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Abstract: Background: In the last two decades, infrared thermography (IRT) has been applied in
quarantine stations for the screening of patients with suspected infectious disease. However, the
fever-based screening procedure employing IRT suffers from low sensitivity, because monitoring
body temperature alone is insufficient for detecting infected patients. To overcome the drawbacks
of fever-based screening, this study aims to develop and evaluate a multiple vital sign (i.e., body
temperature, heart rate and respiration rate) measurement system using RGB-thermal image sensors.
Methods: The RGB camera measures blood volume pulse (BVP) through variations in the light
absorption from human facial areas. IRT is used to estimate the respiration rate by measuring the
change in temperature near the nostrils or mouth accompanying respiration. To enable a stable and
reliable system, the following image and signal processing methods were proposed and implemented:
(1) an RGB-thermal image fusion approach to achieve highly reliable facial region-of-interest tracking,
(2) a heart rate estimation method including a tapered window for reducing noise caused by the
face tracker, reconstruction of a BVP signal with three RGB channels to optimize a linear function,
thereby improving the signal-to-noise ratio and multiple signal classification (MUSIC) algorithm
for estimating the pseudo-spectrum from limited time-domain BVP signals within 15 s and (3) a
respiration rate estimation method implementing nasal or oral breathing signal selection based on
signal quality index for stable measurement and MUSIC algorithm for rapid measurement. We tested
the system on 22 healthy subjects and 28 patients with seasonal influenza, using the support vector
machine (SVM) classification method. Results: The body temperature, heart rate and respiration
rate measured in a non-contact manner were highly similarity to those measured via contact-type
reference devices (i.e., thermometer, ECG and respiration belt), with Pearson correlation coefficients
of 0.71, 0.87 and 0.87, respectively. Moreover, the optimized SVM model with three vital signs
yielded sensitivity and specificity values of 85.7% and 90.1%, respectively. Conclusion: For contactless
vital sign measurement, the system achieved a performance similar to that of the reference devices.
The multiple vital sign-based screening achieved higher sensitivity than fever-based screening. Thus,
this system represents a promising alternative for further quarantine procedures to prevent the spread
of infectious diseases.
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1. Introduction

Emerging infectious diseases are serious threats to global health. During the last two decades, there
have been travel-related outbreaks of infectious diseases, such as severe acute respiratory syndrome
and novel Coronavirus (2019-nCoV), around the world in 2003 and 2019 [1,2]. To contain the outbreak
of emerging viral diseases, infrared thermography (IRT) has been applied for fever screening of
passengers with suspected infection in many international quarantine stations [3–5]. IRT is an effective
method for measuring elevated body temperature. However, monitoring body temperature alone is
insufficient for accurate detection of infected patients, as IRT monitoring facial surface temperature
can be affected by many factors such as antipyretic consumption [6]. The positive predictive values of
fever-based screening using IRT vary from 3.5% to 65.4%, indicating the limited efficacy for detecting
symptomatic passengers [7].

To overcome the drawbacks of fever-based screening, we previously proposed a screening
method based on simultaneously measuring three vital signs—body temperature, heart rate (HR) and
respiration rate (RR)—using multiple sensors, that is, medical radar, thermograph, photo-sensor and
RGB cameras [8–10]. These three vital signs were included in the criteria of the systemic inflammatory
response syndrome [11]. Symptoms of the most infectious diseases tend to include an elevated HR
and RR; hence, a screening that combines these three vital signs will improve the precision of detecting
patients with such symptoms. Therefore, we developed contact and contactless vital sign measurement
systems to investigate the feasibility of our screening method (Figure 1). In brief, the contact-type
system (Ver.1.0) comprises three sensors, that is, medical radar, photo-sensor and thermograph [8].
The medical radar detects tiny body surface movements caused by respiration, the thermograph
measures the highest temperature of the face and the photo-sensor monitors pulse waves to calculate
the HR. To enable a completely contactless system (Ver.2.0), we combined RGB and the thermal image
to extract multiple vital signs from the facial image [10]. The RR can be measured by monitoring
the temperature changes around the nasal and oral areas accompanying inspiration and expiration.
The RGB camera measures the blood volume pulse (BVP) through variations in the light absorption
from the human facial area. We tested the systems on patients with seasonal influenza and dengue
fever and the results indicate a sensitivity ranging from 81.5–98% [12].
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In this study, to promote the widespread use of our vital sign-based infection screening method,
we enhanced the function of the Ver.2.0 contactless system to enable a stable, reliable and real-time
system. We improved the stability of HR and RR measurement with the RGB-thermal image fusion
approach for a highly reliable facial region-of-interest (ROI) tracking [13]. Moreover, we focused on
improving the robustness of extracting BVP and respiration signal from the RGB camera and IRT. We
proposed a signal processing method for reconstructing the BVP waveform using all RGB channels and
selecting nasal or oral breathing based on signal quality index (SQI), for improving the signal-to-noise
ratio. To enable a real-time system, we implemented a multiple signal classification (MUSIC) algorithm
to estimate the pseudo-spectrum from limited time-domain BVP and respiration signals within 15 s [14].
Finally, we tested the system on 22 healthy subjects and 41 patients with influenza-like symptoms (28
diagnosed influenza patients and 13 undiagnosed patients).

The remainder of this paper is organized as follows. In the Section “Materials and Methods,” we
describe an overview of our system and proposed signal and image processing methods. The Section
“Results” contains the results of comparison between our contactless system with contact-type reference
devices and screening performance on detecting influenza patients using a support vector machine
(SVM). In the Section “Discussion and Conclusion,” we discuss our findings and draw conclusions.

2. Materials and Methods

2.1. Related Work on Vision based Clinical Screening

Vision-based clinical screening using RGB and thermal image sensors have recently attracted
increasing attention in academia and industry. Ming-Zher Poh et al. developed a robust method
for measuring HR and HRV from digital RGB video recording of skin color changes [15]. He Liu et
al. proposed a novel method using dual cameras to estimate arterial oxygen saturation [16]. Philips
Research has been launching an app called “Vital Signs Camera” in 2012. Moreover, the thermal
camera-based approaches have been widely applied in clinical screening and research, such as fever
screening and human pose estimation [5]. To enable such specific applications, image processing
method for keypoint detection has been proposed using a stacked hourglass network and feature
boosting networks [17–19].

2.2. Overview of Infectious Screening System using RGB-thermal Image Sensors

In our previous work, a dual image sensor-based infectious screening system was developed for
predicting the possibility of infection [10]. It comprises an RGB camera and an IRT for measuring
HR, RR and body temperature. We used DFK23U618 (The Imaging Source Co. Ltd., Germany) as the
RGB camera and FLIR A315 (FLIR Systems, Inc., USA) as the IRT. The visible video was recorded at a
speed of 15 frames per second (fps) with a pixel resolution of 640 × 480 and the thermal video was
recorded at a speed of 15 fps with a pixel resolution of 320 × 240. An RGB camera senses fluctuations
in hemoglobin absorption derived from the volumetric change in facial blood vessels and obtains
heartbeat signals. An IRT detects temperature changes between inhalation and exhalation in the nasal
or oral area. In addition, the facial skin temperature is measured by the IRT. Multiple vital signs
distinguish between patients with influenza and healthy subjects. Figure 2 shows an overview of an
infectious screening system.
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Figure 2. Overview of measurement principle that remotely senses multiple vital signs and an example
of screening result.

2.3. Sensor Fusion Combining RGB sensor and IRT for ROI Detection

A stable measurement of the body temperature and RR using an IRT needs a detailed ROI detection
of facial landmarks (i.e., face, nose and mouth) because temperature is estimated at the facial area and
respiration occurs at the nose and mouth. An RGB camera can detect facial landmarks finely using
previous methods [20]. Therefore, we introduced a sensor fusion method to obtain facial landmarks in
a thermal video determined by an RGB video.

The facial landmarks in a thermal video are detected by homography of the RGB image coordinates
of the nose and mouth, detected by “dlib” of an open-source library to thermal image coordinates.
The homography between the images is represented by equation (1) and the homography matrix H is
represented as

H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

,

xthermo =
h11xRGB+h12 yRGB+h13
h31xRGB+h32 yRGB+h33

,

ythermo =
h21xRGB+h22 yRGB+h23
h31xRGB+h32 yRGB+h33

,

(1)

where xRGB, yRGB, xthermo and ythermo are image coordinates in the RGB and thermal images.
Each hi j (i, j = 1, 2, 3) in Equation (1) is an element of the homography matrix H. Figure 3 shows a
flowchart of image processing conducted to estimate the homography matrix H. Its standard is the
face profile between the RGB and thermal images using pattern matching. First, from the RGB and
thermal images shown in Figure 3a,b, the profile part is abstracted using the “grabcut” method [21] of
OpenCV, to obtain the profile images shown in Figure 3c. The combination of coordinates between
the images is found by obtaining the oriented fast and rotated BRIEF (ORB) characteristics of the two



Sensors 2020, 20, 2171 5 of 16

profile images and by performing a full search of the corresponding points from the characteristic
points of each image obtained [22]. The homography matrix for the combination of image coordinates
obtained is estimated using the random sample consensus method [23]. Finally, the facial landmarks
in the thermal image (Figure 3e) are detected by applying the homography matrix to RGB’s facial
landmarks (Figure 3d).
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Figure 3. Feature matching for region-of-interest (ROI) detection in thermal image. The figure
reproduced with copyright permission from Reference [14].

2.4. RGB Sensor Processing for HR Estimation Using Tapered Window, Signal Reconstruction based on Softsig
and MUSIC Algorithm

The fundamental method of HR estimation using an RGB camera has been described
previously [15]. The RGB camera senses tiny color fluctuations in the facial skin with other noise.
To remove the noise components, methods such as independent component analysis (ICA) and soft
signature-based extraction (Softsig) [24] are used. In this study, we introduce the tapered window and
signal reconstruction method into HR estimation for a stable measurement, which achieved an infection
screening system. The observed RGB time-series data have components of heartbeat, motion artifact
and noise from other light sources. The tapered window and signal reconstruction method is based on
the Softsig demix heartbeat signal. Figure 4 shows an overview of HR estimation in this system.
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Tapered window, which is a general window function, was applied to the detected facial ROI
(Figure 4b). In facial ROI, the edge area suffers from the lag affected by the face tracker. On the
other hand, the ROI center can achieve a stable tracking of the facial skin. Therefore, we adopted
tapered window to weighted ROI to reduce the noise raised by facial tracking. A 1d-tapered window
is represented as

tapaer1d(i) =


0.5x(i)

(
1− cos

(
2πi
2m

))
(i = 0, 1, 2, . . . , m− 1)

0.5x(i)
(
1− cos

(
2π(n−i−1)

2m

))
(i = n−m, . . . , n)

x(i) (otherwise),

(2)

where m indicates the tapered portion and has a value of 0.05 · n. To apply the tapered window to a
2d-image, the 2d-tapered window is expressed as

tapaer2d(x, y) = taper1d(x) · taper1d(y), (3)

where x and y are the x-coordinates and y-coordinates of ROI, respectively.
The aim of signal reconstruction is to find a reconstruction vector V =

(
vr, vg, vb

)
for extracting the

heartbeat signal by utilizing the difference among RGB absorption. Reconstructing a BVP signal using
three RGB channels to optimize a linear function for improving the signal-to-noise ratio. According to
a previous study, the reflection strength of the heartbeat is referred to as the relation in G>B>R order
among the RGB channels. Using this relation, signal reconstruction can be expressed as

y(t) = vrxr(t) + vgxg(t) + vbxb(t), (4)

where vr, vg, and vb are the reconstruction vector. While this method is based on the Softsig method,
we improved the determined method for vector V. To recover the pulse signal, we selected V to
maximize the kurtosis of the spectra in the HR range of [0.75–4.0 Hz] (Figure 4c).

Finally, the MUSIC method was introduced to realize HR and RR measurements within a short
time period. This method permits the realization of high-resolution HR and RR frequency estimation
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based on short-period measurement data Equation (5) expresses the spectrum estimation formula of
the MUSIC method [14]:

SMUSIC( f ) =
1∑p

k=M+1

∣∣∣eT( f )Wk
∣∣∣2 × 1

δ f
, (5)

where e( fi) represents a complex sinusoidal wave vector and Wk represents the eigenvector of the
correlation matrix. This system applies the MUSIC method separately to the HR and RR time-series
data obtained from the video. In the case of heartbeat, the peak of 0.75–3.0 Hz (45–180 beats per minute
(bpm)) of the obtained spectrum was assumed to be the HR.

2.5. IRT Sensor Processing for RR Estimation Using Nasal and Oral Breathing Decision based on SQI and
MUSIC Algorithm and Body Temperature Estimation

The current approach of respiration measurement using an IRT is based on nasal temperature
change. However, mouth breathing is reported in 17% of the total population [25]. For a stable RR
measurement using an IRT, we must also measure oral temperature changes and select nasal or oral
temperature changes dependent on strongly including respiration. To choose nasal or oral breathing,
we quantified temperature traces via nasal and oral areas using SQI. Moreover, the MUSIC algorithm
achieved rapid measurement for RR estimation. Figure 5 shows an overview of the respiration
measurement that introduces nasal and oral breathing measurement method and MUSIC algorithm.
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Figure 5. Block diagram of signal processing for respiration rate (RR) estimation. (a) Thermal video
frame with facial landmark detected by the fusion sensor system described in Section 2. (b) Time-series
data extracted from nasal and oral areas. (c) Respiration signal that chooses from four signals (b) based
on SQI. (d) Power spectra obtained by MUSIC.

First, the nasal and oral areas were detected using the fusion sensor system described in Section 2.
The possible respiration signals were extracted by the two areas. The mean temperature fluctuation
xmean(t) in each ROI and the min temperature fluctuation xmin(t) in each ROI are expressed as

xmean(t) =
1

mn

m−1∑
x=0

n−1∑
y=0

I(x, y, t)xmin(t) = min
0<x<m−1, 0<y<n−1

I(x.y, t), (6)

where I(x,y,t) is the pixel temperature at the image coordinate (x, y) in the ROI and time t, m is the
width of the ROI and n is the height of the ROI. xmean(t) and xmin(t) include the respiration signals.

Second, the respiration signal is selected from nasal and oral temperature traces using the four
extracted signals: xmean nose(t), xmin nose(t), xmean mouth(t) and xminmouth(t). Selection of the proposed
respiration signal is conducted using the nasal SQI and oral SQI, based on the agreement of frequency
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estimated by power spectral density (PSD), autocorrelation (ACR) and cross-power spectral density
(CPSD). The frequency of PSD using xmean(t) was estimated from the peak of power spectra from
0.1–0.75 Hz, to provide the range of RR measurement. The frequency of ACR using xmean(t) was
estimated from the average peak interval. The frequency of CPSD using xmean(t) and xmin(t) was
estimated from the peak of cross-power spectra ranging from 0.1–0.75 Hz. If the temperature change
in the nasal or oral area includes dominant respiration frequency, CPSD indicates the frequency by
strengthening the respiration frequency between xmean(t) and xmin(t) in the ROI. The following two
rules are adopted sequentially:

1. Rule 1 (nasal SQI): If the ratio of RRPSD nose to RRACR nose and that of RRPSD nose to RRCSPD nose
obtained by the nasal area lie between 0.85 and 1.15, we select the nasal temperature change
as the respiration signal. (This index shows that the nasal area includes the respiration signal
because a ratio close to 1 indicates that the respiration frequency is dominant)

2. Rule 2 (oral SQI): If the ratio of RRPSD mouth to RRACR mouth and that of RRPSD mouth to RRCSPD mouth
obtained by the oral area lie between 0.85 and 1.15, we select the oral temperature change as the
respiration signal. (This index shows that the oral area includes the respiration signal because a
ratio close to 1 indicates that the respiration frequency is dominant)

If the two rules are not satisfied, we select nasal area as the respiration signal.
This system applies the MUSIC method separately to the HR and RR time-series data obtained

from the video. In the case of respiration, the peak of 0.1– 0.75 Hz (6–45 bpm) of the spectrum obtained
was assumed to be the RR. Temperature was also determined as the max facial temperature in the
detected facial ROI using the sensor fusion technique.

2.6. SVM Discriminant Analysis to Predict Patients with Seasonal Influenza based on the Three Vital Signs
Measured

Aiming at screening using features of HR, RR and body temperature of patients with infection,
we proposed a classification model based on SVM. SVM is a method that predicts the separating
hyperplane to maximize the margin between the two classes and achieves a high generalization
capability. The SVM discriminant function is defined as

min
w, w0, ξ

(
1
2‖w‖

2 + C
N∑

i=0
ξi

)
subject to

{
yi f (xi) ≥ 1− ξi

ξi ≥ 0
,

(7)

where w is a constant that indicates the SVM coefficients corresponding to HR, RR and temperature;
yi is a category of health or infection; C is the penalty parameter and ξi is the slack parameter; f (xi)

is linear discriminant function formula w · xi + w0. The calculation of SVM is performed using the
MATLAB software.

2.7. Evaluation of the System in Laboratory and Clinical Settings

Laboratory and clinical testing of the system was conducted in 2019. Twenty-two healthy control
subjects with no symptoms of fever (23.4 years of average age) participated in the laboratory test at
the University of Electro-Communications. A total of 41 patients (45.0 years of average age) with
symptoms such as influenza were included, who visited Takasaka Clinic, Fukushima, Japan. Their
RR, HR and body temperature were measured using the contactless system; reference measurements
were simultaneously obtained using a contact-type electrocardiogram (ECG) (LRR-03, GMS Co. Ltd.,
Tokyo, Japan) or pulse oximeter (SAT-2200 Oxypal mini, NIHONKOHDEN Co., Tokyo, Japan), clinical
thermometer (TERUMO electric thermometer C230, TERUMO Co., Tokyo, Japan) and a respiration
effort belt (DL-231, S&ME Inc.,Tokyo, Japan). It should be noted that, some patients may show
increased heart rate due to white-coat hypertension. This study was approved by the Committee on
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Human Research of the Faculty of System Design, Tokyo Metropolitan University and the University
of Electro-Communications. All subjects gave their informed written consent.

2.8. Statistical Analysis

The Bland–Altman plot and scatter plot were utilized for statistical and graphical proof of
the agreement between the proposed method and reference method [26]. The reference vital signs
were measured by ECG or a pulse oximeter for HR, respiration effort belt for RR and electronic
thermometer for axillary temperature. The results from the SVM classification model were used to
calculate the sensitivity, specificity negative predictive value (NPV) and positive predictive value
(PPV). A leave-one-out cross-validation was performed to avoid overfitting.

3. Results

3.1. HR Measurements Using RGB Sensor in a Laboratory and Clinical Setting

Figure 6 presents an example of signal recovery applied using the proposed method, by employing
the tapered window and signal reconstruction based on Softsig. Raw traces of RGB color (Figure 6a)
contained a dominant frequency of noise components, which can be observed by their spectra
(Figure 6b), because the ground truth of HR measured by the pulse oximeter is 1.83 Hz. However,
applying the proposed method, we can observe a clear peak of the HR frequency component in
Figure 6e. This example shows the advantage of the proposed HR estimation.
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Figure 6. Recovery of heartbeat signal by applying tapered window and signal reconstruction. (a) RGB
color traces obtained by RGB video. (b) Spectra estimated by Fast Fourier Transform (FFT). (c) Signal
reconstruction determined through kurtosis of the spectra. (d), (e) Reconstructed signal and its spectra.

To evaluate the tapered window, signal reconstruction and MUSIC, we compared the proposed
method to raw green trace, which uses only green channel and Fast Fourier Transform (FFT). The green
trace method is a general method for estimating HR using an RGB camera. The ground truth of HR
was measured by ECG and the pulse oximeter. We performed 15 s measurement four times against
healthy control subjects and obtained 128 pairs of HRs from all subjects, which included 22 healthy
control subjects and 41 patients with influenza-like symptoms. A comparison of HR estimation is
shown in Figure 7. Figure 7a shows the Bland–Altman plot of green trace applying FFT. The 95%
limits of agreement ranged from -23.5 to 33.4 bpm (standard deviation σ = 14.5) and the root mean
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square error (RMSE) was 15.3. Figure 7c shows the scatter plot of the green trace method; the Pearson
correlation coefficient was 0.48. Figure 7b shows the Bland–Altman plot of the proposed method,
which applies the tapered window, signal reconstruction and MUSIC. The 95% limits of agreement
ranged from -10.4 to 12.6 bpm (standard deviation σ = 5.85) and RMSE was 5.93. Figure 7d shows the
scatter plot of the proposed method; the Pearson correlation coefficient was 0.87. The results showed
that the proposed method can reduce the 95% limits of agreement from [−23.5, 33.4] to [−10.4, 12.6]
bpm. Especially, the result of patients with influenza-like illness (red circle) was improved because the
experiment at a clinic is close to a real-world setting.
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Figure 7. Bland–Altman plots and scatter plots of heart rate (HR) obtained by RGB sensor and
electrocardiogram (ECG) or pulse oximeter. (a) Bland–Altman plot of raw green trace method applying
FFT. (b) Bland–Altman plot of the proposed method applying tapered window, signal reconstruction
and MUSIC. (c) Scatter plot of raw green trace. (d) Scatter plot of proposed method.

3.2. RR and Body Temperature Measurements Using IRT at a Laboratory and Clinical Settings

Figure 8 shows an example of the signal selection applied by the proposed method, which
is detailed in Section 2. The mean and minimum temperature changes in each ROI are shown in
Figure 8b,d. To determine the respiration signal from four signals, we calculated the SQI parameters,
which included the PSD, ACR and CPSD of each signal (Figure 8c,e). Using the SQI parameters, we
chose the respiration signal.
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Figure 8. Determination of respiration signal applying nasal and oral breathing decision based on SQI.
(a) Thermal facial image with ROI. (b) Mean and minimum temperature fluctuations in nasal area.
(c) SQI parameter obtained by power spectral density (PSD), autocorrelation (ACR) and cross-power
spectral density (CPSD) of nasal temperature changes. (d) Mean and minimum temperature fluctuations
in oral area. (e) SQI parameter obtained by PSD, ACR and CPSD.

To evaluate the nasal or oral breathing decision based on SQI and MUSIC, we compared the
proposed method with the raw temperature change in the nasal area applied to FFT, which is a general
method for estimating RR using IRT. The ground truth of RR was measured using the respiratory effort
belt. We performed 15 s measurement four times and obtained 88 pairs of RRs from 22 healthy control
subjects, including 6 subjects with nose clip for instructing subjects to mouth breathing. A comparison
of RR estimation is shown in Figure 9. Figure 9a shows the Bland–Altman plot of nasal temperature
change. The 95% limits of agreement ranged from -7.60 to 7.99 bpm (standard deviation σ = 3.98)
and the RMSE was 3.98. Figure 9c shows the scatter plot of nasal temperature change; the Pearson
correlation coefficient was 0.53. Figure 9b shows the Bland–Altman plot of the proposed method.
The 95% limits of agreement ranged from -2.97 to 3.67 bpm (standard deviation σ = 1.68) and the RMSE
was 1.73. Figure 9d shows the scatter plot of the proposed method; the Pearson correlation coefficient
was 0.87. The results showed that the proposed method can reduce the 95% limits of agreement from
[−7.60, 7.99] bpm to [−2.97, 3.67] bpm.
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Figure 9. Bland–Altman plots and scatter plots of RR obtained by infrared thermography (IRT) sensor
and respiratory effort belt. (a) Bland–Altman plot of nasal temperature change under the application of
FFT. (b) Bland–Altman plot of the proposed method applying nasal or oral signal selection using SQI
and MUSIC. (c) Scatter plot of nasal temperature change under FFT application. (d) Scatter plot of the
proposed method.

Facial temperature, which is estimated by ROI detection using sensor fusion, was also evaluated.
The ground truth of the temperature was measured using an electric thermometer. From all subjects,
which included 22 healthy control subjects and 41 patients with influenza-like symptoms, a comparison
of temperature estimation is shown in Figure 10. Figure 10a shows the Bland–Altman plot of
temperature. The 95% limits of agreement ranged from -0.45 to 2.56 ºC (standard deviation σ = 0.77)
and the RMSE was 1.30. Figure 10b shows the scatter plot; the Pearson correlation coefficient was 0.71.
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electric thermometer. (a) Bland–Altman plot. (b) Scatter plot.
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3.3. Classification of Healthy Control Subjects and Influenza Patients

SVM established a classification model using three vital signs, including HR, RR and temperature,
estimated by RGB and IRT sensors. The vital signs were measured for 22 healthy control subjects and
28 influenza patients (45.5 years of average age) diagnosed as influenza using virus isolation from all
41 patients with influenza-like symptoms. Figure 11a illustrates the distribution of the vital signs (22
blue dots: healthy control subjects, 28 red dots: influenza patients) and the separating hyperplane
obtained by SVM using all data. SVM classification using the three vital signs achieved more accurate
screening than fever-based classification (Figure 11b). Figure 11c presents the result obtained through
leave-one-out cross-validation. The sensitivity, specificity, NPV and PPV were 85.7%, 90.1%, 83.3% and
92.3%, respectively. The fever-based screening using an electric thermometer was adopted to compare
SVM classification. The sensitivity and specificity were 60.7% and 86.4%, respectively.
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4. Discussion and Conclusions

The outbreak of 2019-nCoV was first reported in Wuhan, China, in December 2019 and was
confirmed to have spread to more than 110 countries as of March 2020. When such a novel virus
outbreaks, enhanced public health quarantine and isolation is essential. For this purpose, we developed
a multiple vital sign measurement system for the mass screening of infected individuals in places of
mass gathering. In this study, we focused on developing our system to measure three vital signs, to
achieve automation, stability and swiftness for practical use in real-world settings. From a technical
perspective, we proposed specific signal and image processing methods for highly reliable vital sign
measurements and compared them with conventional methods (Tables 1 and 2). Tapered window,
RGB signal reconstruction and MUSIC were applied for HR measurement. Automatic ROI tracking
using sensor fusion and nasal or oral breathing selection using SQI and MUSIC were applied for HR
measurement. The proposed method showed agreement with their reference devices (HR: [−10.4, 12.6]
bpm, RR: [−2.97, 3.67] bpm, temperature: [−0.449, 2.56] ◦C). The reliability and stability of our system
on vital sign measurement were significantly improved.
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Table 1. Comparison of proposed RGB signal reconstruction method with conventional green trace
method on HR measurement.

HR RMSE Bland–Altman Pearson Correlation

RGB signal
reconstruction and

MUSIC
5.93

The 95% limits of
agreement -10.4 to 12.6

bpm (σ = 5.85)
0.87

Green trace alone and
FFT 15.30

The 95% limits of
agreement -23.5 to 33.4

bpm (σ = 14.5)
0.48

Table 2. Comparison of proposed Nasal/oral SQI method with conventional nasal alone method on
RR measurement.

RR RMSE Bland–Altman Pearson Correlation

Nasal or oral SQI and
MUSIC 1.73

The 95% limits of
agreement -2.97 to 3.67

bpm (σ = 1.68)
0.89

Nasal and FFT 3.98
The 95% limits of

agreement -7.60 to 7.99
bpm (σ = 3.98)

0.53

Moreover, we tested multiple vital sign-based screening in a laboratory and a clinic. The proposed
method’s sensitivity and specificity (85.7%, 90.1%) were found to be higher than those of fever-based
screening (60.7%, 86.4%). The tendency of the three vital signs measured by healthy control subjects
and influenza patients is shown in Figure 12. The medians of facial skin temperature of influenza
patients and healthy control subjects were 37.3 and 35.5 ◦C, respectively. The medians of HR of
influenza patients and healthy control subjects were 99.3 and 76.4 bpm. The medians of RR of influenza
patients and healthy control subjects were 18.9 and 14.0 bpm. Each vital sign of patients with influenza
was found to be elevated. This contributed to improvement in SVM classification based on the three
vital signs.
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Figure 12. Box plot of vital signs between influenza patients and healthy control subjects. (a) Facial
skin temperature. (b) HR. (c) RR.

However, the proposed method has some limitations. The ROI detection of sensor fusion may fail
when the background has the color of skin or hair. In terms of the classification test based on SVM,
the facial skin temperature may include the influence of the ambient environment. The measurement
environment at a laboratory is different from that at a clinic, even at the same ambient temperature.
This causes a difference in facial skin temperature regardless of the seasonal influenza. Therefore, we
need to develop environment-invariant temperature estimation using an IRT.

In conclusion, we proposed automatic, stable and rapid HR, RR and body temperature
measurements using an RGB-thermal sensor and its application for the screening of infectious diseases.
This method introduces (1) the sensor fusion approach for the detection of detailed facial landmarks in a
thermal image, (2) HR estimation, which introduces tapered window, signal reconstruction and MUSIC
and (3) RR estimation, which implements nasal or oral breathing selection using SQI and MUSIC.
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Moreover, we demonstrated a classification model based on SVM using healthy control subjects and
patients with seasonal influenza. The results indicate that the proposed method is indispensable for
the high performance of contactless multiple vital sign measurements for infection screening.
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