood of Skalski et al. [4] (Equation 3)

induces some bias in the total annual abundance estimates for the

Horvitz-Thompson models HTFE and HTRE and it is therefore

recommended to exclude it with these new mixed-effects models

employing the Horvitz-Thompson estimator. This auxiliary

likelihood component was found to be necessary to provide

reliable fits for the fixed-effects absolute-recruit abundance model

Figure 3. Monte Carlo simulation study results examining model robustness. Median relative bias and estimated coverage of asymptotic
95% confidence intervals for estimated total annual abundance for simulated small game data from simulations designed to address robustness.
‘‘Increasing S’’ (‘‘Decreasing S’’) scenario corresponds to a population with natural survival probability gradually increasing (decreasing) over the study
period. ‘‘Periodic Recruitment’’ corresponds to a population with periodic positive and negative fluctuations in the annual recruitment rate, in
addition to simulated natural interannual variability. Each point represents the mean of the median over 1000 iterations of 25 years of simulated data.
Results indicate lowest bias and optimal coverage for models employing the Horvitz-Thompson abundance estimator and random effects.
doi:10.1371/journal.pone.0065244.g003
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AAFE during simulation studies, as its exclusion led to frequent

inability to maximize the log-likelihood. Bias for the model of

Broms et al. [7], AAFE was estimated to be low in simulation

studies, although confidence interval coverage was very low when

unmeasured environmental stochasticity was simulated.

The Missouri wild turkey population reconstruction example

demonstrated the utility of statistical population reconstruction

models in estimating the complete suite of demographic informa-

tion, including harvest probability, natural survival probability,

and age-class abundance including recruit abundance. Models of

this nature could be improved, however, with additional telemetry

or other studies which would provide a data source to inform age-

specific survival probabilities would likely improve estimates.

The models we presented in this paper considered only random

effects over time. However, these models can be extended to

include both temporal and spatial random effects. Applications, for

example, may include the joint analysis of harvest data from

adjoining game management areas. Neighboring management

regions might share common survival or harvest vulnerability

processes that, when analyzed jointly over time and locale, might

improve the precision and understanding of local population

trends.

In contrast to previously established statistical population

reconstruction models for small game, random-effects models

combined with second-stage, Horvitz-Thompson-type abundance

estimators have proven to be capable of providing more successful

process parameter and abundance estimates for statistical popu-

lation reconstructions, and have also been demonstrated to be

robust to some deviations from standard model assumptions.

Statistical population reconstruction models enable the practition-

er to associate environmental and temporal variation with

demographic processes of survival and harvest, while producing

realistic estimates of animal abundance as well as estimates of vital

rates. These new models are very flexible, and may be employed in

a wide variety of wildlife stock assessment scenarios, with a wide

variety of auxiliary supporting data. Therefore, these new models

are recommended to be used in statistical population reconstruc-

tion of harvested small game populations.
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Figure 4. Estimates arising from the turkey population reconstruction. a) Estimated total annual abundance of juvenile and adult male wild
turkey, Ozarks East turkey productivity region, for both spring and fall (with a confidence interval band for the spring abundance). Shown also is the
Ozarks East fall archer count abundance index, which has been linearly rescaled to be shown on the same axis as estimated fall abundance. Linearly
rescaled hunter effort is presented as vertical bars along the x-axis, with accompanying error bars indicating estimated effort 6 SE. b) Estimated
juvenile abundance with rescaled hunter-estimated poult-to-hen ratio. The poult-to-hen ratio has been advanced one year to align it with the
estimated number of juveniles produced within each cohort.
doi:10.1371/journal.pone.0065244.g004
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