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Deformable (non-rigid) registration is an essential tool in both adaptive radiation

therapy and image-guided radiation therapy to account for soft-tissue changes dur-

ing the course of treatment. The evaluation method most commonly used to assess

the accuracy of deformable image registration is qualitative human evaluation. Here,

we propose a method for systematically measuring the accuracy of an algorithm in

recovering artificially introduced deformations in cases of rigid geometry, and we

use that method to quantify the ability of a modified basis spline (B-Spline) registra-

tion algorithm to recover artificially introduced deformations. The evaluation method

is entirely computer-driven and eliminates biased interpretation associated with hu-

man evaluation; it can be applied to any chosen method of image registration.

Our method involves using planning computed tomography (PCT) images acquired

with a conventional CT simulator and cone-beam computed tomography (CBCT)

images acquired daily by a linear accelerator–mounted kilovoltage image system in

the treatment delivery room. The deformation that occurs between the PCT and daily

CBCT images is obtained using a modified version of the B-Spline deformable model

designed to overcome the low soft-tissue contrast and the artifacts and distortions

observed in CBCT images. Clinical CBCT images and contours of phantom and

central nervous system cases were deformed (warped) with known random defor-

mations. In registering the deformed with the non-deformed image sets, we tracked

the algorithm’s ability to recover the original, non-deformed set. Registration error

was measured as the mean and maximum difference between the original and the

registered surface contours from outlined structures. Using this approach, two sets

of tests can be devised. To measure the residual error related to the optimizer’s con-

vergence performance, the warped CBCT image is registered to the unwarped version

of itself, eliminating unknown factors such as noise and positioning errors. To study

additional errors introduced by artifacts and noise in the CBCT image, the warped

CBCT image is registered to the original PCT image.

Using a B-Spline deformable image registration algorithm, mean residual error in-

troduced by the algorithm’s performance on noise-free images was less than 1 mm,

with a maximum of 2 mm. The chosen deformable image registration model was

capable of accommodating significant variability in structures over time, because

the artificially introduced deformation magnitude did not significantly influence the

residual error. On the second type of test, noise and artifacts reduced registration

accuracy to a mean of 1.33 mm and a maximum of 4.86 mm.

a Corresponding author: Joshua D. Lawson, Department of Radiation Oncology, Emory University, Atlanta, GA,

U.S.A.; phone: 404-778-3473; fax:404-778-3670; email: joshua@radonc.emory.org

The accuracy of deformable image registration can be easily and consistently mea-

sured by evaluating the algorithm’s ability to recover artificially introduced

deformations in rigid cases in which the true solution is known a priori. The method
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is completely automated, applicable to any chosen registration algorithm, and does

not require user interaction of any kind.

Key words: Image-guided radiation therapy, deformable image registration, adap-

tive radiotherapy

PACS numbers: 87.57.Gg, 87.57.Ce, 87.62.+n

I. INTRODUCTION

During the course of radiation therapy, daily changes such as bowel gas and bladder filling

alter the soft-tissue landscape within a patient’s anatomy,(1–3) adding to the more gradual changes

in tumor or target-structure volume and shape over the course of treatment. Positional changes

are usually assessed using electronic portal images acquired either weekly or, less commonly,

immediately before delivery of each fraction. A common practice is to register these verifica-

tion images with digitally reconstructed radiographs generated from the planning computed

tomography (PCT) data. If a significant difference is observed, corrections are made by shift-

ing the isocenter until the bony anatomy or some other fiducial marker of the two images is

grossly aligned. A typical case is prostate treatment, in which translations as large as 5 – 9 mm

are reportedly needed to compensate for changes in bladder filling or rectal gas and stool.(4)

However, organs are not rigid, and a simple translation cannot capture the full extent of the

anatomic changes. The true deformation is three-dimensional (3D) by nature, because organs

change in both shape and location. Shape changes cannot be fully assessed from projected

images and cannot be fully corrected by simple translation. Because the true target deforma-

tion at the time of treatment is unknown, margins large enough to accommodate expected

target shift and deformation are used to ensure coverage in all treatment sessions. These mar-

gins lead to reductions in the maximum deliverable target dose by as much as 13%(5) because

of the increasing difficulty in escalating the target dose without exceeding the dosimetric limits

of neighboring critical organs.

Margins could potentially be reduced if an accurate description of the patient geometry at

the time of each treatment fraction were available,(5) because the dose received by each voxel

could be tracked(6–12) and included in the dose optimization.(13–15) Adaptive radiotherapy (ART)

is an evolving area of much interest, aimed at developing techniques by which a course of

radiation therapy could continually be monitored and modified to reflect the anatomic changes

known to occur.

More recently, cone-beam CT (CBCT) using a kilovoltage imaging system mounted on the

linear accelerator has emerged as a promising technique for accomplishing soft-tissue registra-

tion. A CBCT image of the patient on the treatment table can be acquired in about 60 seconds,

just before delivery of each treatment fraction. Essential to incorporating daily changes in the

treatment process is the use of deformable registration. Deformable registration involves voxel-

dependent modeling in addition to the three displacement and three rotation parameters of

rigid registration. Considerably more complex than rigid registration, deformable registration

offers the potential for warping a structure’s surfaces to reflect changes over time and could be

used to automatically warp structures contoured at the time of simulation to their location just

before delivery of each fraction.

Accomplishing this registration with accuracy is essential, because precise radiotherapy

cannot be delivered without confidence in the deformation model’s ability to incorporate small

organ changes. Technically, deformable registration is an optimization problem that aims to

recover unknown parameters of a transformation and to correlate anatomic features observed

in two different images of the same subject. An iterative process is usually employed to modify

the transformation parameters until an optimal match is found between input images.
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Several techniques have been used to accomplish deformable image registration, including

the fluid-flow approach, the finite element approach, and splines. The spline technique relies

on manual selection of control points (“nodes”). These chosen points correspond to distinct

features of the imaged organ or organs. The displacement of any other point is then determined

by interpolation of the displacement for the nearest control points. This technique has a vali-

dated ability to accurately recover artificially introduced intramodality deformations.(16) More

recently, a simpler technique has been proposed. In contrast to the spline algorithm, the basis

spline (B-Spline) technique uses nodes that are selected automatically, removing reliance on

operator skill. B-Spline is the technique used in this report.

Quality assurance of image registration methods is difficult to perform for all automated

systems. The ideal image registration method would provide an uncertainty value on the accu-

racy of the image registration. This uncertainty could then be incorporated into the radiation

treatment planning process by the addition of margins to the registered functional-image struc-

tures, indicating the spatial uncertainty of the image match.

Because the true values of the transformation parameters are unknown in clinical cases with

deforming anatomy, surrogates are used to evaluate accuracy. Failure or success is commonly

judged qualitatively by either visual inspection or a comparison of the automatically-generated

and human-delineated contours. Both methods introduce bias, given that centimetric errors

have been reported in human judgment of the optimal match.(17) Visual inspection compares

the registration in just a few image regions and thus will not verify the solution globally. Contour-

based evaluation mimics clinical objectives, but human segmentation of soft tissue is inaccurate,

with 10% – 18% inter-observer variability(18) with the use of CT images, which increases with

the use of megavoltage CT images,(19) because soft-tissue organs can be difficult to distinguish.

Consequently, measuring registration accuracy against human-produced baselines provides

a qualitative rather than quantitative evaluation because of the intrinsic inaccuracy in estab-

lishing the baseline. Knowing the true deformation field permits a better evaluation of the

algorithm, because the registration results can be compared directly with the true deformation

field rather than with manually produced surrogates. Evaluation of registration accuracy is

independent of the registration method used and therefore applicable to rigid and to deform-

able registration methods alike, no matter the algorithm employed.

The purpose of the present work was to use a situation in which the true transformation

parameters were known to propose an evaluation scheme for a deformable image registration

method. The main idea was to introduce random artificial deformations of trackable intensity

in clinical images with rigid geometry. Because this environment is controlled, the true solu-

tion that should be found by the registration is known, a priori, to correspond to a

non-deformation field. To evaluate a deformable registration algorithm, we initially performed

CT-to-CT registration of an image and structures to an artificially deformed version of the

same image and structures. This step quantified the error intrinsic to the algorithm. In the

second portion of the present work, we similarly performed a non-rigid registration of CBCT-

to-CT images and evaluated the effect of noise on the registration algorithm. Finally, we

undertook a case study to test the algorithm in a clinical setting.

II. METHODS

A. Image acquisition and contouring
We obtained CT and CBCT images of a Quasar Body phantom (Modus Medical Devices,

London, ON).(20) This Lucite phantom is designed for non-dosimetric quality assurance.

The CT images were obtained using a GE LightSpeed scanner (GE Medical Systems, Mil-

waukee, WI), with a 2.5-mm slice thickness. The CBCT images were obtained using the on-board

imaging (OBI) system (Varian Medical Systems, Palo Alto, CA) attached to the gantry of the
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linear accelerator. The OBI system consists of an X-ray tube (model G242, 0.4- and 0.8-mm

focal spots, 14-degree anode angle, 800 kJ/h: Varian Medical Systems, Salt Lake City, UT) and

an amorphous-silicon imaging panel (model PaxScan 4030CB: Varian Medical Systems, Salt

Lake City) attached at 90 degrees to the gantry with Exact robotic arms (Varian Medical Sys-

tems, Baden, Switzerland). Three motorized pivot points on the robotic arms allow the OBI to

be remotely extended or retracted from the control console station.

After the CBCT and CT scans of the phantom had been performed, the image sets were sent

for structure delineation by the Eclipse software package (Varian Medical Systems, Palo Alto).

The 30×20×8-cm Quasar Body phantom has three cylindrical inserts, each 8 cm in length

and 8 cm in diameter. These inserts contain various structures designed to provide a range of

surface contours and edges. The first insert contains a 5-mm cylinder and a 10-mm cylinder

(each 5 cm in length) and a 20-degree air wedge. The middle insert contains a 60-degree air

wedge and spheres 40 mm, 20 mm, and 10 mm in diameter. The third insert contains a 125-cm3

cube. The phantom additionally contained two contoured rods (2.5 cm in diameter and 1.8 cm

in length), one air and one solid. Table 1 shows the Hounsfield units (HU) of each structure.

Each of these structures was manually contoured on each slice of the CT and CBCT image sets

by a trained physicist (ES). The body of the phantom was contoured using the automatic body

search tool in Eclipse.

TABLE 1. Mean and maximum structure deformations introduced and remaining after registration for artificial defor-
mations of ±20 mm

Offset (mm)
After deformation After registration

Structure Size HU Mean Maximum Mean Maximum

Body 137 2.33 10.24 0.03 1.15
Cube 125 cm3 347 3.73 9.40 0.68 2.45
Sphere 40 mm 383 1.70 4.42 0.29 0.89

20 mm 355 1.96 4.36 0.21 0.56
10 mm 324 2.37 4.57 0.74 1.49

Air wedge 20 degrees –1000 2.98 9.41 0.53 3.54
60 degrees –1000 3.20 9.29 0.21 1.46

Cylinder 10 mm 315 2.46 6.17 0.43 2.08
5 mm 318 3.03 9.85 0.20 0.53

Solid rod 25 mm 735 2.50 7.10 0.15 1.37
Air rod 25 mm –1000 2.06 6.49 0.25 2.01

B. Software platform
The Insight Toolkit, an open-source software toolkit sponsored by the National Library of

Medicine and the National Institutes of Health, was used for deformable image registration in

this investigation. The toolkit consists of an extendable library of template-based code for

many image registration, visualization, and segmentation algorithms. The Digital Imaging and

Communications in Medicine (DICOM) protocol was used for image data communication

between the CT scanner and the OBI system. The Insight Toolkit has a DICOM filter config-

ured to read DICOM-formatted image files. All calculations were performed on a standard

personal computer with a Windows XP operating system (Microsoft, Redmond, WA), a Pentium

4 processor operating at 1.6 GHz, and 256 MB of random access memory.

C. Image warping
Synthetic CT images with artificial deformations of both the native image and the segmented

structures were created by assigning random transformation parameters at each B-Spline node of

the deformation model detailed in next subsection. Two levels of artificial deformations were

introduced for maximum linear deformations of ±20 mm and ±50 mm in any direction (Fig. 1).
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D. Image co-registration
The image that is being matched is typically called the fixed (“target”) image. The image

whose coordinate system is being moved to match the fixed image is called the moving or

floating image. Image registration is a three-step process:

1. Use segmentation or classification to identify relevant contoured regions of interest in the

volumes to be matched.

2. Define a similarity metric (“cost function”) to measure how well the two images are aligned.

3. Search for the best transformation to bring the two images into spatial alignment.

The PCT-to-CBCT registration is a quasi-intermodality case. Although the underlying physi-

cal acquisition process is identical for the PCT and CBCT images, the acquisition geometry is

different, causing the CBCT often to be corrupted by noise and artifacts. Moreover, the CBCT

calibration procedure has its own intrinsic errors, with differences of up to 100 HU being

observed for perirectal tissues and musculature in CBCT images.

From the deformable registration models available, we selected the noise-tolerant B-Spline

technique(21) combined with the Mattes formulation of the mutual information metric(22) to

permit multimodality registration as a more generous framework for the registration. The math-

ematical foundation of the B-Spline model has been presented extensively in previous

publications, and the performance and characteristics of the B-Spline model have been inten-

sively studied.(23–25) The model has been applied to prostate CT–to–magnetic resonance or

magnetic resonance spectroscopic imaging, positron emission tomography–to–CT, and CT-to-

CT registrations with an achieved accuracy of 3 mm.(26)

One of the main advantages of using the B-Spline model is that the deformation is interpo-

lated between grid points, making it stable to pixel-level noise. Unlike other spline models,

B-Spline splines are locally controlled. As a result, displacement of an interpolation point is

FIG 1. Subtraction images of the Quasar phantom (Modus Medical Devices, London, ON). Images with artificial deforma-
tions of (a) ±20 mm and (b) ±50 mm are overlaid on the original computed tomography image set. The scale has been set
such that areas of pixel intensity agreement between the two images are gray, and areas with large positive or negative
differences are shown in black or in white respectively.
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influenced only by displacement of the closest grid points, and changing a lattice node affects

the transformation only regionally, making the model efficient in describing local deforma-

tions. The control points are distributed automatically in a uniform mesh overlaid on the image.

The user may select the coarseness of the grid, but may not directly place control points in

specific locations, such as on structure boundaries.

We selected the Mattes(22) implementation of the mutual information metric because of its

speed, simplicity, and stability to noise in the input images. The Mattes implementation does

not use all voxels in the input images, but rather evaluates a random sample of the voxels and

uses interpolation to evaluate the joint histogram, creating histograms that are less noisy if

used as criteria for the optimization.(22) Because only a percentage of the input image voxels

are used, the metric is faster than metrics that are evaluated on an entire image.

The parameters of the Mattes metric are the number of samples, expressed as percentages of

the total voxels in the input images, and the number of bins used to estimate the joint histo-

gram. For the registration tests in our study, we use settings of 50 histogram bins and 10

percentage samples. The L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno)

optimizer(27) was used to find optimal node values, with a maximum of 100 iterations and a

maximum of 20 corrections used as termination conditions for the optimization algorithm.

The output of the deformable registration algorithm is a deformation field that correlates

each point in the PCT and CBCT images. This information is used to map the contours delin-

eated in the PCT dataset to the CBCT dataset. Starting from a mesh that defines the contour of

a critical structure in the PCT dataset, the warping of the contours was implemented by apply-

ing the deformation field to modify the coordinates of each point. The vertices were unaltered

during the process.

E. Quantification of registration accuracy
The global accuracy of the deformation field was assessed by creating subtraction images. In

the subtraction images, pixel intensity is assigned as the absolute difference between the pixel

intensities in the images being compared. Ideally, when the fixed and floating images are iden-

tical, the subtraction should be entirely black. Regions of different pixel intensity show

disagreement in the input images, identified as regions where the registration has failed. For

same-modality images expected to be identical, the subtraction method provides better accu-

racy than the commonly used checkerboard, because it visualizes the error difference

simultaneously over the entire image.

For the present report, a detailed analysis was performed directly on the contours of the

phantom. Because we selected cases of unchanging geometry, structures delineated in the CT

image and rigidly translated to the CBCT image will match, because the real-world deforma-

tions are negligible. The non-deformed structures on either the CT or the CBCT image represent

the baseline against which the registration accuracy is to be judged. A copy of the baseline

structures is first warped with the random deformation and then warped back by applying the

deformation field obtained by the registration. In the ideal case, the deformation field produced

by the registration is the exact inverse of the randomly assigned deformation, and thus the

successive warpings should produce a null deformation. The result of the deformed and baseline

structures should be identical. In practice, noise, artifacts, and registration convergence criteria

affect the accuracy of the deformation field deduced by the registration.

Color-coded surfaces compare the warped and baseline contours and directly quantify the

errors produced by the registration. For each node in the baseline contour, a scalar value corre-

sponding to the distance to the nearest point in the registration-deduced contour is assigned. A

color-coded scale is used to visualize the difference, with blue at one end representing a perfect

match and red at the other representing the maximum observed error. The maximum and the

mean error are recorded and presented as a quantification of accuracy. Subtraction images of

registration results are presented here for qualitative visual inspection of registration accuracy,



102 Lawson et al.: Quantitative evaluation of a cone-beam computed... 102

Journal of Applied Clinical Medical Physics, Vol. 8, No. 4, Fall 2007

but we chose to focus our quantitative analysis on the registration of surfaces of contoured

structures rather than on the global deformation. We had several reasons for this approach.

First, because the phantom itself is largely homogenous, registration errors within regions lacking

variability in pixel intensity would go unnoticed. Second, we limited our evaluation to con-

toured surfaces—an approach that, in our opinion, more closely mirrors a clinically relevant

situation.

The chosen approach has these advantages:

• The baseline is known to correspond to the native structures.

• The quantitative value of the registration accuracy takes the form of the mean and maxi-

mum errors.

• Direct visualization remains possible in contoured regions where registration fails.

F. Case studies
The following image data was used for this deformable image registration study:

• A PCT image set of the phantom with 2.5-mm slice spacing and a pixel size of

0.789×0.789 mm (called PCT)

• A PCT set that was artificially deformed ±20 mm (called PCT
def20

)

• A PCT set which was artificially deformed ±50 mm (called PCT
def50

)

• A CBCT image set acquired from the OBI system with 2.5-mm slice spacing and

0.938×0.938 mm pixel size (called CBCT)

To evaluate the algorithm’s ability to appropriately shift image data, we attempted a regis-

tration with the optimization starting from initial known transformation parameters. The

following specific data analyses were performed:

• Test 1: The B-Spline deformable model was used to register the PCT image set to the

PCT
def20

 and PCT
def50

. Because the images were similar except for the artificial deforma-

tions, image noise and positioning errors were eliminated. This test was designed to evaluate

the selection of convergence parameters for the optimization algorithm, to determine the

intrinsic error of the registration algorithm itself, and to compare the ability of the regis-

tration algorithm to deal with smaller errors (±20 mm) and larger, less clinically relevant,

errors (±50 mm).

• Test 2: The PCT
def20

 image data was registered to the CBCT image set. This test simulated

the implementation of ART at our clinic with the planning images being deformed to match

the OBI-acquired CBCT at the time of treatment. The aims of this test were identical to

those of the first test, except that the algorithm was being tested by the introduction of

image noise in the CBCT image set.

Another analysis using a case study of the brain of a central nervous system (CNS) patient

was designed to test the performance of the deformable image registration algorithm. The

patient was a 60-year-old female with non-small-cell lung cancer metastatic to brain. She had

been treated previously with stereotactic radiosurgery (SRS), with further SRS to a separate

lesion planned. A rigid registration was performed to align the patient’s PCT and CBCT image

sets for the brain; Fig. 2 shows the result as a subtraction image. This registration provided the

baseline accuracy for the system.

After registration, the manually contoured structures on the PCT images were transposed

onto the CBCT images and served as a baseline. The contoured structures were the body,

brainstem, chiasm, left eye, right eye, medulla oblongata, left optic nerve, right optic nerve,

right vermis, and the planning target volume (PTV). As in tests 1 and 2 described earlier,
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random deformations were applied to the structures to test the ability of the deformable

image registration algorithm to return the images to baseline. The random deformations were

±20 mm, because deformations of this magnitude are more reflective of those expected in

clinical practice (as opposed to the larger deformations of ±50 mm). Thus, this test was

designed to analyze the deformable image registration of the patient’s PCT
def20

 to the origi-

nal CBCT images acquired with the OBI system.

FIG 2. Subtraction images of representative case-study cone beam computed tomography and planning computed tomog-
raphy slices (a) before and (b) after registration.

III. RESULTS

A. Study 1(A): PCT-to-PCT registration with small deformations
Fig. 3(A) shows “before” images of the native PCT and the artificially deformed (±20 mm)

PCT. Fig. 3(B) shows subtraction images of the same slices after the registration algorithm

was performed. Visual inspection of the subtraction images shows accurate registration, with

small visible errors remaining. Table 1 shows the deformation data for each of the 11 con-

toured structures. After deformation and before registration, the mean of the mean offset for

all 11 structures was 2.58 mm (range: 1.70 mm – 3.73 mm), which decreased to 0.34 mm

(0.03 mm – 0.74 mm) after registration. The mean of the maximum offset for these deformed

structures was 7.39 mm (range: 4.36 mm – 10.24 mm), decreasing to 1.59 mm (0.53 mm –

3.54 mm) after registration. Fig. 4 shows representative images of several structures at baseline,

warped, and registered using the algorithm.
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FIG 3. Subtraction images of a computed tomography slice (a) before and (b) after registration to the artificially deformed
computed tomography slice with deformations of ±20 mm.

FIG 4. Three images (baseline, warped with ±20-mm deformations, and registered) of three distinct structures: (a) cube, (b)
20-degree air wedge, and (c) 10-mm cylinder. In each image, the gray color denotes the native contoured surface. Overlaid
on the native surface are the warped and registered surfaces. The color scale reflects the magnitude of deformation, with
red being the maximum deformation. Each image shows the magnitude of introduced deformation and the residual error
after registration (light blue color).
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Also analyzed were the volumes of each contoured structure in the native PCT image set,

after deformation, and after registration. Table 2 presents those results. The mean percentage

error introduced by the deformations was 26.6% (range: 1.9% – 52.6%). The mean percentage

residual error after registration was 5.5% (range: 0.4% – 14.5%).

TABLE 2. Original, deformed (±20 mm), and registered volumes of each structure for computed tomography (CT)–to–
computed tomography registration with small deformations

Volume (mm3) Percentage
On native CT After After Residual

Structure Size image set deformation registration Deformation error

Body 5528440.00 5424890.00 5507300.00 1.9 0.4
Cube 125 cm3 110730.00 77033.90 118048.00 30.4 6.6
Sphere 40 mm 34939.90 32801.70 37835.80 6.1 8.3

20 mm 3652.83 2833.96 3969.21 22.4 8.7
10 mm 519.24 282.09 530.93 45.7 2.3

Air wedge 20 degrees 49701.70 36241.30 50278.80 27.1 1.2
60 degrees 199465.00 124651.00 197048.00 37.5 1.2

Cylinder 10 mm 3759.82 5735.69 4305.43 52.6 14.5
5 mm 906.91 718.04 871.36 20.8 3.9

Solid rod 25 mm 28326.10 18978.70 30008.40 33.0 5.9
Air rod 25 mm 32128.90 27134.00 29744.30 15.5 7.4

B. Study 1(B): PCT-to-PCT registration with large deformations
Fig. 5(A,B) shows “before” and “after” subtraction images of the native PCT image and the

deformed PCT image with larger deformations of ±50 mm. Visual inspection again reveals an

accurate registration of the native and deformed images, with only small remaining visible

discrepancies. Table 3 shows the mean and maximum directional offset for each of the 11

structures after deformation and after subsequent registration. The mean of the mean offset

after deformation was 10.51 mm (range: 2.57 mm – 20.61 mm), which decreased to 0.47 mm

FIG 5. Subtraction images of a computed tomography slice (a) before and (b) after registration to the artificially deformed
computed tomography slice with deformations ±50 mm.
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(0.11 mm – 0.95 mm) after registration. The mean of the maximum offset introduced by the

deformation was 19.90 mm (range: 7.86 mm – 28.30 mm). Implementation of the registration

algorithm reduced this to offset to 3.94 mm (0.83 mm – 10.50 mm). Fig. 6 shows representa-

tive images of several structures at baseline, deformed, and registered.

TABLE 3. Mean and maximum structure deformations introduced and remaining after registration for artificial defor-
mations of ±50 mm

Offset (mm)
After deformation After registration

Structure Size Mean Maximum Mean Maximum

Body 2.60 18.26 0.11 10.18
Cube 125 cm3 3.83 11.45 0.95 10.50
Sphere 40 mm 13.77 28.30 0.64 1.81

20 mm 16.49 24.41 0.35 1.00
10 mm 20.61 25.57 0.45 0.83

Air wedge 20 degrees 9.72 24.30 0.49 2.06
60 degrees 9.55 20.36 0.34 2.29

Cylinder 10 mm 18.15 27.73 0.68 4.19
5 mm 15.46 18.46 0.51 1.89

Solid rod 25 mm 2.90 12.17 0.22 1.86
Air rod 25 mm 2.57 7.86 0.43 6.72

FIG 6. Three representative surfaces (baseline, warped, and segmented) of (a) a sphere, (b) a 25-mm air rod, and (c) a
10-mm cylinder. In each image, the native surface is shown in gray. The color scale reflects the magnitude of intro-
duced deformations, with red being the maximum deformation. The third, registered, surface shows the residual error
following image registration.
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Volume analysis was again performed (Table 4). The mean volume error as a result of

the deformation was 26.64% (range: 1.87% – 52.55%), which decreased after registration

to a mean percentage residual error of 5.49% (0.38% – 14.51%). The residual errors for

the ±20 mm deformations and the ±50 mm deformations are similar, suggesting that regis-

tration accuracy does not depend on the magnitude of the deformation.

TABLE 4. Original, deformed (±50mm), and registered volumes of each structure for computed tomography (CT)–to–
computed tomography registration with large deformations

Volume (mm3) Percentage
On native CT After After Residual

Structure Size image set deformation registration Deformation error

Body 5528440.00 5424890 5507300 1.87 0.38

Cube 125 cm3 110730.00 77033.9 118048 30.43 –6.61

Sphere 40 mm 34939.90 32801.7 37835.8 6.12 –8.29

20 mm 3652.83 2833.96 3969.21 22.42 –8.66

10 mm 519.24 282.093 530.927 45.67 –2.25

Air wedge 20 degrees 49701.70 36241.3 50278.8 27.08 –1.16

60 degrees 199465.00 124651 197048 37.51 1.21

Cylinder 10 mm 3759.82 5735.69 4305.43 –52.55 –14.51

5 mm 906.91 718.037 871.361 20.83 3.92

Solid rod 25 mm 28326.10 18978.7 30008.4 33.00 –5.94

Air rod 25 mm 32128.90 27134 29744.3 15.55 7.42

C. Study 2(A): PCT-to-CBCT registration
The second component of the analysis was designed to test the performance of the registration

algorithm in the presence of image noise. Fig. 7 shows subtraction images before and after

deformations of ±20 mm were introduced as outlined earlier. Subtraction images are not pre-

ferred for intermodality registrations, and visual inspection shows substantially more noise in

FIG 7. Subtraction images of a cone-beam computed tomography (CBCT) slice (a) before and (b) after registration to the
artificially deformed computed tomography slice with deformations of ±20 mm. These images show the noise present in
the CBCT image set.
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the images, but still a visually accurate registration is seen. As before, Table 5 shows the mean

and maximum offset for each of the structures after deformation and after registration. The mean

of the mean offset introduced by the deformation was 2.93 mm (range: 1.45 mm – 4.51 mm); the

mean offset decreased to 1.33 mm (0.69 mm – 2.47 mm) after registration. After deformation,

the mean of the maximum offset was 8.76 mm (range: 6.70 mm – 11.21 mm), which decreased

to 4.86 mm (1.75 mm – 7.75 mm) after registration. Residual maximum deformations were

larger than those seen with smaller introduced deformations.

Table 6 presents the volume analysis. The mean volume error introduced by the deforma-

tions was 7.73% (range: 0.47% – 18.73%); the mean residual volume error after registration

was 18.63% (0.01% – 95.63%). The largest residual errors were seen for the smallest struc-

tures, with the worst outcome for the 10-mm sphere.

TABLE 5. Mean and maximum structure deformations introduced and remaining after computed tomography (CT)–to–
cone-beam computed tomography registration for artificial deformations of ±20 mm

  Offset (mm)
After deformation After registration

Structure Size Mean Maximum Mean Maximum

Body 1.45 10.18 1.08 5.73

Cube 125 cm3 3.50 9.88 1.02 4.73

Sphere 40 mm 4.18 9.31 1.61 7.29

20 mm 2.70 6.70 1.71 5.71

10 mm 3.63 6.76 2.47 7.75

Air wedge 20 degrees 3.88 9.35 1.56 7.47

60 degrees 2.00 9.36 0.69 1.75

Cylinder 10 mm 1.75 7.07 1.16 4.36

5 mm 4.51 11.21 1.00 2.50

Solid rod 25 mm 2.09 8.08 1.14 2.92

Air rod 25 mm 2.57 8.44 1.15 3.25

TABLE 6. Original, deformed (±20 mm), and registered volumes of each structure for cone-beam computed tomography–
to–computed tomography registration

Volume (mm3) Percentage
On Native CT After After Residual

Structure Size image set deformation registration Deformation error

Body 5528440.00 5502270.00 5448970.00 0.5 1.4

Cube 125 cm3 110730.00 91861.30 108950.00 17.0 1.6

Sphere 40 mm 34939.90 34744.00 30708.70 0.6 12.1

20 mm 3652.83 3841.25 1898.75 5.2 48.0

10 mm 519.24 543.63 22.69 4.7 95.6

Air wedge 20 degrees 49701.70 54237.30 42334.10 9.1 14.8

60 degrees 199465.00 170745.00 199482.00 14.4 0.0

Cylinder 10 mm 3759.82 3904.34 3360.67 3.8 10.6

5 mm 906.91 911.81 792.58 0.5 12.6

Solid rod 25 mm 28326.10 23019.90 29783.00 18.7 5.1

Air rod 25 mm 32128.90 35486.60 31188.60 10.5 2.9

D. Study 2(B): Case study of CNS patient
Because the CBCT-to-PCT registration showed increased error in imaging a phantom, we used

a patient test case to evaluate the algorithm (Table 7). In contrast to CBCT-to-CT registration

using phantom image sets, the linear offsets remaining after registration of the case study images
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were quite small. For the contoured structures, the mean of the mean residual offset was

0.69 mm (range: 0.34 mm – 1.70 mm). The mean of the maximum residual offset for these

structures was 2.00 mm (range: 0.72 mm – 8.13 mm). The maximum residual offset was

>1.5 mm in only three structures: the body (8.13 mm), the left eye (1.71 mm), and the right

front prior field (3.48 mm). The mean residual volume discrepancy was 4.97% (range:

0.82% – 11.62%). Fig. 8 shows representative native, deformed, and registered structures.

TABLE 7. Following deformation and registration to original computed tomography images, residual linear errors and
residual volume errors for contoured structures

   Error after Volume (mm3) Percentage
                       registration (mm) After As originally residual

Structure Mean       Maximum registration contoured volume error

Body 1.05 8.13 3.48E+06 3.40E+06 2.3
Brainstem 0.39 1.09 21959.1 23189.6 5.6
Chiasm 0.47 0.72 152.504 155.767 2.1
Eye, left 0.64 1.71 10269.9 9646.22 6.1
Eye, right 0.40 1.14 10886.8 10732.8 1.4
Medulla oblongata 0.55 1.08 3274.48 3247.99 0.8
Optic nerve left 0.68 1.37 234.783 240.979 2.6
Optic nerve right 0.34 0.72 260.88 270.36 3.6
Rt. front prior field 1.70 3.48 255.177 228.619 10.4
Rt. vermis 0.67 1.30 128.881 141.983 10.2
PTV 0.66 1.29 330.167 363.729 10.2

PTV = planning target volume.

FIG 8. Representative sample of cone-beam computed tomography (CBCT)–to–planning computed tomography registra-
tion in a clinical case, showing (a) the native and (b) the deformed contoured brainstem surfaces. The color scale shows
the magnitude of the deformation, with blue and red respectively representing areas of least and farthest distance between
the native and deformed surfaces. A comparison of panels A and B highlights the ability of the algorithm to accurately
recover the native surface.
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IV. DISCUSSION

Radiation therapy has progressed in recent years, evolving from treatment with large fields

encompassing both tumor and at-risk neighboring areas to increasingly conformal treatment

for many disease sites. As this progression from conventional radiotherapy to 3D-conformal

radiotherapy to intensity-modulated radiation therapy to IGRT continues, emphasis is increas-

ingly being placed on the precision of imaging and registration. To successfully incorporate

IGRT, an accurate and rapid image registration technique is required. Although rigid registra-

tion can facilitate accurate registration of a small volume, the technique is typically unable to

accurately register entire image sets because of variations in patient positioning and imaging

technique, and alterations in internal soft-tissue structures including tumor and normal tissues

alike. As efforts to develop ART escalate, the ability to alter manually segmented volumes to

reflect daily changes in shape and location has become increasingly important.

We used an automated quantitative evaluation method to test a deformable image registra-

tion algorithm in several phantom cases and a clinical case. Initial testing of the registration of

original CT images to artificially warped CT images showed a maximum intrinsic algorithm

error of approximately 2 mm, which we judge acceptable. Also, the optimization did not de-

pend on the magnitude of the deformation: the residual errors after registration were similar,

despite a large difference in the magnitudes of the deformation introduced. The mean residual

error was also acceptable, with a mean residual error of <1 mm (thought to be the result of

tolerance in the algorithm). Attempted PCT-to-CBCT registration introduced image noise

and produced results that were less accurate, indicating algorithm sensitivity to noise (most

pronounced for small structures). Residual error in surface deformation and in structure vol-

ume was larger than that seen the previous test, with remaining maximum offsets of more

than 2 mm in all but one contoured structure. Still, the mean residual error after registration

was less than 2 mm for all but one structure. These larger residual errors were thought to be

attributable to a combination of air adjacent to the first and last CBCT slices and of the HU

homogeneity of the phantom structures. Both of these potential sources of error are somewhat

mitigated in the case of a patient as opposed to a phantom. The structures within a patient are

far less homogenous in HU value, and the first and last image slices are adjacent to tissue

instead of air. The CBCT images in Fig. 7 highlight the image noise adjacent to the structures

within the phantom image set. Markedly fewer artifacts are seen in patient CBCT image sets.

Considering the foregoing factors, we next conducted a case study using images of a patient

treated for a CNS cancer to assess the robustness of the registration algorithm in a clinically

realistic setting. We found that, as with the initial CT-to-CT phantom image registration, the

registration algorithm was stable to the amount of noise present in the patient’s CBCT and

produced excellent results, with residual maximum offsets of approximately 2 mm. Fig. 8

shows the results, with excellent correlation of the native and segmented surfaces. The

algorithm’s performance was worse for the right frontal prior field structure. That finding was

expected, because that particular structure was not anatomically defined, but instead arbitrarily

transferred from a previous treatment plan, so that its borders are in areas of HU homogeneity,

which limits the performance of the algorithm.

Typical expansions from the clinical target volume (CTV) to the PTV are 1 – 1.5 cm for

most disease sites and patient immobilization techniques. This expansion allows for intrafraction

and interfraction target movement and daily setup error. We are able to acquire and process a

CBCT image set in approximately 60 seconds. In each case, the registration process adds an-

other 5 – 7 minutes (varying with the number of iterations). With an intrinsic error of

approximately 2 mm and the ability to rapidly acquire, process, and register images and struc-

tures, the implications of the technique described here are encouraging.

Interest in ART has grown out of the desire to reduce required margins for error, to target

movement, and potentially to improve the therapeutic ratio by increasing the amounts of normal
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structures spared. Truly adaptive therapy will need to change from fraction to fraction to reflect

daily changes in patient anatomy. Using the technique reported here, it would be possible to

quickly and accurately acquire and register daily CBCT image sets with the CT image set

generated at the time of simulation. It is our hope that such registration will lead to the ability

to make daily online alterations in treatment delivery to reflect known anatomic changes just

before delivery of that day’s fraction.

We chose to estimate the registration on the contour surfaces directly rather than use the

standard difference and checkerboard tools because we believe that the surface-based evalua-

tion gives better accuracy. Different solutions to any deformable problem may exist, because

the deformation field inside a structure of uniform intensity can be of any value. Only the

voxels that lie on structure borders contribute to the cost function and its derivative. Voxels

mapped by the deformation algorithm within the same homogenous structure do not contribute

to the cost function and thus are indiscernible clinically or by the optimization algorithm. The

deformation inside a homogenous structure can therefore have any value, as long as it does not

cross that structure’s border, because voxels from inside the structure will map to the structure

itself. For example, in the image background, the deformation field can have (and does have)

any value, because air will deform to air.

The optimization algorithm does not detect changes in the cost function when modifying

the values in the B-Spline located in free air, thus retaining the initial values. Non-zero defor-

mations in regions of varying intensities would be an error, because those deformations would

map voxels from one structure to another. Thus, a global assessment of the deformation field is

possible, as previously, but will provide only a quantitative evaluation of the deformation field.

The accuracy lies in the details at structure borders, because solution values are irrelevant

elsewhere. As opposed to using subtraction images to asses the “global” deformation field, the

new surface-based method permits calculation of deformation field errors with subvoxel accu-

racy, simplifies the analysis (because it takes into account only the clinically relevant regions),

and provides user-independent measures such as mean and maximum error computed directly

on the surface. The deformation map deduced on the grid of control points can then be applied

on the dose matrix for ART.

The evaluation method presented here is independent of the deformable registration model

used. Several computational registration models have been proposed, with the applicability of

each model to a particular registration problem depending on and being restricted to the type of

assumptions made concerning the nature of the images to be registered. The fluid-flow ap-

proach,(28–32) B-Spline,22,24,26 and the finite element approach(33–36) are the ones most commonly

used. Because the evaluation method presented here directly compares the contours obtained

by warping with the deformation field, it can easily be applied to evaluate the accuracy of

methods other than the B-Spline model. Minimal changes to the standard code are needed to

implement random artificial deformation. The resulting experiments minimize human error

during acquisition and bias in the evaluation of results. Although the present works focuses on

CBCT-to-CT registration for ART, the evaluation method is general and can be applied to any

type of deformable registration. By selecting different input configurations to the registration

algorithm, detailed information can be independently obtained on the errors induced by the

various factors influencing accuracy.

V. CONCLUSION

We showed that a deformable image registration technique was accurate and stable to the

amount of noise present in CBCT images of a patient. However, to realize the full potential of

adapting radiotherapy fractions just before delivery (online approach), registration will need to

occur quickly to facilitate daily changes in fraction delivery made to reflect daily changes in

patient anatomy. Efforts at our institution and others are currently underway.
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