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Abstract

Purpose: The aim of this study was to determine the effect of single fraction (SF) and multiple
fraction (MF) radiation therapy (RT) on bone mineral density (BMD) in patients with cancer and
bone metastases in the proximal femur. We studied this effect in the radiation field and within
metastatic lesions, and differentiated between lytic, blastic, and mixed lesions.

Methods and materials: This prospective cohort study comprised 42 patients with painful bone
metastases, including 47 irradiated femora with 52 metastatic lesions in the proximal femur. Pa-
tients received either 8 Gy SF or 20 to 24 Gy in 5 to 6 fractions (MF). Quantitative computed
tomography scans were obtained before RT and 4 and 10 weeks after the initial scan. Patients who
received MF additionally underwent quantitative computed tomography on the final day of their
treatment. Automated image registration was performed. Mean BMD was determined at each time
point for each proximal femur (region of interest [ROI]-PF) and in greater detail for a region of
interest that contained the metastatic lesion (ROI-ML). Statistical analysis was performed using
linear mixed models.
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Results: No significant differences in mean BMD were found between SF or MF RT over all time
points in both ROI-PF and ROI-ML. Mean BMD did not change in ROI-PF with lytic and mixed
lesions, but mean BMD in ROI-PF with blastic lesions increased to 109%. Comparably, when
focused on ROI-ML, no differences in mean BMD were observed in lytic ROI-ML but mean BMD
in mixed and blastic ROI-ML increased up to 105% and 121%, respectively.

Conclusions: Ten weeks after palliative radiation therapy in patients with femoral metastatic le-
sions, a limited increase in BMD was seen with no beneficial effect of MF over SF RT. BMD in
lytic lesions was unchanged but slightly increased in mixed and blastic lesions.

© 2016 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Bone metastases are most frequently seen in patients
with primary tumors in the breast, prostate, lung, kidney,
or thyroid."” These lesions can have a lytic, blastic, or
mixed radiological appearance. Lytic lesions result from
disproportionate bone resorption by osteoclasts and leads
to progressive destruction of the bone tissue and a sub-
sequent risk of pathological fracturing.' Blastic lesions
are characterized by excessive bone formation and are
hypothesized to decrease bone strength because the newly
formed bone has a reduced structural integrity.'~

External beam radiation therapy (RT) plays an
important role in the palliative care of patients with bone
metastases because it reliefs pain.””’ Additionally, some
studies report a beneficial effect of RT on bone mineral
density (BMD),*'* which is also the clinical experience
of medical specialists. In contrast, this beneficial effect
was not confirmed in a recent systematic review.'’
Moreover, the relationship between pain relief and
BMD is unclear. Some authors suggest there is no rela-
tionship,”'" whereas others state that improved BMD
contributes to long-lasting pain relie,f,14 increased bone
stability, and decreased risk of fractures.'”

In patients with cancer and bone metastases in the
femur, the ability to walk and remain mobile is very
important for the overall quality of life. Therefore, it is
important to assess not only pain but also the risk for
fractures when determining RT dose schedules. If the
expected risk for fractures is low, RT is administered in
one, relatively high dose (single fraction [SF]) to relieve
pain. Patients with a high expected risk for fractures who
are not eligible for or do not want surgery can receive RT
in multiple fractions (MF) to induce remineralization and
prevent pathological fracturing.'®'” Previous research
suggested that 24 Gy in 4 fractions postponed patholog-
ical fractures when compared with a single dose of
8 Gy.17 However, studies on the effect of RT doses on
BMD are limited, and the reported responses differ be-
tween studies.”'? To date, only Koswig et al compared
SF and MF in terms of BMD and found a greater response
after MF RT.®

Most studies included an analysis of lytic lesions in the
vertebrae® ! but the effect of RT on BMD in blastic or
mixed lesions was often not considered. Although the
femur is also frequently affected,'&]9 few studies
analyzed the effect of RT on BMD in femoral le-
sions.®?"1? Also, little is known about the effect of RT on
BMD within the entire field of RT as it relates the femur.

Therefore, the aim of this study is to determine the
effect of SF and MF RT on BMD in patients with cancer
and femoral bone metastases. Specifically, we studied 2
regions of interest: the proximal femur within the radia-
tion field (region of interest [ROI]-PF) and the metastatic
lesion (ROI-ML). For both regions, we investigated
whether there was an overall effect of SF and MF RT on
BMD and whether these effects were different in the
femora among lytic, blastic, and mixed lesions.

Methods and materials

Patients

Between 2006 and 2009, patients who received
palliative RT for femoral metastases in 3 RT institutes
in The Netherlands (Radiotherapeutic Institute Fries-
land, Leiden University Medical Center and Radboud
University Medical Center) were asked to participate in
this prospective study. Institutional approval was ob-
tained from the ethics committees of all participating
centers. This study is part of a larger study on the
prediction of fracture risks with use of Finite Element
modeling.”"*'

Patients received either SF (1 x 8 Gy) or MF (5 or
6 x 4 Gy) RT in accordance with the Dutch clinical
guidelines that state that lesions with cortical involve-
ment of more than 3 cm have an increased risk of frac-
ture and will be considered for prophylactic surgery. '’
SF is typically applied to treat pain that is related to
smaller, uncomplicated lesions with a low expected
risk for fracture and has a 60% to 80% chance of pain
relief.*’ In patients who have larger lesions (ie, in
principle requiring stabilization) and refuse surgery or
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Fig. 1 Transversal (A) and sagittal (B) false color overlay of two registered quantitative computed tomography scans of the right
femur, showing an accurate registration of the right femur (no green/purple color visible) and inaccurate registration of the pelvis and
left femur (green/purple colors visible). The red arrow indicates the lesion. (C) Segmented geometry of a proximal femur (ROI-PF,
blue), lesion (red), and 6-mm margin (line), and the region of interest that was used for analysis of the lesion (ROI-ML, green).

have a deteriorating clinical condition, radiation oncol-
ogists typically prescribe a higher total dose to induce
remineralization. Surgery may be too hazardous for these
patients; hence, higher radiation doses are selected with
the hope that they prevent pathologic fracturing.

Patients were included in the study if they had a
Karnofsky Performance Score of >60, no clinical or
radiologic evidence of pathologic femoral fractures, no
planned or prior palliative surgery to the femur, no
radionuclide treatment 30 days prior to inclusion, and no
previous RT to the femur. In total, 66 patients gave
written informed consent. With use of follow-up ques-
tionnaires after 4 and 10 weeks and after 4, 5, and 6
months, patients were actively followed for 6 months or
until they sustained a femoral fracture or died. At the
6-month follow-up, the study database was updated on the
basis of hospital records and then closed.

Measurements and follow-up

Baseline patient characteristics including sex, age, body
weight, Karnofsky Performance Score, time since primary
tumor diagnosis and since first metastasis, primary tumor,
and concurrent systemic therapy were registered by the
treating radiation oncologist at the time of intake. During
the RT planning session, patients underwent their first
quantitative computed tomography (QCT) scan. Subse-
quent QCT scans were taken after 4 and 10 weeks. Patients
who received MF RT also underwent an additional QCT
scan after 1 week on the final day of their RT schedule to
determine a potential immediate effect of RT on BMD.* "
At the same time points, patients completed questionnaires
on pain (ie, Brief Pain Inventoryzz), level of activity,
and quality of life (including sections from the Longitu-
dinal Aging Study Amsterdam Physical Activity

Que:stionnailre,23 Short Form-36,24 and the Western Ontario
and McMaster Universities Arthritis Index”’). These
patient-reported outcomes will be published separately.

The institutes were instructed to perform the QCT
scans in accordance with a standardized protocol with the
following settings: 120 kVp, 220 mA, slice thickness 3
mm, pitch 1.5, spiral and standard reconstruction, and in-
plane resolution 0.9375 mm. The protocol required
scanning of at least the proximal half of the femur,
including the painful metastases. A solid calibration
phantom (Image Analysis, Columbia, KY) that contained
4 known calcium hydroxyapatite (CaHA) concentrations
of 0, 50, 100, and 200 mg/cm3 was placed under the
patient in the scanner. The densities in this phantom were
used to calibrate each Hounsfield Unit (HU) to CaHA
density. This CaHA density is a calcium-equivalent den-
sity that is a measure of BMD; in the remainder of this
work, we will refer to it as BMD.

Registration

To analyze the effect of RT on BMD of the proximal
femur region (ROI-PF) over time, the proximal half of the
femur for each patient was segmented from one of the QCT
scans (Mimics 11.0 and 14.0, Materialise, Leuven, Belgium).

Patients’ QCT scans were registered with fully automated
rigid registration algorithms for medical images (elastix”**").
For this, numerous alignments of 2 CT scans were calculated
until the best fit was found,”® resulting in an objective and
accurate registration (Fig. 1A and B). All voxels that repre-
sent the femoral geometry were included in the analyses.

Furthermore, an experienced radiation oncologist
segmented the lesions and scored each metastatic femur
as lytic, blastic, or mixed on the first QCT scan. To ac-
count for obscure edges, regions of metastatic lesions
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(ROI-ML) were defined by expanding the lesions by
6 mm in all directions. If the procedure included voxels
outside the femur, these voxels were ignored (Fig 1C).

Analysis

Baseline characteristics were compared between patients
who received SF and MF and patients with lytic, blastic, and
mixed lesions with use of the Mann-Whitney U, Fisher exact,
Pearson xz, and Kruskal-Wallis tests, where applicable.

Mean BMD in mg/cm?® was calculated for each ROI-PF
and ROI-ML at each time point. Linear mixed models were
used to study the effect of RT on the BMD of all ROI-PF and
ROI-ML over time. This analysis allowed for the inclusion
of patients with missing data. Lesion type and size were
added to the models. To address a potential effect of con-
founding by indication, we tested whether other baseline
characteristics (eg, performance score, primary tumor,
concurrent systemic therapy [anticancer and/or bisphosph-
onates]) also affected BMD. However, none of these other
baseline characteristics influenced the effect of RT on BMD,
and they were removed from the final models.”

A random intercept was included to disregard the
variability in initial BMD between patients. The interac-
tion between lesion type and time was significant and
therefore added to the model. All other interactions were
not significant. P-values below .05 were considered sta-
tistically significant. Statistical analyses were performed
using Stata/SE 11.2 (StataCorp LP, College Station, TX).

The statistical model tested BMD in mg/cm® but not in
percentages. However, for interpretational and visual
purposes, the data were converted to percentages by
marking BMD on the first QCT scan as 100% and
calculating BMD of the subsequent QCT scans relative to
the first measurement.

Results

Patients

Of the 66 eligible patients, 24 were excluded from
this analysis because only 1 QCT scan was available (n = 20),
the first QCT scan was missing (n = 1), or lesions were un-
identifiable (n = 3). Hence, 42 patients were included for
analysis, 5 of whom received RT to both femora, leading to a
total of 47 femora for analysis. Three femora had 2 separate
lesions and 1 femur had 3 lesions, which resulted in 52 lesions
and comprised 24 lytic, 8 blastic, and 20 mixed lesions.

Not every patient underwent all QCT scans at all time
points because of death, fracture, or deteriorating condi-
tion. At baseline, all 42 QCT scans were obtained, but
after 4 and 10 weeks, only 30 and 27 QCT scans were
acquired, respectively. Of the 26 patients who receive MF
RT, 25 underwent a QCT scan on the final day of RT.
Against protocol instructions, less than half of the femur

was scanned in 12 cases (range, 41%-49% of the femoral
length). Additionally, 8 ROI-PF were larger than 50% to
include lesions in the distal half of the femur (range,
55%-89% of the femoral length).

Baseline characteristics were not significantly different
between patients who received SF or MF RT, but sex,
age, and primary tumor differed among patients with
Iytic, blastic, or mixed lesions (Table 1).

One patient who received SF sustained a femoral
fracture after 3 months. Of the patients who received MF,
1 patient fractured a femur after 2 weeks and 1 patient
fractured both femora after 4 months.

Bone mineral density

Table el depicts the mean BMD (in mg/cm?®) of the
proximal femora (ROI-PF) and metastatic lesions
(ROI-ML) from the scans that were available
(Supplementary Material).

Effect of RT on BMD in proximal femur (ROI-PF)

At baseline, mean BMD in ROI-PF was 471.5 mg/cm3
(standard deviation [SD], 77.4 mg/cm®) in patients
who were assigned to SF RT and 445.7 mg/cm® (SD,
70.7 mg/cm?) in patients who were assigned to MF RT.
After 10 weeks, BMD increased 0% after SF and 2% after
MF RT and was not different between SF and MF RT over
all time points (Fig 2A). An interaction was found between
lesion type and time, which indicates that femora affected by
different lesion types responded diversely to RT over time
(Fig 2B). This lesion-dependent effect over time holds for
both radiation schedules, as there was no difference in BMD
between ROI-PF treated with SF and MF RT.

Independent of RT schedule, ROI-PF that included Iytic
lesions showed a significant decrease of 2% in BMD be-
tween QCT scans at baseline and after 10 weeks, (—9.2 mg/
cm3, 95% confidence interval [CI], —18.0-—0.4, P = .04).
An increase in BMD to 109% at 10 weeks (37.9 mg/cm®,
95% C124.7-51.0, P < .001) was observed in ROI-PF that
contained blastic lesions. No significant differences over
time were found for ROI-PF with mixed lesions. Further-
more, 10 weeks after RT, BMD in ROI-PF that contained
blastic lesions was significantly higher than in ROI-PF that
contained lytic (106.4 mg/cm®, 95% CI 39.1-173.7, P =
.002) or mixed lesions (87.2 mg/cm3, 95% CI124.8-149.6, P
= .006). Figure 3 depicts the BMD of all ROI-PF and
shows a widespread individual response to RT.

Effect of RT on BMD in metastatic lesion (ROI-ML)

On average, ROI-ML volume was 88 cm’® (SD,
61 cm3). Volumes of lytic (mean, 58 cm’; SD, 44 cm3),
blastic (mean, 143 cm’; SD, 78 cm3), and mixed (mean,
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Table 1 Patient baseline characteristics
Single fraction Multiple P-value Lytic Blastic Mixed P-value
(1 x 8 Gy) fractions n=17 n=238 n=17
n =16 (5-6 x 4 Gy)
n = 26
Sex* 0.5 0.02
Male 12 (75%) 16 (62%) 7 (41%) 7 (87%) 14 (82%)
Female 4 (25%) 10 (38%) 10 (59%) 1 (13%) 3 (18%)
Age, yr 0.8 0.03
Median (Range) 68.5 (39-89) 66 (52-85) 62 (39-84) 69 (61-75) 70 (46-89)
Body weight, kg” 0.5 0.5
Median (Range) 75 (44-92) 79 (57-106) 73 (57-106) 77.5 (44-83)  84.5 (56-95)
Karnofsky Performance Score” 0.1 0.5
Median (Range) 80 (60-100) 80 (60-100) 80 (60-90) 80 (70-90) 80 (60-100)
Time since primary tumor 0.6 0.3
diagnosis, yr’
Median (Range) 4.0 (0.4-17.6) 3.0 (0.1-23.8) 1.9 (0.1-23.8) 5.9 (0.2-12.3) 2.8 (0.4-17.6)
Time since first metastasis, yr” 0.8 0.3
Median (Range) 1.2 (0-7.3) 1.0 (0.3-7.8) 0.8 (0-7.8) 2.6 (0-7.3) 1.2 (0-5.4)
Primary tumor® 0.6 0.004
Breast 3 (19%) 5 (19%) 5 30%) 1 (13%) 2 (12%)
Lung 1 (6%) 5 (19%) 4 (23%) 1 (13%) 1 (6%)
Prostate 9 (56%) 10 (38%) 1 (6%) 6 (74%) 12 (70%)
Other* 3 (19%) 6 (23%) 7 (41%) 0 (0%) 2 (12%)
Lesion type® 0.2
Lytic 4 (25%) 13 (50%)
Blastic 3 (19%) 5 (19%)
Mixed 9 (56%) 8 (31%)
Affected femur® 1 0.8
Unilateral 14 (87%) 23 (89%) 14 (82%) 8 (100%) 15 (88%)
Bilateral 2 (13%) 3 (11%) 3 (18%) 0 (0%) 2 (12%)
Concurrent systemic 0.6 0.2
therapy®
No concurrent therapy 1 (6%) 5 (19%) 5 (29%) 1 (13%) 0 (0%)
Systemic 4 (25%) 6 (23%) 3 (18%) 1 (13%) 6 (35%)
therapy+Bisphosphonates
Systemic 10 (63%) 12 (46%) 7 (41%) 5 (61%) 10 (59%)
therapy—Bisphosphonates
Bisphosphonates only 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Missing 1 (6%) 3 (12%) 2 (12%) 1 (13%) 1 (6%)

% Tested with Fisher exact.

® Tested with Mann-Whitney U for differences between single and multiple fractions and with Kruskal-Wallis for differences between lytic,

blastic and mixed lesions.
¢ Tested with Pearson .

4 Other = Kidney, Rectum, Kahler’s disease, Urethra, Cervix or aCUP (cancer of unknown primary origin).

103 cm3; SD, 53 cm3) ROI-ML were significantly
different (P = .004).

At baseline, the mean BMD in ROI-ML treated with
SF RT was 474.9 mg/cm® (SD, 150.1 mg/cm?), and
394.6 mg/cm’ (SD, 190.3 mg/cm’) when treated with MF
RT. Mean BMD of ROI-ML increased by 1% in SF and
7% in MF RT after 10 weeks, but this was not signifi-
cantly different (Fig 4A). A significant interaction be-
tween lesion type and time was found, indicating that the
effect of RT on BMD was different for the 3 lesion types
(Fig 4B).

No changes in BMD were observed in lytic ROI-ML
over time. BMD in blastic and mixed ROI-ML signifi-
cantly increased by 21% and 5%, respectively, between
baseline and 10 weeks, (blastic: 72.8 mg/cm3 , 95% CI
50.5-95.0, P < .001; mixed: 22.0 mg/cm3, 95% CI
9.2-34.9, P = .001).

At baseline, BMD in blastic ROI-ML was significantly
higher than in lytic (161.4 mg/cm?®; 95% CI, 6.6-316.2;
P = .04) and mixed ROI-ML (150.8 mg/cm®; 95% CI,
7.2-294.5; P = .04). This difference remained significant
and increased over time. Figure 5 shows the effect of RT
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Proximal femur regions
A Single fraction vs. multiple fraction RT
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Fig. 2 Mean + standard deviation bone mineral density (in
percentage relative to quantitative computed tomography scan 1)
of all proximal femur regions (ROI-PF) over time, for (A) single
fraction (1 x 8 Gy) versus multiple fractions (5-6 x 4 Gy), and
(B) each lesion type. *Significant difference for blastic lesions.
Significant difference for lytic lesions. ISignificant difference
at 10 weeks.

on BMD in every ROI-ML and illustrates each ROI-ML
responding differently to RT.

Discussion

The aim of this study was to determine the overall
effect of palliative RT on bone mineral density in the
proximal femur and metastatic lesions in patients with
cancer and painful bone metastases. Additionally, we
investigated whether these effects were different in
femora with lytic, blastic, and mixed lesions.

In the proximal femora regions (ROI-PF), no differ-
ences in BMD were found between SF and MF RT. BMD
decreased in ROI-PF that contained lytic lesions,
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Fig. 3 Mean bone mineral densities (in mg/cm3) of the
proximal femur regions (ROI-PF) that contain lytic (A), blastic
(B), or mixed (C) lesions for each femur over time.

increased in ROI-PF with blastic lesions, and did not
change in ROI-PF with mixed lesions over time. After 10
weeks, differences in BMD in the radiation field (ROI-PF)
were smaller than those in the metastatic lesions. This
may indicate that the effect in ROI-PF was mainly due to
BMD changes in the lesions (ROI-ML) and suggests that
the irradiated femoral bone inside the radiation field but
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Metastatic lesions
A Single fraction vs. multiple fraction RT
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outside the lesion is unaffected or less affected by RT. A
few studies found a smaller BMD increase in irradiated
normal-appearing bone surrounding lytic metastases in
vertebrae compared with the regions with vertebral le-
sions.'®!! However, to our knowledge, the effect of RT
on total bone volume in the radiation field has not been
studied previously. Moreover, previous studies did not
include blastic or mixed lesions.

When focusing on ROI-ML, BMD did not differ be-
tween SF and MF RT. Additionally, BMD in Iytic
ROI-ML did not change, which contradicts the findings in
previous work.”'? Koswig et al® observed a decrease in
BMD immediately after RT for both SF (1 x 8 Gy) and
MF (10 x 3 Gy), followed by an increase in BMD after 6
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months of 120% for SF and 173% for MF. After 10 weeks
(comparable with our last time point), BMD increased
approximately 106% and 137%, respectively. A similar
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response after MF (40 Gy) RT in vertebral lesions was
observed by Reinbold et al'” who showed a decrease of
20% in BMD at the end of RT, followed by an increase of
more than 60% after 3 months.'’ The observation that RT
ultimately increases BMD in lytic lesions is supported by
other studies.”'' Actually, Koswig et al only observed
significant differences in lesions that originated from
breast cancer,® which are known to be responsive to RT.*
When considering only metastases that arise from breast
cancer in our study, no differences between SF and MF
RT were seen. Hence, a beneficial effect of MF RT over
SF RT on BMD was not observed in our study.

Our results, which contrast with those of previous
studies, have several possible explanations. First, it
should be noted that concurrent treatment with
bisphosphonates may enhance the effect of RT on
BMD.'""? Although we did not find any interaction with
medication, it may potentially have caused biased effects
in the earlier studies that did not test this.*'® Second, the
radiation doses in the previous studies were typically
higher compared with the doses administered in our
study. We administered doses of a total of 8 or 20 to
24 Gy, whereas other studies applied doses of up to
40 Gy.m_lz Third, we included metastatic lesions that
originated from various primary tumors, some of which
are known to be less responsive to RT than others.*" In
addition, most other studies included no or few femoral
bone metastases but mostly vertebral and pelvic metas-
tases, which are suggested to have a better BMD response
to RT compared with metastases in the extremities.”’
Only one study included solely femoral metastases, and
density changes in lesions were evaluated on the basis of
x-ray test results with a reported response in 42% of pa-
tients. However, the study’s follow-up ranged from 1 to
28 months, and higher response rates were found in pa-
tients who were followed for a longer period of time.'”
The follow-up period in our study may have been too
short to determine the long-term effects of RT on BMD.
Finally, the most relevant difference between -earlier
studies and the current one is probably the detailed QCT-
approach. We studied lesional volumes 3-dimensionally,
which provided a more extensive analysis of RT effects
on metastatic lesions. We performed several sensitivity
analyses that proved that our 3-dimensional image regis-
tration was accurate. All previous research studied 2-
dimensional ROI on the basis of x-ray test results'” or
single CT scan image,” ' and temporal registration was
accomplished by reproducing the patient position on the
CT scanner” '’ or drawing ROI in each scan by hand.'" It
can be questioned whether the same accuracy can be
obtained with manual registration compared with our
fully automated registration. The latter is not dependent
on the arbitrary position of a limited number of landmarks
but uses the overlap of a large number of voxels that are
taken from the different images; therefore, they should be

better than manual registration.”® For these reasons, we
consider our study results to be reliable.

This study also has some limitations. As previously
shown’', accurate identification of the margins of the
actual bone lesions was difficult. Therefore, we added a
rim of 6 mm around the edges to decrease the chance of
omitting lesional tissue in the analysis, even though this
may include nonaffected bone tissue. Also, categorization
of lesions into pure lytic, pure blastic, and a mixed-type
category using CT scans was complicated. Although the
lesions were categorized in accordance with guidelines,*”
some caution should be taken when interpreting differ-
ences between lesion types. Furthermore, the total number
of patients included in the study was limited, and not all
QCT scans were acquired for each patient. However, the
main reasons for missing scans were death, fracture, and
deteriorating condition, which is inevitable when
analyzing data from patients with cancer who are in the
palliative phase of their disease.

It is difficult to extrapolate BMD effect to femoral
bone strength. Mean BMD did not change in lytic
ROI-ML, which indicates that there was no progression of
disease or remineralization of the bone tissue; hence, there
was no change in bone strength. In contrast, BMD in
blastic and mixed ROI-ML increased over time. However,
the effect of these BMD increases on bone strength is
difficult to interpret because denser blastic lesions could
flag either disease progression or formation of new high-
density bone tissue. Additionally, in mixed lesions, both
blastic and lytic processes occur. These processes may
cancel out a potential effect on bone mineral density.
Therefore, the way changes in BMD affect femoral bone
strength in blastic and mixed lesions should be investi-
gated further.

Conclusions

In conclusion, higher total RT doses in patients with
cancer and femoral metastases did not lead to significantly
higher BMD up to 10 weeks after palliative RT, which
brings into question the clinical relevance of MF over SF to
stabilize femoral bone within this time period. Addition-
ally, 10 weeks after RT, a significant increase in BMD was
observed in blastic and mixed lesions but not in lytic le-
sions. Whether this implies progression or remineralization
is unclear, especially since there was no control group of
patients who received no RT. Also, the subsequent clinical
effect of these changes on femoral bone strength remains
unknown and needs to be investigated in the future.
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