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1 |  BACKGROUND

Long interspersed nuclear elements (LINE‐1 [L1]) are the 
most abundant retrotransposon sequences occupying ap-
proximately 17% of the human genome (Lander et al., 
2001). Although the majority of L1 elements are truncated, 
mutated and/or have acquired deletions/insertions at their 

5′‐end sequence and have therefore no longer the ability to 
transpose, a relatively small number in human remain ret-
rotransposition competent (Brouha et al., 2003). Although 
LINE‐1 elements are typically heavily methylated in normal 
tissues, LINE‐1 hypomethylation has been reported in many 
tumor types (Antelo et al., 2012; Choi et al., 2007; Gao et al., 
2014; van Hoesel et al., 2012) including bladder (Jurgens, 
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Abstract
Background: Long interspersed nuclear elements (LINE‐1) sequences constitute a 
substantial portion of the human genome, and their methylation often correlating 
with global genomic methylation. Previous studies have highlighted the feasibility of 
using LINE‐1 methylation to discriminate tumors from healthy tissues. However, 
most studies are based on only a few specific LINE‐1 CpG sites.
Methods: Herein, we have performed a systematic fine‐scale analysis of methylation 
at 14 CpGs located in the 5′‐region of consensus LINE‐1, in bladder, colon, prostate, 
and gastric tumor tissues using a global degenerate approach.
Results: Our results reveal variable methylation levels between different CpGs, as 
well as some tissue‐specific differences. Trends toward hypomethylation were ob-
served in all tumors types to certain degrees, showing statistically significance in 
bladder and prostate tumors. Our data points toward the presence of unique LINE‐1 
DNA methylation patterns for each tumor type and tissue, indicating that not the 
same CpGs will be informative for testing in all tumor types.
Conclusion: This study provides an accurate guide that will help to design further 
assays that could avoid artifacts and explain the variability of obtained LINE‐1 meth-
ylation values between different studies.
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Schmitz‐Drager, & Schulz, 1996; Wilhelm et al., 2010; 
Wolff et al., 2010), colon (Ogino et al., 2008), prostate (Florl 
et al., 2004), and stomach (Shigaki et al., 2013). LINE‐1 hy-
pomethylation might therefore serve as a cancer biomarker. 
However, its extent and pattern has proved to be variable 
and not equally rewarding among different tumors. For in-
stance, in a comparison of multiple cancer types, Nüsgen 
et al. (2015) observed that tumors could be ranked by their 
LINE‐1 hypomethylation levels with urinary bladder cancers 
being most hypomethylated followed by prostate, colon, and 
stomach cancers. The mechanism underlying the preferential 
hypomethylation in certain cancer types are still obscure.

Although LINE‐1 methylation generally correlates with 
global DNA methylation, and thus reflects the cellular status, 
an obstacle to using LINE‐1 methylation as a biomarker is the 
weak reproducibility between different studies (Choi et al., 
2009; Ohka et al., 2011). One reason for this could be the use 
of different assays targeting different CpGs within LINE‐1 
by different labs. Therefore, in this study, we determined the 
methylation levels of all technically accessible 14 different 
CpG sites within the 5′‐region of consensus LINE‐1 (L1Hs) 
using a degenerate amplification approach with a quantita-
tive methylation‐dependent primer extension assay (SIRPH) 
protocol.

F I G U R E  1  Graphical summary of results obtained in this study. The upper part shows a schematic diagram of the LINE‐1 sequence with the 
CpGs consecutively numbered. Red balls represent the CpG sites investigated in this study. Vertical arrows represent SN9 and SN8 as studied by 
El‐Maarri et al. (2007) (b) and El‐Maarri et al. (2011) (c), and Nüsgen et al. (2015) (d); the bracket labeled “a” indicates the CpG‐sites covered by 
the PyroMark LINE‐1 kit (Qiagen, Hilden, Germany). (A) Summary of significant differences between tumor and healthy neighboring tissue  
(*,**, and *** correspond to significant values of p < 0.05, <0.005, and <0.0005); n: nonsignificant; based on data in Figure S1). (B) CpGs with 
healthy tissue‐specific significance are labeled. The numbers indicate the count of significant differences in methylation levels between any two 
tissues (n: nonsignificant; based on data in Figure S2). (C) The ratio of CpGs methylation that is most significantly different between tumor tissues 
and controls are connected by dashed line (based on data in Figure S3). LINE‐1: long interspersed nuclear elements‐1
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2 |  MATERIALS AND METHODS

For methylation analysis, tissues from bladder (15 tumor: 11 
paired healthy), colon (13 tumor: 11 paired healthy), stomach 
(12 tumor: 9 paired healthy), prostate (21 tumor: 15 paired 
healthy), and blood (healthy: 33) were included. These sam-
ples are described in detail in Ref. 13. DNA methylation lev-
els in LINE‐1 repetitive sequences were determined by using 
modified version of methylation‐dependent primer exten-
sion assays (SIRPH) based on HPLC as previously described 
by El‐Maarri, (2004) and El‐Maarri, Herbiniaux, Walter, & 
Oldenburg, (2002). Since the multiplexing capacity of this 
method is up to three CpGs sites, we included in every run the 
CpG 7 site assay primers as internal control to normalize the 
methylation levels of different CpG sites within the same sam-
ple DNA. Statistical analysis of differential methylation was 
performed with Prism software (GraphPad Prism version 5.0f, 
GraphPad Software, San Diego, CA, www.graphpad.com).

3 |  RESULTS AND DISCUSSIONS

In order to address the above‐mentioned issues complicat-
ing the investigation of LINE‐1 methylation, we designed a 
PCR‐based degenerate assay to analyze the complete cluster 
of CpG dinucleotides in the consensus LINE‐1 5′‐region, in 
order to identify methylation changes at LINE‐1 promoter 
region in various carcinoma types (bladder, colon, pros-
tate, and stomach). In this cluster, 31 individual CpG sites 
were identified in a region stretching across approximately 
500 bp (L1Hs consensus sequence; NCBI accession num-
ber: X580759; Figure 1). SIRPH targeting primers could be 
designed to examine the methylation levels at 14 CpG sites 
(CpGs: 1–4, 7–9, 13, 15, 16, 18, 19, 24, and 25; Figure 1). Of 
note, the CpG sites previously studied by us, SN8 and SN9 
(labeled on Figure 1 by vertical arrow), correspond to CpG19 
and CpG8, respectively (20, 21), whereas a frequently used 
commercially available pyrosequencing methylation assay 
(PyroMark LINE‐1 kit [Qiagen, Hilden, Germany]) inter-
rogates CpGs 22–24 (labeled in Figure 1 by an “a” marked 
bracket).

Using this assay, we assessed carcinoma samples from 
four tissues (bladder, colon, prostate, and stomach) and their 
matched healthy neighboring tissues; in addition, blood 
samples were assessed. The strongest methylation changes 
between tumors and corresponding adjacent tissue were de-
tected in bladder samples; in addition, CpGs at proximal and 
distal ends of the investigated LINE‐1 region were affected in 
the prostate; no significant changes were observed in stomach 
or colon cancers although a clear tendency toward hypometh-
ylation in tumors was observed (Figure 1A, Figure S1). All 
significant differences resulted from hypomethylation in 

cancers; however, some CpG sites showed hypermethylation 
mainly in colon (five CpGs: 2, 9, 15, 16, and 19) and stom-
ach (three CpGs: 9, 15, and 25) tumor samples. The reason 
why some sites in particular could get hypermethylated is not 
known.

Having also analyzed neighboring healthy tissues in five 
tissues, we then asked whether we could identify tissue‐spe-
cific methylation patterns. Indeed, based on pairwise com-
parison of each two tissues, we could identify CpG sites 
showing different levels of methylation in one specific tissue; 
the most significant sites were CpG4 in the bladder, CpG19 
in the blood, CpG24 in the colon, CpG8 in the prostate, and 
CpG25 in the stomach (Figure 1B; Figure S2).

Since some CpGs did not show significant variation be-
tween the tumor and its neighboring apparently healthy tis-
sue, we sought to explore such invariable/stable CpG sites as 
internal references/controls. Such an internal reference would 
allow standardization between different samples, different 
experiments and different laboratories. Thus, we calculated 
the ratios of methylation of all combinations of two CpGs. 
We then compared the ratio of a given CpGs combination be-
tween the tumors and the healthy tissues samples (Figure 1C; 
Figure S3). The best significant ratios were between CpGs 
3/19 and 16/25 for the bladder and prostate, respectively 
(Figure S3). In the case of colon and stomach, this approach 
was not rewarding as little differences in methylation were 
detected between the tumors and the neighboring healthy 
tissues. Overall, this approach did not show good sensitivity 
to distinguish tumor from healthy tissues, the likely reason, 
is the tumor‐induced methylation changes in most CpGs and 
the high number of correlation associated with methylation 
changes as shown in Figure S1 (right part). Since we have 
used a global assay, considering locus‐specific methylation 
in such cases might be more informative.

The mechanisms underlying the heterogeneity of hy-
pomethylation sites within and between tumors are poorly 
understood, that is, why are not all CpG sites equally hy-
pomethylated and why are not all tumors equally affected? 
One potential reason could be tissue‐specific signature of 
potential transcription factor binding sites for LINE‐1. In 
this context, few transcriptional factor binding sites (YY1, 
SRY, RUNX3) has already been reported for LINE‐1 
(Becker, Swergold, Ozato, & Thayer, 1993; Tchénio, 
Casella, & Heidmann, 2000; Yang, Zhang, Zhang, & 
Kazazian, 2003). Undeniably, the contribution of higher‐
order chromatin organization and the factors that regu-
late it cannot be excluded (Fudenberg, Getz, Meyerson, 
& Mirny, 2011). Alternatively, aberrant methylation pro-
files of certain tumor‐related genes in urological cancers 
(bladder cancer and prostate cancer) might have upstream 
contribution to the LINE‐1 methylation (Florl et al., 2004; 
Lienert et al., 2011; Wu, Cao, & Wu, 2016). Irrespective 
of those reasons, our findings imply that the target locus 
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(L1‐CpG sequences) for methylation measurement should 
be carefully selected as the amount of variation of methyl-
ation levels might not be equally detectable at all CpG sites 
and not equally informative for all tumors. Therefore, our 
study provides information to overcome this problem. In 
agreement with our previous work (Nüsgen et al., 2015), 
we propose that the accuracy to measure this “functional” 
methylation heterogeneity at L1‐CpG sequences is a key 
step to develop useful tumor‐tissue‐specific biomarker. To 
achieve this, the L1‐specific methylation landscape map 
we have presented here can serve as a guideline to develop 
more effective methods to study the informative CpG meth-
ylation biomarkers in specific tumors.

4 |  CONCLUSION

Our work is the first attempt to dissect the methylation status 
of each individual CpG site embedded in the LINE‐1 5′‐re-
gion. Using a degenerate assay, we have demonstrated that 
individual CpGs exhibit different levels of methylation and 
different changes in specific tumors. This observation sup-
ports the idea that the reason for discrepancies between vari-
ous LINE‐1 methylation studies not only relate to the use of 
different techniques but also to the use of only a few and vary-
ing LINE1‐CpG sites, which by default differ in methylation 
levels. Our data moreover suggest that assays for distinguish-
ing tumor from healthy tissues need to be designed in a more 
precise tissue‐specific fashion. In this context, our analysis 
with methylation levels of all technically possible (14 differ-
ent CpGs sites) which are prone to hypo/hypermethylation 
will help the researchers to evaluate tumors, neighboring/ad-
jacent healthy tissues and healthy tissue more precisely.
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