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ABSTRACT
Numerous preclinical studies have demonstrated that combination immunotherapy can significantly
reduce tumor growth and improve overall survival as compared to monotherapy. Furthermore, dual CTLA-
4/PD-1 checkpoint blockade recently received FDA-approval for patients with metastatic melanoma,
becoming the first combination immunotherapy to garner this designation in a rapidly evolving field.
Despite this progress, the majority of patients do not respond to treatment, underscoring the critical need
for more effective therapies. We have been investigating the mechanisms by which combination
immunotherapy with an OX40 agonist plus CTLA-4 checkpoint blockade augments effector T cell
responses to elicit anti-tumor immunity. Surprisingly, this approach failed to eradicate well-established
tumors, in part due to the induction of anergy in cytotoxic CD8C T cells. Further work revealed that
anergic CD8C T cells could be rescued by combining a dendritic cell-targeted vaccine with combination
immunotherapy. Taken together, these data suggest that novel combinatorial immunotherapeutic
strategies incorporating a vaccination strategy may be needed to generate effective anti-tumor responses
in the majority of patients with metastatic disease.
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Cancer immunotherapy harnesses the power of the patient’s own
immune system to seek out and destroy tumor cells. This modal-
ity has demonstrated potent efficacy across tumors ranging from
metastatic melanoma and non-small cell lung cancer (NSCLC) to
renal cancer, bladder cancer, lymphoma, breast cancer, head and
neck cancer, and others.1-5 One of the primary targets of immu-
notherapeutic drugs are a group of negative regulatory proteins,
collectively known as immune checkpoints. This family of
molecules, which includes cytotoxic T-lymphocyte associated
protein 4 (CTLA-4), programmed cell death 1 (PD-1), lympho-
cyte activating 3 (LAG-3), and T-cell immunoglobulin and
mucin-domain containing-3 (TIM-3), put the brakes on the
immune system, thereby limiting the generation of self-reactive T
cells capable of inducing potentially damaging autoimmune
pathology. Unfortunately, these same suppressive pathways
are often highjacked by tumors to block the generation and/or
effector function of tumor-reactive T cells.6 Checkpoint blockade
with antagonist (blocking) monoclonal antibodies (mAb) such as
anti-CTLA-4 (aCTLA-4; e.g., ipilimumab; tremelimumab),
anti-PD-1 (aPD-1; e.g., nivolumab; pembrolizumab), or anti-
PD-L1 mAb (aPD-L1; e.g., atezolizumab; avelumab) releases the
“brakes” on T cells to boost anti-tumor immunity and has led to
enhanced long-term survival for patients.7,8 As a result, these
agents have received FDA approval for a variety of indications
including melanoma, NSCLC, and renal cancer.

Another type of cancer immunotherapy is costimulatory
molecule activation, typically using agonist antibodies. This
type of therapy is analogous to stepping on the gas (immuno-
logically) via the provision of T cell co-stimulation through the
engagement of tumor necrosis factor receptor (TNFR) family
members such as OX40 (CD134), 4-1BB (CD137), CD27, or
Glucocorticoid-induced tumor necrosis factor receptor (GITR;
CD357).9-12 Specifically, we have been investigating the mecha-
nisms by which OX40 co-stimulation using an agonist anti-
OX40 mAb (aOX40) generates optimal cytolytic CD8C T cell
responses.13-15 We have focused primarily on OX40 given that
aOX40 therapy significantly augments T cell differentiation and
cytolytic function leading to enhanced anti-tumor immunity in
a variety of pre-clinical tumor models including melanoma,
breast, and prostate cancer.14-16 OX40 agonists have also been
translated into the clinic as a first-in-human phase I clinical
trial with an agonist anti-human OX40 mAb (NCT01644968)
was recently completed.17 In this study, aOX40 therapy led to
the regression of at least 1 metastatic lesion in 12 of 30 patients.
Anti-OX40 therapy also enhanced CD4C and CD8C T cell pro-
liferation and boosted tumor-specific immunity in patients with
melanoma.17 Multiple clinical trials are currently exploring the
safety and efficacy of OX40 agonists alone and in combination
with other treatments including radiation, chemotherapy, and
other immune modulating agents.
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Despite the clinical efficacy of immunotherapy the majority
of patients fail to respond to treatment and die from metastatic
disease, highlighting the critical need for improved immuno-
therapeutic regimens capable of eliciting anti-tumor immunity
in a greater proportion of patients. We have been investigating
the mechanisms by which combinatorial approaches can be
harnessed to enhance the therapeutic efficacy of cancer immu-
notherapy. Specifically, we have examined how CTLA-4 block-
ade plus treatment with an OX40 agonist synergized to elicit T
cell-mediated anti-tumor immunity. While pre-clinical studies
have demonstrated that aOX40 or aCTLA-4 monotherapy
exhibited limited therapeutic efficacy, work from our laboratory
and others revealed that combined aOX40/aCTLA-4 or aOX40/
aPD-1 therapy consistently enhanced tumor regression in mul-
tiple tumor models.18-21 We showed that dual aOX40/aCTLA-4
therapy induced potent CD8C T cell proliferation and differen-
tiation characterized by increased expression of effector mole-
cules including granzyme B and IFN-g. Surprisingly, dual
therapy also elicited Th2 CD4C T cell responses characterized
by IL-4, IL-5, and IL-13 production.22 Given that Th2 cytokines
are typically associated with tumor progression and metastasis,
in part through M1-M2 macrophage polarization,23 we asked
whether IL-4 blockade would abrogate the Th2 response and
ultimately enhance tumor regression. Indeed, anti-IL-4 mAb
therapy in conjunction with aOX40/aCTLA-4 prevented Th2
CD4C polarization and further improved tumor-free survival
in TRAMP-C1 tumor-bearing mice.22

Based upon these studies, we hypothesized that dual aOX40/
aCTLA-4 therapy would maintain its efficacy across a broad

spectrum of solid tumors since the therapy facilitates immune-
mediated recognition and tumor destruction by activating
existing tumor-reactive lymphocytes as opposed to pharmaco-
logical disruption of a specific molecular pathway (e.g., BRAF
inhibitors in melanoma). To our surprise, dual aOX40/aCTLA-
4 therapy was ineffective at controlling the growth of mammary
carcinomas or other more established tumors.19 One possible
reason for this is that the aberrant Th2 CD4C T cell polariza-
tion observed following dual aOX40/aCTLA-4 therapy may
promote immune dysregulation of the tumor microenviron-
ment favoring tumor progression. We further hypothesized
that IL-4 blockade would overcome this limitation. Surpris-
ingly, IL-4 blockade had no effect on tumor growth in mam-
mary carcinoma models (data not shown). These data led us to
propose an alternative hypothesis – specifically that the defect
in responsiveness might be related to an increase in tumor-
mediated peripheral tolerance and subsequent induction of
anergy/exhaustion in tumor-reactive CD8C T cells (Fig. 1).

Classically, CD8C T cell anergy is defined as the inability of a
T cell to respond to T cell receptor (TCR) stimulation and may
also include dysregulated cytokine secretion and/or lack of
cytolytic activity. The presence of chronic antigen is one of the
major contributing factors to the induction of CD8C T cell
anergy, but other factors play a role in inducing and maintain-
ing anergy including the presence of suppressive cytokines
(e.g., tumor growth factor b (TGF-b), IL-10), regulatory
FoxP3CCD4C T cells (Treg), TCR down-regulation, altered
gene expression (e.g., Cbl-b, Egr-2, Egr-3), and/or epigenetic
modification of the anergized CD8C T cells.24-28 Importantly,

Figure 1. Turning the tide: restoring the function of anergic tumor-infiltrating CD8 (T) cells. Tumors can induce immune suppression through a variety of mechanisms
including the induction of T cell anergy. Treatment with immunotherapy agents including T cell agonists (e.g., anti-OX40, anti-4-1BB, anti-CD27, anti-GITR mAb) and
checkpoint blockade (e.g., anti-CTLA-4, anti-PD-1 mAb) enhance anti-tumor immunity leading to tumor regression. However, these combinations alone are not sufficient
to restore the function of anergic cytotoxic CD8C T cells. The addition of exogenous tumor-specific vaccines or in situ vaccination (e.g., chemotherapy, radiation therapy)
plus dual anti-OX40/anti-CTLA-4 therapy can rescue anergic CD8C T cells to promote tumor regression and significantly enhance long-term survival.
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overcoming tumor-induced anergy remains one of the key bar-
riers that must be overcome to enhance the efficacy of tumor
immunotherapy. For example, even though checkpoint block-
ade has been shown to stimulate tumor neoantigen-specific
CD8C T cells, if the cells have been rendered anergic, aCTLA-4
or aPD-1 may not be sufficient to restore their effector
potential.

Our studies revealed that treatment with aOX40 alone or in
conjunction with CTLA-4 blockade was not sufficient to restore
the function of anergic CD8C T cells in tumor-bearing
hosts.19,29 Rather, the addition of exogenous tumor-associated
antigen using a dendritic cell-targeted vaccine (anti-DEC-205/
HER2 mAb), along with dual aOX40/aCTLA-4 therapy was
required to induce CD8C T cell proliferation and differentiation
(Fig. 1).30 We hypothesize that vaccination-mediated engage-
ment of the TCR drives OX40 expression – a process driven by
TCR ligation plus common gamma chain cytokine signaling,
which enables tumor-specific CD8C T cells to respond to the
agonist aOX40 mAb.31 Furthermore, aOX40 therapy sensitized
CD8C T cells to CTLA-4 blockade, as direct CTLA-4 blockade
on the responding CD8C T cells was required to provide maxi-
mal expansion and differentiation. Most importantly, we
showed that combined aOX40/aCTLA-4/vaccine immunother-
apy re-invigorated tumor-reactive CD8C T cells allowing them
to traffic to the tumor site and initiate tumor regression.19 The
therapeutic efficacy was associated with a Th1/Tc1 cytokine
profile consisting of increased IFN-g, TNF-a, and IL-2 cytokine
production and a concomitant decrease in Th2 cytokines such
as IL-4, IL-5, and IL-13. We also observed a significant increase
in CCL3 (MIP-1a) and CCL4 (MIP-1b) chemokine expres-
sion,19 which have been shown to enhance CD8C T cell differ-
entiation and dendritic cell function.32-35 Additional studies are
underway to elucidate the mechanisms by which CCL3 and/or
CCL4 affect CD8C T cell expansion and effector function fol-
lowing combination immunotherapy.

In summary, our data supports the use of a triple-combina-
tion immunotherapy regimen consisting of checkpoint block-
ade, OX40 agonist therapy, and vaccination in order to
generate optimal T cell priming and tumor regression (Fig. 1).
Many of the agents required to translate such an approach to
the clinic are already approved or in various stages of clinical
development. For example, checkpoint inhibitors have gener-
ated tremendous excitement due to their clinical efficacy and
several of these agents are already approved (e.g., aCTLA-4,
aPD-1 mAb) for patients with advanced disease.5,36 OX40 ago-
nists (e.g., aOX40 mAb, recombinant OX40L) are being evalu-
ated as monotherapies and in combination with other agents
(including immunotherapies) in several ongoing clinical tri-
als.11 The third component, cancer vaccines, encompasses a
wide variety of agents and modalities including peptide or pro-
tein-based vaccines, bacterial (e.g., Listeria monocytogenes) or
viral (e.g., adenovirus, poxvirus) vectors, nanoparticles, and
cell-based approaches.1,37-42 Our data highlights the impor-
tance of efficiently targeting tumor-associated antigens to pro-
fessional antigen presenting cells and suggests that the vaccine
platform should be taken into consideration when developing
translational studies aimed at inducing more effective cytotoxic
T cell responses. Since not all tumors express an ideal tumor-
specific antigen and given the logistical challenges of creating

personalized vaccines for every patient, we are actively investi-
gating how other modalities can be harnessed to elicit tumor-
specific vaccination “in situ” Alternative approaches include
the use of chemotherapies capable of inducing immunogenic
cell death or radiation therapy-mediated tumor cell killing
thereby releasing tumor antigens capable of priming CD8C T
cell responses.43-45 However, whether these approaches release
a sufficient level of tumor-associated antigen capable of syner-
gizing with dual aOX40/aCTLA-4 therapy remains to be
determined.
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