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1. Introduction

The field of computer-assisted diagnostics is a disci-
pline which has emerged as a result of sustained efforts
throughout the clinical and scientific communities to
devise systematic procedures and protocols to sup-
port physicians in rendering more informed diagnostic
decisions. One of the most active and exciting branches
of this research focuses on the automated interpreta-
tion of medical images. While most of the emphasis
for these activities has been directed towards radio-
logical imaging modalities including X-ray, MRI, and
ultrasound, new advances in digital microscopy now
make it possible for the fields of diagnostic and inves-
tigative pathology to follow a similar experimental and
developmental path.

1.1. Overview of computer-assisted diagnostics
(CAD) in radiology and pathology

The incentive for undertaking many of the earli-
est CAD studies grew out of efforts to identify a
means for reducing the level of fatigue experienced
by physicians while increasing the reliability and
objectivity with which medical images are evaluated.
Prior to the 1990’s the primary emphasis was directed
towards developing stand-alone “expert systems” that
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could review a given set of medical findings, includ-
ing images, in order to deduce a reliable differential
diagnosis using simple statistical methods. Although
several of these early projects helped advance the
field, most of these efforts presented so many con-
tributing factors that standard modeling strategies were
rendered grossly inadequate [1–3]. Experience gained
by investigators during the course of these pioneering
studies led to a shift away from attempting to automati-
cally provide a definitive diagnosis towards developing
methods that could provide objective, reliable clinical
decision support for physicians. This new emphasis
led to the term, computer -assisted diagnostics (CAD),
which is commonly used to describe these activities
today. To the extent that CAD is currently used in
medical imaging applications, the majority of stud-
ies are directed towards: 1) pre-screening specimens
to flag suspicious findings; 2) detecting and segment-
ing image regions that are likely to be diseased; 3)
accurately measuring and quantifying image features
that are known to be relevant to a given clinical deci-
sion; and 4) testing new image features and algorithms
which could potentially provide more accurate clinical
decisions.

Radiologists were among the first physicians to uti-
lize CAD in conjunction with rigorous computational
methods to support diagnostic decisions with much
of their incentive driven by the need to discriminate
among subtle changes in the size, shape, and texture
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Fig. 1. Example of image processing of an imaged histologic section of breast tissue prepared with hematoxlyin & eosin stain.

of imaged organs and lesions. These tasks demanded
accurate mathematical descriptions which could be
incorporated into standardized techniques and proto-
cols. In the 1960’s Lusted published work that formally
introduced the use of receiver operator curves (ROC)
to measure performance and he promoted the use of
modern statistical methods, including Bayesian statis-
tics and likelihood ratios to support more accurate
diagnoses and prognoses [4, 5]. CAD techniques have
been successfully utilized in number of applications
ranging from the characterization of lung nodules to
the classification of dermatologic conditions [6] and
the detection of colonic polyps from CT colonoscopy
[7, 8]. One of the most publicized advances that have
been achieved using CAD, however, has been in the
detection of breast cancer [9–12]. Since that time, sev-
eral commercial CAD systems have been developed
and approved by the FDA for clinical use. Today, these
technologies are used routinely as part of modern clin-
ical practice [13].

Although the idea of using CAD in diagnostic
pathology has taken a much longer time for accep-
tance, the advent of new digital imaging technologies
including high-throughput whole slide scanners (vir-
tual microscopes) are making a very compelling case
as part of the clinical workflow. For example, the
PAPNET system [14–16] along with specialized thin-
prep processing, were designed to optimally prepare
and image cervical smear specimens prior to neural
network-based screening. PAPNET is yet another FDA
approved CAD system that has been introduced into
the clinical workflow as a reliable means for detecting
and flagging suspicious cases which require follow-up
before a definitive classification can be rendered.

The next sections of this chapter provide a high-
level overview of the fields of image processing,
pattern recognition and computer vision followed by a
description of how these disciplines relate to the more
comprehensive field of computer-assisted diagnostics.
Throughout the remainder of the chapter we have sup-
plied multiple illustrative examples demonstrating how
recent advances and innovations in each of these areas
have impacted clinical and research activities through-
out pathology and radiology.

1.2. Image processing

The term image processing refers to the approaches,
methods and technologies that are used to manipu-
late images from one form to another with the intent
of rendering them more useful. During the course
of these operations images may be enhanced, noise
suppressed and blurring eliminated, but the results of
these processes still require further assessment and/or
interpretation. Figure 1 shows a representative imaged
breast tissue histologic section along with the resul-
tant edge detection map and corresponding intensity
histogram.

1.3. Pattern recognition

Pattern recognition refers to the methods and pro-
cesses that make it possible to perceive structure in
data. The range of domains that benefit from the use
of pattern recognition spans a wide number of appli-
cations including the interpretation of speech, analysis
of seismic data and prediction of economic trends. For
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Fig. 2. A multivariate clustering algorithm in action.

the purposes of this chapter, however, the term will be
used to refer to the algorithms, methods and proce-
dures that enable computer-based systems to arrive at
conclusions which are consistent with what an expert
pathologist or radiologist might observe if they were
to evaluate the images using traditional approaches
and practices. Figure 2 shows a multivariate clustering
algorithm in the process of systematically interrogating
and detecting the salient peaks and basins of attraction
within a representative data set.

1.4. Computer vision

Several of the fundamental principles of the field of
computer vision have grown out of attempts to mimic
the human visual system. One of the most striking
architectural features of the human visual system is the
underlying structure which enables it to operate on the
principle of convergence wherein there is an increased
capacity for abstraction at ascending levels of process-
ing and analysis. Figure 3 shows the histology of retina
which initiates the hierarchical structure of the human
visual system as an input signal ascends from the sim-
ple to the complex and hyper-complex cell. It is this
aspect of the visual system that machine vision scien-
tists have tried to exploit and incorporate into modern
computer-based designs.

Over the course of more than 15 years our research
team has designed, developed and implemented a host
of new and innovative computer vision algorithms in
projects addressing challenging clinical problems in
diagnostic and investigative pathology and radiology.
While it would exceed the scope of a single book chap-

Fig. 3. Histology of retina.

ter to provide a detailed description of any one of
those efforts, we will provide a summary of several
key efforts that our team has undertaken over the past
5–10 years along with a set of citations which refer to
the most relevant efforts of other investigators through-
out the field whose work demonstrates the tremendous
impact that new and emerging technologies in imaging
and high-performance computing are having through-
out the clinical and research communities.

2. Image guided decision support

A significant driving force for advances in the field
of computer-assisted diagnostics has been the growing
emphasis throughout the clinical and research com-
munities on personalized healthcare. As such, it has
become increasingly important to improve the reliabil-
ity and accuracy with which subclasses of disease are
distinguished in order to facilitate drug discovery and
identify subpopulations of patients who would most
likely benefit most from a specific drug regimen or
therapy.

Developing strategies that can reliably transform
such complex concepts into well-defined algorithmic
procedures is an active area of research with several
major projects focusing on diagnostic pathology. These
include the Pathex framework and the Pathex/Red
system [17], developed at Ohio State University to
assist pathologists in the assessment of laboratory data;
ECLIPS [18] which was developed at the University of
Illinois Urbana; and the PathFinder project from Uni-
versity of Southern California and Stanford which was
directed towards the development of an expert system
that provides a differential diagnosis based on the histo-
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logical feature(s) observed by pathologists. PathFinder
suggests any additional features that are most likely to
narrow the range of possible diagnoses, thus helping
to screen for observations which are inconsistent with
a given disease [19].

2.1. Content-based image retrieval

At approximately the same time that the concept of
personalized medicine was becoming popular, there
was a growing, concurrent excitement at the opposite
side of research spectrum among computer scientists
and engineers who were investigating the feasibility
of developing data mining approaches which could
reliably locate and retrieve images and graphical
information based upon their underlying visual
content rather than based upon the alphanumeric
labels that were traditionally used to name them.
As the field evolved, the idea of querying such data,
based on image-based characteristics became known
as Content-Based Image Retrieval (CBIR). While
the mechanisms for accessing alphanumeric data
have been studied extensively, content-based access
of medical images, especially imaged pathology
specimens, still remains largely unexplored.

The technologies that capture, describe, and index
the visual essence of multimedia information rely
on the methods and principles of image analysis,
pattern recognition, and database theory. The individ-
ual strategies and approaches used to perform these
analyses differ according to the degree of generality
(general purpose versus domain specific), the level
of feature abstraction (primitive features versus log-
ical features), overall dissimilarity measure used in
retrieval ranking, database indexing procedure, level of
user intervention (with or without relevance feedback),
and by the methods used to evaluate their perfor-
mance.

There have been several general purpose content-
based image retrieval (CBIR) systems that have been
reported over the years such as the IBM QBIC System
[20], the Photobook System [21], the WBIIS System
[22], the Blobworld System [23] and the SIMPLIcity
System [24].

More recently, however, there has been increased
interest and efforts applied to utilizing CBIR in medical
applications. Wang from Pennsylvania State Univer-
sity emphasizes the use of wavelet technology and
Integrated Region Matching (IRM) distances for char-

acterizing pathology images [25]. The system indexed
segments of images at different scales by partition-
ing the original image into smaller overlapping blocks.
A CBIR engine was then interfaced with a server
which allowed users to browse portions of the orig-
inal matched image at different scales. During the
same period of time, the Pittsburgh Supercomput-
ing Center developed a system which utilized global
characteristics of images to provide a measure of
Gleason grade of prostate tumors [26]. The same
team later reported a prototype system which enabled
physicians to utilize standard desktops to access
supercomputers resulting in decisions which exhib-
ited a strong correspondence between the similarity
distances generated by the computer algorithm and
the pathological significance as judged by certified
anatomic pathologists [27]. Based on advances made
in this early work there have been a range of suc-
cessful CBIR applications that have been reported
[28–35].

2.2. CBIR for discriminating among malignant
lymphomas and leukemia

In 1998, our team first began to undertake the
challenge of developing an image-guided decision
support system to discriminate among lymphoprolif-
erative disorders that can sometimes by confused with
one another when assessed during routine microscopic
evaluation because of similarities in their morpho-
logic profiles and visual appearance. The motivation
for undertaking this project grew out of a pilot study-
ing involving a relatively new entity, called Mantle
Cell Lymphoma (MCL). One of the interesting aspects
of this disorder is the fact that it exhibits a pheno-
type which closely resembles the morphologic profile
exhibited by several other disorders including a wide
spectrum of benign cells. Unfortunately, Mantle Cell
Lymphoma runs a significantly more aggressive clini-
cal course [36–41] than the other entities with which it
is often confused. This problem presented a significant
clinical problem with a large number of technical chal-
lenges. Another factor that made this project attractive
was the fact that the diagnosis of each of the enti-
ties could be evaluated using immunophenotyping
techniques which made it possible to build a “gold-
standard” image archive and database of cases for
which there was independent confirmation of the dif-
ferential diagnosis of each specimen.
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Fig. 4. Logical blocks and workflow through modular framework. (Figure courtesy of IEEE Transactions on Information Technology in
Biomedicine. 4(4):265–273, 2000)

2.3. Overview of system framework

Figure 4 shows a prototype platform that was devel-
oped to enable us to conduct iterative development and
optimization experiments. The proposed framework
was developed using modular design to maximize its
flexibility with each of the major modules designed
to operate independently or in conjunction with one
another.

Using this platform, once a query image entered the
system, the client processor automatically performed
segmentation and feature extraction. After which, sta-
tistical pattern recognition techniques allowed quick,
reliable content-based image retrieval and compar-
ison of the unclassified case with a gold-standard
database of cases for which independent confirmation
of the diagnoses had already been conducted using
immunophenotyping [42, 43].

2.4. Automated segmentation module

An important component of the client software
which is central to it functionality is the segmenta-

tion module which has been shown to automatically,
reliably and reproducibly delineate the nuclear and
cytoplasmic components of cells of interest. Xu and
Prince [44] advanced the strategies used to segment
images significantly when they reported the develop-
ment of an algorithm based on active contours and a
gradient vector flow (GVF) model which could sup-
port large capture regions while reliably navigate in
and out of boundary concavities. Unfortunately, the
GVF snake that they developed was not appropriate for
color images. Several early experiments showed that
simply transforming chromatic images into gray-level
images and then applying the GVF segmentation algo-
rithm was not a viable solution for many applications.
This fact became even more problematic when used
in diagnostic and investigative pathology applications
where even subtle differences in color often provided
essential cues for performing reliable analysis.

Several investigators attempted to address this chal-
lenge by calculating the color gradients through a
simple summation of the response across the RGB
channels of the image. This strategy was, in gen-
eral, heuristic and had no theoretical basis. In our
work, we developed a definition of gradients based
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upon classical Riemannian results. This approach was
based on a solid theoretical background and constituted
a logical extension of the gray-level image gradient
computation. Our team investigated and reported the
development and implementation of a new robust color
GVF snake based upon a weighted chromatic gradient
operator which achieved superb performance utilizing
LUV color space and robust estimation. Please see [43,
45] for a detailed description of the approach.

2.5. Shape signature module

In order to address the challenges of discriminating
among a set of disorders which exhibited such a high
degree of similarity in terms of their visual appear-
ance under the microscope, our team experimented
with a wide range of different shape characterizations
including bending energies [46] and chain code [47].
Although each individual method offered some advan-
tages, systematic experiments showed that the best
results were obtained by implementing a modified ver-
sion of the Elliptic Fourier Descriptor which allowed
recognition of individual cells irrespective of variations
in rotation, translation and magnification. This feature
was extremely important because of the rotational and
scale differences that often exist between a given novel
query imaged cell and those cells contained within the
gold-standard repository of cases. Through the use of
statistical optimization methods we identified 10 har-
monics as a reliable trade-off between computation and
reliability and accuracy [42, 48]. Figure 5 shows repre-
sentative input image with nuclear boundary rendered

in white along with corresponding forward and reverse
transforms while varying the number of harmonics
used to encode the contour.

2.6. Texture signatures

During the course of numerous observations and dis-
cussions with hematopathologists it became evident
that in order for the system that we were designing
to achieve a significant level of reliability the driving
software would require some means for gauging dif-
ferences in the underlying granularity of the nucleus
and prominence of the nucleoli. To address this issue,
we implemented a multidimensional texture operator
based upon a modified version of the multi-scale simul-
taneous autoregressive (MRSAR) model introduced
by Mao and Jain [49]. The algorithm that we used
was based upon a second-order model described by
five parameters at 3 different resolution levels (5×5,
7×7, and 9×9 neighborhoods) giving rise to a 15-
dimensional feature vector. In Fig. 6 we have included
a few representative nuclear profiles to illustrate what
aspect of the samples are actually being measured.
Please see [42, 50] for a complete description of the
algorithms.

2.7. Similarity metrics

Perhaps the greatest challenge that we confronted
while developing the prototype system was that there
was no obvious way to combine the disparate fea-
ture measurements for color, shape and texture that

Fig. 5. A segmented shape in source image gone through elliptic Fourier transformation and reconstruction with varying number of harmonics.
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Fig. 6. Ensemble of representative nuclear texture profiles.

were generated so as to allow one to reliably judge
the level of similarity of the spatial and spectral signa-
tures exhibited by the query cells and “ground-truth”
database of cases.

In the first generation prototype we utilized a
downhill simplex approach to determine the optimal
weighting factors for each of the feature mea-
sures for a test ensemble of imaged specimens. An
interesting finding from these early studies was that
it appeared that the most informative aspects of the
phenotype related to the underlying granularity or
chromatin patterns of individual nuclei [42].

There are quite a few similarity metrics can be used
to judge the similarity of the spatial and spectral sig-
natures. These include Lp distance, such as L1 or L2
distance, the χ2 distance, Kullback-Leibler (KL) diver-
gence, Jensen-Shannon divergence [51] and the Earth
Mover’s distance [52].

The L2 distance is just simple Euclidean distance
which is generally applied to measure the distance
between two vectors on Euclidean space. L1 norm is
the absolute value of the difference between two vec-
tors and it is more robust than L2 norm although it
might be more difficult for optimization. The χ2 dis-
tance is defined as the sum of the squared difference
between two feature vectors over the sum of the two
feature vectors. It has proved to be an effective dis-
tance function for texture similarity measurement. KL
divergence is a non-symmetric similarity measurement
of the difference between two signatures or probability
distribution. JS divergence is based on KL divergence
and its square root results in to a real metric. It is
actually a smoothed and symmetric version of the KL
divergence. The Earth Mover distance is a cross-bin

distance function which does not require the two fea-
ture vectors to be aligned.

2.8. Algorithm robustness

Due to complex nature of image features, high-
dimensionality is an important factor to consider when
evaluating a content-based image retrieval system. As
data dimensionality increases, the amount of test data
needed to generate a statistically sound system can be
prohibitively high. Leave-one-out and cross validation
are among the most used methods in such situations.
More advanced methods such as bootstrapping are also
useful for some applications [53]. When having a very
small sample set is available, leave-one-out method
will exclude one sample from the data during classi-
fier training and then use the “unseen” data for testing,
while repeating this strategy through the dataset to
assess system stability. Similarly, an n-fold cross val-
idation method will divide the data randomly into n
groups, withholding one group as test set in each test
while assessing the average performance of n tests. It
should be noted that even when such mechanisms are
properly implemented the classifier may fail to gen-
eralize to discriminate data collected under conditions
which vary only slightly from training data.

The average five-class classification accuracy using
a mixed set of 3,691 benign, chronic lymphocytic
leukemia (CLL), mantle cell lymphoma (MCL), follic-
ular center cell lymphoma (FCC), and acute leukemia
acute lymphocytic leukemia (ALL) and acute myel-
ogenous leukemia (AML) samples was 93.18% based
on ten-fold cross validation in this closed dataset.
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After repeated refinements to the system it was clear
that using a maximal margin classifier, support vector
machine (SVM), was the optimal approach for classi-
fying the cells. Throughout the course of those studies
the largest source of errors was caused by ambiguity
between MCL and CLL. Please see [43] for a detailed
treatment of the algorithmic development and compar-
ative performance studies.

3. Tissue microarray analysis

As the number of new techniques and technologies
used in medical applications continues to increase our
efforts have been redirected from the specific problems
associated with developing an image guided decision
support system for assessing hematologic malignan-
cies and towards the development of a generalizable
set of automated imaging, computational and data
management tools for assessing large-scale cohorts
of tissue samples. For example, tissue microarray
(TMA) technology was recently developed to enable
investigators to extract small cylinders of tissue from
histological sections and arrange them in a matrix
configuration on a recipient paraffin block such that
hundreds can be analyzed simultaneously [54–56].
Over the years, TMA technology has been validated
for use in cancer research by investigators who sys-
tematically compared interpretations using TMAs with
those rendered using whole tissue sections or through
validation with cDNA microarray findings. Together,
these studies encompassed a broad range of cancer
types including breast cancer [57–63]; prostate can-
cer [64–67]; gastric cancer [68]; colorectal cancer
[69–71]; lymphomas [72–76], multiple myeloma [77];
soft tissue sarcoma [78]; renal cell carcinoma [79];
bladder tumor [80]; glioma [81, 82]; melanoma [83];
and lung tumor [84, 85]. Some of the protocols used
in array preparation have since been refined to accom-
modate specific types of specimens, e.g., cell lines and
to improve the reliability of the method [86–92].

Quantitatively assessing biomarker expression and
staining characteristics of tissue microarrays typically
involves some degree of manual or semi-quantitative
evaluation of the specimens while they are subjec-
tively scored [67, 92]. Unfortunately, such approaches
are prone to inter- and intra-observer error. To
address this issue, several investigators have begun to
develop improved methods for performing the quanti-
tative evaluation of TMA’s [93–95]. For example, the

AQUA (Automated Quantitative Analysis) system was
designed to utilize molecular based methods to assess
protein expression while reducing the variability of
pathologist-based evaluations of samples [96]. Unfor-
tunately, in spite of the significant progress achieved
in this area thus far most of the systems that have been
developed are limited by the fact that tissue they are
closed and proprietary; do not exploit the potential of
advanced computer vision techniques; and/or do not
conform with emerging data standards.

Capitalizing on the experience that our team gained
while developing the image guided decision support
(IGDS) system (described in Section 2), we began
designing, developing and evaluating a deployable
system for performing automated analysis of tissue
microarrays (TMA) in collaborative, multi-user envi-
ronments. Through competitive extramural funding
from National Institutes of Health we have modi-
fied and optimized many of the governing algorithms
that had been developed to perform image analysis
of imaged hematopathology specimens so that they
could reliably distinguish among the cellular compo-
nents and tissue types within imaged tissue microarrays
[97, 98].

3.1. Artifact compensation and color
decomposition

Figure 7 shows a representative tissue microarray
exhibiting bowing of rows and columns and missing
(detached) tissue discs. Unfortunately, such artifacts
are not uncommon because of the tremendous amount
of care and skill that is required to assemble and con-
struct tissue microarrays. To address this issue software
was developed to correct for such aberrations through
the use of a modified Hough transform which automat-
ically locates, delineates and indexes each individual
disc while inserting blank place holders in the database
for detached discs [99–102].

Fig. 7. TMA mechanical distortion.
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Fig. 8. Example original image of breast cancer specimen (shown left) is color decomposed into its constituent staining maps for DAB (middle)
and hematoxylin (right). The DAB map revealed cytoplasmic stain of keratin 18 in the tumor region, while the nuclear counter stain was captured
by hematoxylin.

An even greater challenge that our team confronted
while developing the TMA analysis system was caused
by the fact that tissue arrays are often prepared using
two or more different histological stains simultane-
ously, which complicates the attempts to automate
quantification of the staining characteristics of these
specimens. To address this issue, we developed a
robust color decomposition module to perform reliable
polar transformations and peak detection in multi-
dimensional color spaces. The resulting color decom-
position algorithm was subsequently tested using
breast cancer tissue arrays which had been stained with
anti-Smad antibodies and a range of other imaged spec-
imens [100, 101]. The algorithm was later modified to
automatically drive the robotic stage of a microscope
while randomly sampling the color at over 500,000
pixel locations to provide input to the decomposition
module. Results from application of the methods are
shown for a representative specimen in Fig. 8.

3.2. Delineation of tumor boundaries at the
tissue-level

One of the greatest obstacles for automated quan-
titative analysis of TMA specimens stems from the
fact that each individual disc (histospot) within a given
tissue microarray is a complex heterogeneous tissue
sample. Since many assays are designed to assess the
concentration of target molecules within a specific tis-
sue type, a proper evaluation of imaged TMA’s must
not only reflect the total amount of signal within each
tissue disc (histospot) but must also describe the spatial
distribution of the signal within the tissue of interest.

Towards that end, our team investigated and reported
the use of texton distributions as a means for perform-
ing tissue-level segmentation of imaged specimens.

The algorithm was designed to sample specimens at
multiple scales while generating texton histograms for
regions of interest. Because of the high dimensionality
of the distribution space and non-separable nature of
the data our team devised a fast, new strategy for com-
puting regional histograms using an integral histogram
technique which is only linearly dependent upon the
size of the histogram and independent of the region
size. As an extension of this work we developed a new
region covariance descriptor which provided superior
performance for texture classification while providing
a natural way of fusing features [103]. The results of
using texton-based segmentation to delineate epithe-
lial/tumor regions within imaged breast cancer tissue
discs are shown in Fig. 9.

When the segmentation results were compared with
those which had been hand-drawn by a board-certified
anatomic pathologist for 300 cancer tissue discs the
average false positive rate was 4.13% and the average
false negative rate was 2.15% [104].

3.3. Characterizing expression signatures at the
multiple levels of granularity

It is now largely accepted that staining and expres-
sion signatures can provide valuable prognostic and
clinical insight regarding therapy planning and for
predicting response to treatment for certain patient
populations [105–107]. As an extension of some of the
early work in the field, our team has been investigating
the use of texton signatures as a means for classifying
cancer and disease progression in imaged cancer tissue
arrays.

Utilizing an ensemble of 3,744 breast cancer sam-
ples we performed a series of experiments to determine
the preferred filter banks and optimal number of modes
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Fig. 9. Segmentation results for representative breast cancer tissue discs showing segmentation probabilistic maps. Darker region represents
higher probability of epithelial tissue. The algorithm uses texton-based texture descriptor based on region covariance.

that were necessary for differentiating among the
expression patterns of 3 different types of breast can-
cer. Systematic studies showed that the discriminatory
power of the texton signatures was highly dependent
upon the choice of filter banks utilized to generate the
histograms and the statistical approach used to render
classifications. Gentle Boosting using an eight-node
CART decision tree as the weak learner provided an
overall accuracy of 86.02% using only 30% of the spec-
imens as the training set [108]. One interesting, but
unexpected outcome from these studies was that by
storing the raw filter responses of the staining maps the
resulting reference library is not spatially constrained
and can be used to conduct analysis at multiple levels
of granularity, i.e., at the whole disc, tumor, individual
tissue, cell or sub-cellular level [97].

Figure 10 shows the results from studies in which
the analysis concentrated on three different sub-regions
within the imaged breast cancer specimens (tumor
region alone; whole tissue sample; and non-tumor
region alone). To obtain these results the tumor and
non-tumorous regions were automatically delineated
using the segmentation algorithms described in Section
3.2. Comparative performance analysis was carried out
using three different algorithms: K nearest neighbors
(K = 5), soft margin support vector machines (SVM)
and boosting. It was clear that the maximal margin
classifiers, such as boosting and SVM, performed sig-
nificantly better than simple classifiers such as KNN.
In addition these experiments showed that using the

Fig. 10. Classification accuracy using expression signatures corre-
sponding to different regions of interest.

tumor region mask provided appreciable improve-
ments in classification accuracy of the specimens.

In a set of parallel experiments our team investi-
gated the use of the color decomposition and texton
analysis for assessing human epidermal growth factor
receptor 2 immunohistochemical assays [109, 110]. In
those studies it was shown that the algorithms were
able to reliably characterize the underlying expres-
sion patterns of immunostained specimens. Figure 11
shows some representative examples in which the
computer-based analysis was used to identify speci-
mens exhibiting similar staining characteristics.

4. Multi-spectral imaging

Although the majority of clinical and research sci-
entists still utilize traditional microscopes and imaging
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Fig. 11. Ensemble of imaged specimens showing those specimens which have been classified as exhibiting the most similar staining signatures.
(Figure courtesy of Med Image Comput Comput Assist Interv. 10(Pt 2):287–94, 2007)

devices to conduct their experiments, new technolo-
gies such as virtual microscopes and multispectral
imaging cameras continue to gain wider acceptance.
Towards that end our team has begun to explore the
utility of multispectral imaging (MSI) technology
using “off-the-shelf” devices which can be configured
for bright-field or fluorescence microscopy in the visi-
ble wavelength range of 420–720 nm and up to 950 nm
for fluorescence-only systems. Figure 12 shows a com-
posite RGB image of single histospot from a breast
tissue microarray and the corresponding multispectral
images corresponding to the most salient wavelengths.

4.1. MSI in bright-field analysis

Multi-spectral imaging devices are capable of cap-
turing data across a range of frequencies within the
electromagnetic spectrum. Although several uses have
been identified and reported in pathology [111–113],
it is generally difficult to determine, a priori, which

applications would benefit most significantly from this
relatively new technology. In a recent study, Boucheron
et al. found minimal (<1%) performance improve-
ment using multispectral imaging over a standard RGB
imaging for pixel-level nuclear classification of routine
H&E images [114]. In a separate study, Roula et al.
reported improved classification capacity using MSI
for H&E slides of radical prostatectomies [115]. The
lack of clear consensus over the utility of multi-spectral
imaging in bright-field microscopy prompted our team
to take a closer look at the underlying principles.

As a first step we conducted comparative per-
formance studies to determine, empirically, whether
or not there exists a significant benefit to utiliz-
ing multi-spectral imaging technology to characterize
hematoxylin stained breast tissue acquired using
bright-field microscopy. During those experiments
breast TMA’s were imaged using a Nuance VIS-
FLEX MSI camera at 20X (Cri Inc., Woburn, MA
01801 USA). Each resulting image “cube” has a spa-
tial resolution of 1392×1040, sampled at 31 spectral
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Fig. 12. Multispectral imaging technology captures microscopic
images at a series of small wave length intervals. The resulted λ-
data cube can be composited into RGB image according to the CIE
standard observer color-matching functions.

bands across the wavelength interval 420–720 nm. The
prototype software that was used to conduct the exper-
iments has three modules. The first extracts a region
of interest, using adaptive thresholding to remove
background noise and morphological processing to
smooth the region. The second performs texture fea-
ture extraction using a local binary pattern to extract
rotation-invariant, uniform patterns for each specimen
at each of the 31 spectral channels. The third module
performs feature selection and classification. For each
spectral band, exhaustive feature selection was used to
search for the combination of channels that yielded the
best classification accuracy. AdaBoost [116] using a
linear perceptron least-square classifier as weak learner
was applied as a strong classifier to select the set of
representative color channels. The selected color chan-
nels (spectral bands) carry the greatest discriminatory
power and are used to produce a majority vote in the
final classification.

During those studies 92 breast TMA discs were
used to evaluate performance. A sensitivity of 0.91
and specificity of 0.89 were achieved when multi-
spectral data was used whereas a sensitivity of 0.83

and specificity of 0.85 was achieved using RGB data.
See Qi X, et al. for a full description of the tech-
nique [117]. Encouraged by these results our team is
currently testing and optimizing the underlying MSI
analysis algorithms for a wider range of specimens and
stains.

4.2. Metamers

As an extension of these experiments our team is
developing a metamer-based metric which can be used
to determine, a priori, which applications would benefit
most from the use of muli-spectral imaging technology.
Metamers are considered as different spectral power
distributions which induce the same CIE XYZ tri-
stimulus value under a given illuminant. There are an
infinite number of spectral distributions which give rise
to each color [118]. For two pixels from a cube to be
considered metamers, the spectrum of each pixel, sub-
tracted in a pair-wise fashion and multiplied by the
appropriate color-matching coefficient [113], must fall
within a small range around zero. In a recent set of
experiments our team utilized the fundamentals of col-
orimetry in an attempt to narrow the uncertainty of
knowing when a multi-spectral image captured poten-
tially discriminatory information which was absent in
the standard RGB image counterpart and we applied
a standard condition for detecting metamerism. In this
work, we used a linear algebra framework to investi-
gate the relationship between the spectral image and
its standard-image counterpart. Figure 13 (data cour-
tesy of [113]) shows the plots for some routine stains.
Our preliminary feasibility studies indicate that those
stains which absorb heavily in regions where the color-
matching coefficients are small are most likely to
benefit from MSI technology, however, this line of
thought warrants closer examination [119, 120]. In
the next phase of our experiments we will investigate
the use of metamers for objectively determining those
applications for which MSI would be most appropriate
and test and optimize those metrics for the full range
of specimens and stains under study.

4.3. Quantum dot antigen-antibody conjugates

In a parallel set of experiments, our team has
begun to investigate the use of quantum dots (QD’s)
technologies to accentuate visible differences among
tagged biomarkers. Quantum dots (QD’s) are small
light-emitting particles that have excellent proper-
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Fig. 13. Spectra of several standard stains.

ties for fluorescent labeling of biologic molecules
and exhibit superior signal brightness, resistance to
photo-bleaching, and narrow, well defined emis-
sion spectra. Antibody-conjugated quantum dots have
already been used for quantitative molecular profiling
of protein expression in formalin-fixed, paraffin-
embedded (FFPE) sections [121]. A similar approach
using QD-labeled oligonucleotide probes for multi-
plexed fluorescent in situ hybridization(FISH) has been
reported and shown to be a reproducible measure-
ment of RNA levels in clinical samples [111]. One
advantage this approach offers over other techniques,
such as quantitative RT-PCR, is that it preserves spatial
information allowing one to determine which cell pop-
ulations are expressing the molecule of interest. A high
signal for an mRNA using RT-PCR of a FFPE sample
cannot distinguish whether it is being expressed by the
tumor cells or the stromal cells in the specimen.

Our team has been working on the development of
a reliable clustering algorithm which can be used to
preprocess multispectral datasets of the imaged speci-
men immediately after acquisition for the purposes of
quickly and automatically detecting the most informa-
tive wavelengths. To investigate the feasibility of using
these tools we have devised a set of well-defined exper-
iments which focused on a clinically salient application
involving the evaluation of non-Hodgkin’s lymphoma
histology specimens. The aim of these experiments was
to determine the staining and expression patterns of
FDC markers CD21, CD23, CD32, CD35 using FISH
or QD or combination of those two imaging techniques.

First FISH slides were blocked in PBS and washed.
Primary antibody was added and washed. Secondary
antibody with QD was added; incubated for 1 hour,
then washed. DAPI was added and slides cover-
slipped.

Multispectral images were acquired, after auto-
matic removal of auto-fluorescence, at resolution of
1392 × 1042 × 31, where the 31 spectral bands cover
wavelengths 420–720 nm. Composite images of each
pure FISH and QD signals were created and the expres-
sion pattern of each biomarker was digitized and
stored.

In a second set of experiments we evaluated the MSI
setup using frozen sections of tonsil which were stained
for chromosomes 11 and 14. The multiple myeloma
cell line MM1.S was stained with FISH probes spe-
cific for chromosomes 11 and 14. The FISH labeled
cells were stained for the surface expression of CD20.
This setup allowed simultaneous detection of chromo-
somes 11 and 14 in the nucleus and surface expression
of CD20. Slides were evaluated for the surface expres-
sion of either CD21 or CAN. Similar to the results
of MM1.S experiments, both the chromosome FISH
probes and the surface expression of CD21 and CNA
could be detected demonstrating the utility of these
protocols with MSI [122].

5. Automated co-registration of consecutive
imaged histologic sections

During the course of our interactions with end-
user oncologists and pathologists, it has become
apparent that the capacity to perform quick, reliable co-
registration of digitized, histologic cross-sections has
a wide range of useful applications including generat-
ing 3D image stacks for visualizing micro-structures;
performing 3D modeling of tumor environment; cor-
relating image features and localization of biomarkers
across adjacent sections; and matching sections which
have been prepared using complementary immunos-
tains.

Driven by these incentives our team recently
reported a new method for performing fast, robust
image co-registration, which combines landmark and
region-based strategies [123, 124]. Most existing meth-
ods are highly sensitive to variations in image quality,
degree of deformation, and require fine-tuning of
parameter settings. The algorithm that our team devel-
oped is computationally efficient and operates in a
completely unsupervised fashion. Due to the rela-
tively small number of landmarks needed to drive the
algorithm, it runs faster than several popular nonlin-
ear registration algorithms reported in the literature,
including the finite element method (FEM), BSpline
fitting and Daemon’s algorithm.
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Fig. 14. The breakpoints for three algorithms.

The algorithm begins by automatically detecting
landmarks followed by executing a coarse to fine
estimation of the non-linear mapping among those
points. Multiple resolution orientation histograms and
intensity templates are combined to obtain a fast rep-
resentative local descriptor of the detected landmarks.
A quick estimator, RANSAC (RANdom SAmple Con-
sensus), is utilized to reject outliers during the initial
landscape correspondence. The final refined inliers
are used to robustly estimate a Thin Spline Trans-
form (TPS) to complete the final nonlinear registration.
The method was shown to provide sub-voxel accu-
racy for co-registering 3D radiology datasets. We have
already performed 3D experiments comparing the per-
formance of the newly developed algorithm with those
achieved using the Insight Segmentation and Regis-
tration Toolkit (ITK) and the algorithms developed at
the French national institute for research in computer
science and control (INRIA). The specific algorithms
within the ITK and MedINRIA that we used to con-
duct performance studies were Bspline and Daemon’s
method. In the case of ITK we utilized the open source
code implementation. For MedINRIA we used the soft-
ware, which is freely available for download. In each
case we systematically adjusted their parameters to
achieve best performance. Figure 14 lists the compar-
ative results for the three algorithms [124].

The algorithm was tested using a wide-range of
datasets exhibiting nonlinear deformation. Figure 15
shows representative examples using imaged TMA,
Brain CT and rat lung during respiration. In each case
the first row represents the fixed image and the sec-
ond row is the moving image. The last row represents
the transformation recovery results. In these examples
the more similar the result image and fixed image the
better the registration.

In order to evaluate the performance of the tissue
disc alignment protocol pairs of consecutive sections
were extracted from a mixed set of tissue arrays, which
had been stained for the same marker. Tissue discs were
rotated out of registration after which the non-linear
co-registration algorithm was applied. The target disc

was subsequently rendered in red whereas the localiza-
tion test disc was rendered in green. The accuracy of
the match resulting from the registration process was
visualized by superposing the two discs (localization
and target) as shown in Fig. 16 with regions of absolute
alignment rendered in yellow.

During these studies the registration algorithm was
shown to compensate for partial loss of tissue across
imaged sections because of the elimination of outliers
and robust matching of landmarks. Additional experi-
ments were conducted in which the original target disc
was graphically rotated by 30 degrees, scaled by 70%,
and translated by 10 pixels to generate a test disc to
assess performance.

Through the systematic application of the deform-
able co-registration algorithms across a given series
of thin cross-section of tissues constituting the tumor
or tumors under study, a 3-dimensional representation
of the tumor environment can be built, visualized and
interrogated.

6. Data organization and management

Advances in pathology imaging technology and
CAD have spurred the challenges of data management
and data exchange for pathology applications. Tradi-
tional database systems are not optimized to handle
images and their related data, especially large amount
of image metrics generated in CAD. Researchers
needed to develop suitable systems that help orga-
nize their own data structure and support their specific
queries. To address the organizational and data man-
agement challenges of the PathMiner project, our
team developed and tested an Intelligent Archival (IA)
subsystem which enables individuals from disparate
clinical and research sites to populate databases with
new cases including correlated image metrics and
imaged specimens in multi-user environments [100,
101, 125]. A server-side JAVA application automati-
cally checks for potential conflicts of new entries, and
populates the database while keeping an entry in the
database to indicate the location of the digitized can-
cer specimens. The database can be accessed through
redundant application servers which are mirrored for
added stability. The software has been developed using
a modular design [125].

In order to further this type of efforts to be used
widely by the community, metadata and identifiers
are being developed to meet all HIPAA require-
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Fig. 15. Image transformation recovery examples. (a) tissue microarray; (b) brain CT; (c) rat lung.

ments for sharing data anonymized for research [126].
The constituent entities of the Tissue Microarray
Repository subsystem are being designed in keeping
with emerging guidelines from the caBIG initiative
and the Association for Pathology Informatics. The
overarching idea is to keep the definitions general-
izable and to provide the underlying structure which
can support a broader range of imaging applica-
tions.

6.1. The ImageMiner data model and pathology
analytical imaging standards (PAIS) model

The data model underlying the ImageMiner
database [125] was developed based upon direc-

tion providing by a panel of consulting oncologists
and pathologists [100]. The data model is designed
to house both quantitative and qualitative informa-
tion derived from the physical and digital specimens,
including clinical data and research data. Version
1.0 of the data model consists of 58 classes and
262 data elements (attributes). It has undergone
review by the NCI Enterprise Vocabulary Services
program to ensure compliance with caBIG® stan-
dards and has been loaded into the Cancer Data
Standards Repository (caDSR). The model can be
viewed and retrieved via caBIG CDE Browser
(https://cdebrowser.nci.nih.gov/CDEBrowser/).

Our team is currently working to extend and harmo-
nize the analysis results component of the ImageMiner
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Fig. 16. Example registration. Upper left panel - original target
disc; Lower left panel – original localization disc; Upper right
panel –overlay of target disc image (rendered in red) and local-
ization disc image (rendered in green) prior to co-registration;
Lower right panel – superposed localization and target disc show-
ing result. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/ACP-2011-0046)

data model with the PAIS (Pathology Analytical Imag-
ing Standards) model [127] to support markup and
annotations in TMA, pathology, and microscopy imag-
ing applications, including multispectral data, while
maintaining interoperability with corresponding stan-
dards in the radiology domain. As such, PAIS is being
developed in keeping with the Annotation and Image
Markup (AIM) model [128, 129], which is under devel-
opment in the caBIG® In-Vivo Imaging Workspace to
support radiologic image annotation and markup in
health care and clinical trial environments. PAIS has
been optimized for representing fine-grained markups
and annotations and provides additional information
for data provenance, such as algorithms and parame-
ters used for image segmentation. For additional details
on the PAIS standards please see [130, 131].

6.2. High-throughput analysis of imaged
specimens on a grid

In an attempt to address the challenges of high-
throughput analysis, several investigators have begun
to exploit distributed computing technologies. For

Fig. 17. Screenshot of the Help Defeat project conducted on IBM
World Community Grid. (Figure courtesy of IEEE Transactions on
Information Technology in Biomedicine. 13(4):636–644, 2009)

example, our own team recently demonstrated the
use of a high-performance computing system for
automatic analysis of imaged histopathology breast
tissue specimens [132]. Gurcan et al. reported the
successful application of distributed computing in a
pilot project to support automated characterization
of neuroblastoma using the Shimada classification
system [133]. The ImageMiner system that we are
developing is a logical extension of our early success-
ful efforts developing network-based clinical decision
support systems [42, 98, 104, 134, 135] and large-
scale, feasibility studies that we conducted on IBM’s
World Community Grid in July 2006, using more
than 100,000 imaged tissue samples [43, 98]. World
Community Grid afforded our team the collective com-
putational power of approximately 250,000 computers
world-wide which translated into the computation
equivalent of what it would take a standard desk-
top 2,900 years to accomplish. Figure 17 shows the
graphical logo for the project on a representative client
computer which was participating in the project.

One of the most difficult tasks for our team was
keeping up with the pace at which World Community
Grid was processing the data. To meet the demands
of the project our team purchased a high-throughput
whole slide scanning virtual microscope. In addition,
we worked out the details of training the computer
to automatically delineate each tissue disc from the
imaged arrays, perform the color decomposition oper-
ations, and package each staining map into work units
before submitting them to the Grid. It was also nec-
essary for us to work out the details of performing
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Fig. 18. Help Defeat Cancer project work flow.

quality control on the results that were returned to
our laboratory and correlating those results with their
corresponding clinical profiles. Figure 18 shows the
workflow of data throughout the “Help Defeat Cancer”
project.

WCG enabled our team to conduct large-scale feasi-
bility studies demonstrating the use of texton histogram
signatures for characterizing and classifying stain-
ing and expression signatures in image cancer tissue
microarrays which resulted in the generation of a ref-
erence library of expression signatures for more than
100,000 tissue samples.

7. Man-machine studies and practical uses

Over the course of the past 12 months, the TMA
computational and imaging tools have been migrated to
the Histopathology & Imaging Shared Core Resources
at The Cancer Institute of New Jersey. They have
been successfully used to analyze microarrays con-
sisting of cancers of the breast, head & neck, and
prostate. As part of a recent study the automated soft-
ware was used to quantify Beclin1 expression which
was shown to be predictive of autophagy [136]. Our
team has also conducted a series of man-machine
performance studies. In the first experiments we uti-
lized the TMA analysis tools to evaluate IHC staining
intensity on imaged breast cancer TMA specimens
comprised of 1407 tissue cores. The results showed
that the computer software algorithms achieved sim-
ilar interpretations to those provided by a panel

of 3 board-certified pathologists and was consistent
with inter-pathologist concordance. These results were
presented at the 2010 Annual Conference of the United
States and Canadian Academy of Pathology [137]. In
the next phase of the project our team plans to con-
duct a much more comprehensive set of performance
experiments. To facilitate those studies we have already
deployed a suite of grid-enabled TMA analysis tools
to Emory University and Ohio State University and are
in the process of installing and testing the software at
strategic sites at University of Pennsylvania, and Uni-
versity of Pittsburgh Medical Center each of whom
have agreed to participate in the performance studies
and serve as adopter sites for the project going forward.

Future directions

Advances in digital imaging have made it possible
for pathologist to generate high-resolution image data
as part of their routine investigative and diagnostic
activities. While the resulting data sets offer unparal-
leled opportunities for visualization there still remains
a lack of satisfactory imaging and computational tools
which allow for automated high-throughput analysis
of specimens. Future advances in pathology will rely
on the availability of reliable methods and algorithms
that can keep pace with emerging technologies such as
virtual microscopy and multi-spectral cameras which
currently overwhelm a traditional outfitted clinical
or research department. Our work and the collected
efforts of a growing number of engineers, physicians
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and scientists throughout the community is directed
towards the design, development, and evaluation of
tools which will reduce learning curves and facilitate
more efficient use of these resources.
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