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Ewa Zamysłowska-Szmytke 2

����������
�������

Citation: Tylman, W.; Kotas, R.;
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Abstract: This paper presents a fall risk assessment approach based on a fast mobility test, automati-
cally evaluated using a low-cost, scalable system for the recording and analysis of body movement.
This mobility test has never before been investigated as a sole source of data for fall risk assessment.
It can be performed in a very limited space and needs only minimal additional equipment, yet
provides large amounts of information, as the presented system can obtain much more data than
traditional observation by capturing minute details regarding body movement. The readings are
provided wirelessly by one to seven low-cost micro-electro-mechanical inertial measurement units
attached to the subject’s body segments. Combined with a body model, these allow segment rotations
and translations to be computed and for body movements to be recreated in software. The subject
can then be automatically classified by an artificial neural network based on selected values in the
test, and those with an elevated risk of falls can be identified. Results obtained from a group of
40 subjects of various ages, both healthy volunteers and patients with vestibular system impairment,
are presented to demonstrate the combined capabilities of the test and system. Labelling of subjects
as fallers and non-fallers was performed using an objective and precise sensory organization test; it
is an important novelty as this approach to subject labelling has never before been used in the design
and evaluation of fall risk assessment systems. The findings show a true-positive ratio of 85% and
true-negative ratio of 63% for classifying subjects as fallers or non-fallers using the introduced fast
mobility test, which are noticeably better than those obtained for the long-established Timed Up and
Go test.

Keywords: bioinformatics; fall risk assessment; microsensors; decision support systems

1. Introduction

Mobility dysfunctions present a serious problem in today’s ageing society. They result
from several unrelated causes, including age-related muscle weakness and overall low
endurance, diseases of the peripheral or central vestibular and musculoskeletal systems,
and white matter lesions [1–3]. In addition, as some of these problems also occur in younger
people, imbalance complaints are not restricted to the elderly [4].

One of the greatest risks faced by those with imbalance complaints is that of falling.
Falls may result in dangerous injures, including bone fractures, to which the elderly are
particularly prone. Moreover, in the case of elderly people living alone, a fallen person
may not be able to stand up.

Considering the above, there is a need for objective tools to evaluate such mobility
dysfunctions, including those than can assess the risk of falling. Any patients found to

Sensors 2021, 21, 1338. https://doi.org/10.3390/s21041338 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0776-9173
https://orcid.org/0000-0001-6400-0104
https://orcid.org/0000-0002-0610-1182
https://orcid.org/0000-0003-2516-3327
https://doi.org/10.3390/s21041338
https://doi.org/10.3390/s21041338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041338
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1338?type=check_update&version=2


Sensors 2021, 21, 1338 2 of 17

be at high risk may be diagnosed and treated for underlying diseases, an appropriate
rehabilitation program may be introduced, or changes in their living surroundings may be
made. It is also important to design objective tools for assessing such patients to track their
rehabilitation progress.

Although there is already a significant accumulation of research concerning novel tools
for fall risk assessment, which use capabilities of contemporary hardware and software
solutions, none of the proposed approaches gained enough acceptance to replace long-
established tests, such as the Timed Up and Go test (TUG) [1], Berg Balance Score (BBS) [2],
Tinetti Test (TT) [3], or Dynamic Gait Index (DGI) [4]. This indicates that further research
in this field is necessary.

A number of studies have examined the potential of inertial measurement units as
measurement elements in fall risk assessment tools. A systematic review of 55 reported
approaches developed for classification of subjects into fallers and non-fallers, as presented
in [5–7], revealed accuracy in the range of 62–100%, sensitivity in the range of 55–100%,
and specificity in the range of 35–100%. This means that at least some of the approaches
provided satisfactory performance; however, further analysis reveals that the studies
themselves have some methodological problems. Moreover, they are surprisingly restricted
in their choice of the mobility tests performed by the subject, not investigating possibilities
offered by alternatives. These shortcomings are further discussed below; the important
novelty of the approach presented in this article is that it aims to avoid these pitfalls.

The most important problem identified in the previous studies is the approach to-
wards labelling of the subjects. In order to construct a classifier, it is necessary to label
all subjects in the study group as fallers or non-fallers beforehand; for this, a reliable
and objective method must be used, as mislabelling the subjects nullifies all subsequent
research. Of the investigated studies, 31% used prior fall history, 22% used prospective falls
(i.e., reported after the test), and 29% used clinical assessment, while 18% of studies used
some combination of the abovementioned methods. Unfortunately, all of these methods
lack objectivity and are prone to misjudgement. In the case of the prior or prospective falls,
the main obstacle is the fact that the subjects may have different daily routines (e.g., staying
indoors or going out), vastly different home arrangements, and a varied approach towards
activities subjectively perceived as risky; their choice of footwear may also influence the
risk of falls. Moreover, as in most cases the falls are self-reported by the subjects (using a
questionnaire), they may accidentally or purposefully enter inaccurate data. Even more
problematic are the tests used during the clinical assessment: as they are themselves imper-
fect predictors of falls [8–10], any studies based on them simply duplicate the results of
the clinical test rather than classify the subjects as fallers and non-fallers. Interestingly, the
studies that report the best results are usually based on clinical assessment, not fall history
(e.g., [11,12]). The study presented in this article uses the Sensory Organization Test (SOT)
based on Computerized Dynamic Posturography (NeuroCom), which allows for objective
assessment of fall susceptibility in a controlled environment, identical for all subjects. No
previous studies have employed such an approach.

Another methodology problem, found in almost 50% of the investigated studies, is
that they do not include any verification procedure for confirming the capabilities of the
classifier. Data for all subjects are used to construct the classifier, with no cases set aside to
check the classifier performance. This is a serious gap in the methodology, as it gives no
indication of how accurately the model will perform in practice, when it will be used to
classify cases that were not included in the learning set. The study presented in this article
uses rigorous leave-one-out cross-validation to verify the model.

A further shortcoming of the previous approaches is that they mostly consider the
same mobility tests (i.e., the tasks that the subjects are asked to perform). Of the investigated
studies, 48% used walking, while 32% used the Timed Up and Go test. This means that
there is very little research on new tests, which may prove to be more informative, or
quicker to perform, or less cumbersome to the subjects. The study presented in this article
uses a test that is a single element of the Berg Balance Score; it is very quick to perform and
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may be performed in a cramped space. It is also of interest as it does not contain a walking
phase, so it gives an opportunity to investigate whether walking is necessary to assess fall
risk. This test has not been investigated before as a sole indicator of fall risk.

The approach described in this study allowed a group of 40 subjects, comprising
healthy subjects and those exhibiting the signs of central or peripheral vestibular dys-
function, to be classified as fallers and non-fallers with a true-positive ratio of 85% and
true-negative ratio of 63%. The approach was based on the use of the described measure-
ment and analysis approach on a task requiring the subject to transfer between chairs. Our
findings compare favourably to those from the long-established Timed Up and Go task,
applied to the same group and evaluated using time needed to complete the whole task
and its phases.

2. Typical Approaches to Fall Risk Assessment

Quantitative balance assessment requires the use of dedicated devices such as a force
plate. The most widely used method for such quantitative evaluations of balance deficit
is static posturography, which analyses sways with the subject in a quiet stance. Static
posturography quantifies the subject’s sways under four conditions: standing calm on a
stable surface with eyes open and then eyes closed, and then standing on a foam surface
with eyes open and then closed. Each condition is repeated three times for 10 s. Although
static posturography may be useful in fall prediction [13–15], most relevant literature data
concerns dynamic posturography [16]; this requires different devices, which are much
more expensive and bulkier.

Other risk assessment tools are constantly being developed and verified. Not nor-
malized functional testing involves a series of tasks, during which the patient performs
simple but strictly determined operations such as standing motionlessly, walking, or sitting.
Each task is evaluated by the physician through basic observation, possibly supported by
simple tools such as a stopwatch or measuring tape. This situation has serious drawbacks:
observation-based evaluation is difficult to quantify, may give different results from ob-
server to observer (i.e., may lack objectivity), and is limited to features that can be observed
using the naked eye.

Several clinical functional tests have been demonstrated to be of value in assessing
the risk of falls. The Timed Up and Go (TUG) test is a popular test in which the patient is
ordered to rise from a chair, walk three meters, turn around, walk back to the chair, and
sit down. The time to complete the task is the output. The TUG test has been applied for
assessing balance and gait deficits in Parkinson’s disease, multiple sclerosis, and stroke,
as well as in other neurological diseases and orthopaedic disorders. It is used to evaluate
the rehabilitation outcome and to predict the risk of falls in the elderly [17,18]. Unlike
posturography, its evaluation requires only the simplest technical equipment: a stopwatch.
As TUG is often regarded as the single most informative test for fall risk assessment [19–21],
it will therefore be used as a benchmark for the new test.

The Berg Balance Scale (BBS) is an example of a score based on functional tests.
It includes 14 simple tasks with a completion time of 20 min. These tests include sitting,
standing with eyes open, picking up an object from the floor, and reaching, among others.
The patient is rated on a five-point scale from zero to four based on whether the task was
performed independently or with any help, protection, or support. The maximum number
of points is 56. A score of 40–21 points indicates an average risk of falls, and values below
20 points indicate a high risk [2,22].

The Dynamic Gait Index (DGI) is a score based on eight tasks including gait with
varying speed, gait with transverse and sagittal head movements, and gait over and around
obstacles, among others. The tasks are rated on a four-point scale from zero to three. The
maximum score is 24. A score less than 19 indicates a risk of falls [23,24].

Scores such as BBS or DGI are more detailed than single functional tests; however,
they are lengthier and more inconvenient for patients.
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3. Available Measurement and Analysis Solutions

Numerous technologies have been proposed for measuring human body movements.
In most cases, the resulting devices are expensive and must be installed in the doctor’s
office. The systems can be divided into the three following groups according to their mode
of operation.

3.1. Approaches Based on Strain Gauges

Strain gauges quantify the forces acting on objects by measuring their resulting de-
formations. They are the technology of choice for posturography: centre-of-pressure
movements on a measurement plate (e.g., those caused by a subject swaying), are mea-
sured by strain gauges near the corners. The resulting device is known as a force plate
(or force platform). However, this technology limits the examination to a quiet stance or
simple movements.

3.2. Approaches Based on MEMS Sensors

With the fast development of micro-electro-mechanical systems (MEMS), compact
multi-sensor devices known as inertial measurement units (IMUs) have gained popularity
in low-cost, wearable gait analysis systems. Two of the most important reasons why IMUs
have gained such popularity is that the involved hardware is small and cheap. Several
devices, such as BalanceFreedom™, SwayStar International™, and Vertiguard™, have been
approved for use in Europe; in addition, some have been approved by the FDA for use
within the U.S. as a real-time balance or rehabilitation tool (e.g., the Biodex Vibrotactile™
System [25]).

3.3. Other Approaches

Motion capture systems are commonly used to detect movements in the real world
and transfer them to a virtual environment (VE). Various capture solutions exist based on
different physical principles, such as optical, magnetic, and mechanical exoskeleton track-
ing systems. Dedicated camera-based solutions can track human movements extremely
precisely and are sometimes used in professional sports training; however, their high cost
and complex nature usually exclude them from everyday use. A virtual-reality-based exer-
cise program has been found to offer promise for treating unilateral peripheral vestibular
deficit [26]. Other more simplified approaches exist, including gaming systems such as the
Microsoft Kinect.

Recently, motion tracking systems based on several IMUs have been introduced; such
approaches allow body movements to be measured more precisely than single-sensor ap-
proaches, while still taking advantage of low-cost hardware. The solution presented in this
paper is an example of such a system, tailored for the assessment of mobility dysfunctions.

4. Overview of the Solution
4.1. Intended Use

The solution presented in this article is intended for the assessment of mobility dys-
functions by physicians.

Unlike the force plate, the MEMS IMU allows data about the patient’s movements to be
gathered during various tasks, as the patient is not limited in space during the examination.
Several separate sensors may be used, which makes it possible to obtain information about
individual body segments. The raw data can be subsequently processed by algorithms to
precisely and objectively describe task performance. Objectivity is especially important
for tracking the progress of the patient during rehabilitation, particularly when different
doctors evaluate the patient’s mobility before and after therapy. However, this is also
an important consideration when the same doctor evaluates the same patient over the
course of three or six months: the assessment manner may change over time. In addition,
the 3D rendering of a body model consisting of rigid segments by the software allows
visualization of the patient’s body and its movements. This aids objective visual analysis,
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as the patient can be seen from different viewpoints, and the movements can be presented
in slow motion. Finally, the data can also be saved for further reference or inclusion in the
patient’s file.

4.2. Data Source

The low cost of the proposed approach has been achieved by limiting the hardware part
of the system to a minimum. Readings are obtained through small, battery-operated, Wi-Fi-
enabled devices utilising the COTS IMU: three-axis accelerometer–gyroscope–magnetometer
MEMS combo (Figure 1). The device is patent pending. Hardware considerations are not
elaborated in this paper as they have little impact on the data processing paths; the reader
is referred to the previous paper by the same authors [27]. Data storage and processing is
provided by custom software running on a standard PC.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 18 
 

 

different doctors evaluate the patient’s mobility before and after therapy. However, this 
is also an important consideration when the same doctor evaluates the same patient over 
the course of three or six months: the assessment manner may change over time. In addi-
tion, the 3D rendering of a body model consisting of rigid segments by the software allows 
visualization of the patient’s body and its movements. This aids objective visual analysis, 
as the patient can be seen from different viewpoints, and the movements can be presented 
in slow motion. Finally, the data can also be saved for further reference or inclusion in the 
patient’s file. 

4.2. Data Source 
The low cost of the proposed approach has been achieved by limiting the hardware 

part of the system to a minimum. Readings are obtained through small, battery-operated, 
Wi-Fi-enabled devices utilising the COTS IMU: three-axis accelerometer–gyroscope–mag-
netometer MEMS combo (Figure 1). The device is patent pending. Hardware considera-
tions are not elaborated in this paper as they have little impact on the data processing 
paths; the reader is referred to the previous paper by the same authors [27]. Data storage 
and processing is provided by custom software running on a standard PC. 

 
Figure 1. Measurement device. 

Scalability is possible: the data acquisition system has a flexible configuration, and 
various user-defined body models can be used. The results discussed in this article were 
obtained using a six-device configuration; however, a seven-device configuration has also 
been tested. The number of devices obviously affects both the accuracy and the overall 
cost of the solution. 

The sensors are placed on the patient in such a way as to maximize the usefulness of 
the gathered information. The six-device configuration uses devices attached to the fifth 
lumbar vertebra (L5), cervico-thoracic transition (C7-TH1), thighs, and lower legs (Figure 
2). 

Figure 1. Measurement device.

Scalability is possible: the data acquisition system has a flexible configuration, and
various user-defined body models can be used. The results discussed in this article were
obtained using a six-device configuration; however, a seven-device configuration has also
been tested. The number of devices obviously affects both the accuracy and the overall cost
of the solution.

The sensors are placed on the patient in such a way as to maximize the usefulness
of the gathered information. The six-device configuration uses devices attached to the
fifth lumbar vertebra (L5), cervico-thoracic transition (C7-TH1), thighs, and lower legs
(Figure 2).
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Most placement inaccuracies (tilt, rotation of the sensor) are dealt with through a
calibration procedure, as explained in Section 5.3. However, while placement inaccuracies
can be easily accounted for, problems can occur when the device changes its position
relative to the body segment during the task (i.e., after calibration). For this reason, the
attachment must be fixed securely; in the study, elastic bands were used for this purpose.

4.3. Processing Path

The processing path of the solution is outlined in Figure 3.
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Data regarding individual body segment movements during the task are wirelessly
transmitted to a PC, which stores the resulting time series and makes them available for
analysis. These readings are then used to determine the rotations of body segments and,
together with the body model, the complete body posture. Some supplemental information,
such as position and movements of the centre of mass, or the forces acting on the ground,
are calculated in the next step. The details of the algorithms employed in the whole process
are discussed in Section 5.

The computed data is used, firstly, as a basis for visualization (see: Section 5.6) and,
secondly, to quantitatively summarize the task via a collection of algorithms. One such
task is the fast mobility test (see: Section 6).

5. Details of the Solution
5.1. Measurement Data

As outlined in Section 4.2, the solution may determine the orientation of body seg-
ments by using data from accelerometers, gyroscopes, and magnetometers. Each of these
sensors has their own merits and drawbacks for the discussed application. For example,
gyroscopes are well suited to recording object rotation but suffer from considerable drift.
Accelerometers can be used to detect both the translation and rotation of an object but
cannot distinguish between translation-related and gravity-related acceleration. The lit-
erature offers a number of approaches for combining such measurements. These include
generic approaches, such as the Kalman filter [28], as well as other approaches, such as
the Madgwick filter, which allow the computationally efficient fusion of IMU data [29].
As the Madgwick filter is also reported to have better accuracy than Kalman filter [30], it
was selected for inclusion in the approach.

In addition, an algorithm that explicitly uses only accelerometer data for pitch and
roll, and gyroscope data for yaw, has been implemented as an alternative approach. This
approach ensures maximum pitch and roll accuracy to be achieved for stationary or quasi-
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stationary situations; this is essential for analysing some tasks performed by the patient,
while still enabling yaw movement analysis.

5.2. Body Model

The body model allows computation of complete body posture and its change over
time. The simplest body model can be built using data from only one IMU. In this case, the
model consists of a single rigid segment. Its rotation can be determined by rotation data
from the IMU, and the bottom of the segment remains affixed to a point on the ground.
Despite its extreme simplicity, it is surprisingly useful for assessing some simple tasks
(i.e., those based on stance and its variations).

Further segments can be added to the model, and their rotations are determined by
their corresponding IMUs. As the segments are connected through joints, if the translation
of one segment is known (or assumed), together with its rotation and length, it can be
used to determine the translations of the segments connected to it. This forms a chain of
dependencies and allows a complete body posture to be computed. Both single-segment
and six-segment models are presented in Figure 4. As no sensors are placed on the arms,
their position is unknown and they are not included in the model; although this introduces
some errors into the centre of mass calculation, the errors are small as arms only represent
about 5% of total body mass [31].
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The discussed solution does not use a hard-coded body model; instead, its definition
could be adjusted to the patient and is loaded from a file. This definition can be created
or edited using a simple integrated tool (editor). For each segment, its length, centre of
mass position, connections to other segments, and colour (for visualization purposes) can
be defined.

5.3. Calibration

The purpose of the IMUs is to measure absolute rotations of body segments (i.e., those
expressed in real-world coordinates). However, IMUs can only provide data on their own
absolute pitch and roll, as obtained from the accelerometers; in theory, magnetometer data
could be used to determine yaw, but they are usually not reliable enough. This data cannot
be treated as pitch and roll of the body segment due to possible misalignment between
the coordinate systems of the IMU and of the body segment. Hardware-based adjustment
mechanisms cannot be incorporated into measurement devices as they would significantly
increase their complexity, bulk, and cost.

These problems can be overcome using a two-stage calibration procedure. Firstly, the
Z-axes of the IMU can be aligned with those of the body segments by taking measurements
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with the patient standing upright. Secondly, the direction of the X-axes of the body
segments (i.e., the “front” direction) can be determined using a predefined sequence of
body movements: the patient leans forward and then squats (partial squat is enough) with
the knees touching (Figure 4). These two movements ensure that all segments of the body
on which IMUs are placed rotate along the real-world XZ plane; as the Z-axes are already
determined, the X-axes can be calculated.

The calibration sequence is taken twice: once at the beginning and again at the end
of a task session. The results are stored and used to correct the readings obtained during
the session. Experience from the sessions recorded so far suggests that the calibration
sequence recorded at the end of the session is more accurate: even though the sensors are
firmly attached to the body segments, some minute changes in their position can occur
during the first movements of the patient. Consequently, the end-of-session calibration
is normally used; however, when it is improperly performed or clearly inaccurate, the
beginning-of-session calibration can be used.

5.4. Walk Translation

As the employed body model is based on rotation data (see: Section 5.2), data regard-
ing the translation of the body as a whole is not readily available. Nevertheless, many of the
tasks used to diagnose mobility dysfunctions can be evaluated. Some involve no translation
(e.g., free-standing, sitting down), while for others, translation data is not required; for
example, in the Timed Up and Go test (see: Section 2), only the duration of the task and
its phases are of interest, and the pivotal time instants can be determined solely based on
segment rotations. However, translation is a valuable parameter in the case of walking,
allowing the software to plot the trajectory of the centre of mass.

Although translation can be easily obtained from coordinate acceleration, MEMS
accelerometers may not be precise enough for this purpose, especially in the case of slow-
moving elderly persons (see also Section 5.1). Consequently, another method had to be
employed. This alternative approach is based on the fact that a foot does not typically
experience translation when in contact with the ground during walking; therefore, in
theory, a foot can be considered an anchor point when on the ground. Unfortunately,
this approach will not work in situations when the patient shuffles (i.e., walks without
noticeably lifting the feet above the ground). To overcome this difficulty, another approach
is added that determines the change in position of each foot in the direction of walking
(indicated by the front direction of the torso). The change is computed relative to the
middle point between the feet, with the foot that moves “backward” more prominently
assumed to be the anchor point. This approach was found to be reliable enough in a variety
of typical walks, although it will fail if someone walks unnaturally (if the patient goose
steps or moonwalks being exaggerated examples).

5.5. Centre of Mass and Force Calculation

In many tasks, it is necessary to evaluate the movements of the centre of mass (COM)
of the body. Its position is calculated based on the COMs of all body segments as a weighted
vector sum.

In some tasks, it is also important to measure the force exerted by each foot on the
ground. In the described solution, these forces are computed based on the COM movements
of the body. These movements can be used to compute the acceleration of the COM, to
which the force is proportional. This force is divided between the feet based on geometric
principles; if one foot is raised, the problem becomes trivial.

5.6. Visualization

An important capability of the presented solution is the data visualization. Although
this area will not be elaborated upon, as it was not directly utilized in obtaining the results,
the approach, based on the use of a 3D model animated in real time, allowed the designed
algorithms to be evaluated and improved more effectively than by directly interpreting
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the data coming from the sensors. Such visualization has been used for deeper analysis of
cases in which the automatic algorithms were not able to evaluate the task. Usually, visual
inspection revealed the problem to be improper performance of the calibration task, which
precluded further analysis. However, in some situations, the sensors were found to have
been placed on the incorrect body segments; in these cases, the problem was solved by
altering the configuration in the software to match the true sensor placement.

Note that Figures 4 and 5 are taken verbatim from the visualization pane of the
solution’s PC software.
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6. Swap Seats—Fast Test for Fall Risk Assessment

The Swap Seats test is originally an element of the BBS score. It was selected as it covers
items important for functional assessment: balance, efficiency of the lower extremities,
and the mobility possibilities of the subjects. It is also fast to perform (usually takes less
than 15 s) and may be performed in a cramped floor space: a square with sides of 1.5 m is
enough. During the test, the patient stands up from chair A, takes a step towards chair B,
then turns the body 90 degrees and sits down in chair B. The distance between the chairs is
one meter (see Figure 6). Chair A has no backrest, but the patient may use the backrest of
chair B while sitting down. Clinically, the task is scored from zero to four points according
to the ability to perform the task independently, or with any help, protection, and support.
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The present study contrasts this test with the TUG test; the latter is also quick to
perform but requires a 3 m walking distance.
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Automatic evaluation of the Swap Seats task was performed in two forms (the number
in the name indicates the number of computed features that characterise the performance
of the task):

• SWAP 4—during the test, the time to perform the whole task was calculated (i.e., total
duration), as well as the time needed to perform particular activities: viz. the duration
of getting up and sitting down, as well as the time between the end of getting up and
the beginning of sitting down (Table 1).

Table 1. Features computed during SWAP 4 and SWAP 82.

Feature a Unit

total duration s
raising duration s
sitting duration s

time between raising and sitting s
maximum A–P inclination of segment b deg
maximum L–R inclination of segment b deg

minimum and maximum inclination of segment c deg
average and maximum angular speed of segment c deg/s

a SWAP 4 includes the features in italics, while SWAP 82 includes all features. b Separately for trunk and head
segments, and for sitting and raising actions. c Separately for all segments and actions.

Although in theory it is possible to measure these times using a stopwatch, in practice it
is difficult: as the times are short, even small measurement inaccuracies lead to large relative
errors. In contrast, automatic evaluation using the described approach is straightforward
and precise: it can detect the moment of rising from a chair and the moment of sitting back,
thresholding segment rotations and their angular speeds. The algorithm was implemented
as a state machine with the transitions between states triggered by exceeding the thresholds.

• SWAP 82—this approach combines the times from SWAP 4 with the maximum and
minimum inclination angles of the head and the trunk while standing up and sitting
down, as well as the angular speeds of the segments. The inclination angles are divided
into two categories: the anterior–posterior inclination and the lateral inclination
(Table 1). Note that measuring these angles and speeds is beyond the capabilities of a
human observer, and therefore a measurement and computation system is required.

7. Experiment Setting and Methodology

The study group comprised 40 subjects who agreed to participate in the study and
who had given their signed consent to participate. The study was approved by the Bioethics
Committee. Fourteen subjects demonstrated signs of central or peripheral vestibular dys-
function, as indicated by detailed physical examination and Ulmer videonystagmography
testing (saccades, smooth pursuit, optokinetic test, caloric test, rotational chair test).

A point of particular interest in the present study was the susceptibility of patients to
falls. In this study, classification into fallers and non-fallers was based on the falls observed
during an examination performed with the Sensory Organization Test (SOT) based on
Computerized Dynamic Posturography (NeuroCom). The test was performed using a
dedicated device, consisting of a movable force plate positioned inside a movable booth
(Figure 7). The test protocol consisted of six steps: 1. the eyes were open, and both the
booth and the plate were stable; 2. the eyes were closed, and the plate was stable; 3. the
eyes were open, and the plate was stable, but the booth swayed; 4. the eyes were open, and
the plate swayed, but the booth was stable; 5. the eyes were closed, and the plate swayed;
and 6. the eyes were open, and both the booth and the plate swayed. Each step lasted 20 s
and was repeated three times. In order to ensure subjects’ safety, a loose harness was used
to mitigate falls; it is designed so that the subject will not fall completely, yet it is possible
to unambiguously identify fall occurrence. The SOT test allowed susceptibility to falls
to be observed in a unified, controlled environment. The criterion of more than one fall
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during production of the SOT has been used as a fall predictor [32]. Falls were noticed for
eight subjects from the group diagnosed with vestibular dysfunction. The study groups
are summarized in Table 2.
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Table 2. Study group characteristics.

Total Fallers Non-Fallers

Female 19 6 13
Male 21 2 19

After the SOT test, the subjects were asked to perform the SWAP test. To compare the
performance of the proposed test with an existing approach, each subject was next asked
to perform the TUG test. The kinetic tests (SWAP, TUG) were performed during the same
session as the SOT test; this ensured that the subjects remained in the same psychophysical
conditions during all tests.

In case of the TUG test, its evaluation was performed in a similar manner to that of
SWAP 4: the duration of the whole test was measured automatically, as were the durations
of its six component phases, hence the TUG 6 acronym used in this paper.

8. Results

The obtained data were used by the system for automatic classification of the subjects.
For this purpose, the system employs a feed-forward artificial neural network (ANN).
An ANN was chosen as the basic machine-learning tool as it can be easily used for both
classification and regression; the latter being, however, beyond the scope of this article.
The structure (number of layers, number of neurons in the hidden layer) and the activation
functions can be chosen by the system operator. Supervised learning algorithms allow
the ANN to be first trained on cases for which the classification output can be provided
(e.g., doctor’s diagnosis, information about observed or past falls, etc.); following this, the
trained ANN can be used on new cases.

The ANN used in the classifier follows the long-established pattern of a fully connected
multi-layer perceptron. Although currently, more advanced structures are also being
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investigated, in particular deep learning models [33,34], in the current study the data
obtained from the exercise are of a nature not suited for deep learning approaches. Deep
learning shows its potential when used with raw data, as in [33], or when processing
sequences (which can be sequences of raw data or sequences of features extracted from
raw data, as in [34]). In the study presented in this article, the authors decided to compute
features (raw data are not used), and the features are not organized in series; instead,
they sum up the whole phase of the exercise (e.g., time of standing up or maximum
angular speeds of segments during standing up). The authors intended to investigate how
additional data available to the classifier influence its accuracy. For this, a reference had
to be established. In this case, it is a classifier using only the data that could be acquired
using basic technical equipment: durations of the phases of the exercise, which could be
measured using a stopwatch (see TUG 6 and SWAP 4 below). Such a limited number of
features makes deep learning structures superfluous. Consequently, the concept of features
not organised in time series was also used for the classifier employing data available
thanks to the IMU-based measurement system (see SWAP 82 below), in order to make
the comparison with the reference fair, without introducing the additional factor of using
a different type of the classifier. Note that fully connected multi-layer perceptrons are
still being investigated as AI tools for fall risk assessment and remain among the best
performing approaches [35].

The classification was performed with three different input sets, reflecting the tasks
performed by the subject: (a) TUG 6, (b) SWAP 4, and (c) SWAP 82. For each set, an ANN
with two hidden layers consisting of five, seven, and ten neurons with hyperbolic tangent
activation function were designed. The output of the ANN was always the predicted
class (faller, non-faller). Leave-one-out cross-validation was employed to ensure that the
statistics are computed on samples not used during the ANN training. The results are
presented in Tables 3–8.

Table 3. Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), and accuracy
(ACC) for the faller classification using the TUG 6.

Neurons Epochs Regularisation TUG 6

TPR TNR ACC

5 2 false 72% 38% 65%
5 2 true 81% 25% 70%
5 4 false 91% 13% 75%
5 4 true 97% 0% 78%
5 20 false 91% 63% 85%
5 20 true 100% 0% 80%
7 2 false 84% 25% 73%
7 2 true 75% 25% 65%
7 4 false 97% 13% 80%
7 4 true 97% 13% 80%
7 20 false 91% 50% 83%
7 20 true 100% 0% 80%

10 2 false 69% 50% 65%
10 2 true 57% 25% 50%
10 4 false 94% 25% 80%
10 4 true 97% 13% 80%
10 20 false 91% 50% 83%
10 20 true 100% 13% 83%
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Table 4. Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), and accuracy
(ACC) for the faller classification using the SWAP 4 and SWAP 82 tasks.

Neurons Epochs Regularisation SWAP 4 SWAP 82

TPR TNR ACC TPR TNR ACC

5 2 false 88% 75% 85% 94% 38% 83%
5 2 true 91% 25% 78% 88% 50% 80%
5 4 false 84% 38% 75% 84% 50% 78%
5 4 true 97% 0% 78% 81% 50% 75%
5 20 false 75% 38% 68% 88% 75% 85%
5 20 true 94% 13% 78% 81% 75% 80%
7 2 false 69% 38% 63% 91% 75% 88%
7 2 true 88% 25% 75% 78% 50% 73%
7 4 false 88% 13% 73% 82% 88% 83%
7 4 true 88% 0% 70% 88% 50% 80%
7 20 false 78% 38% 70% 91% 88% 90%
7 20 true 94% 0% 75% 88% 88% 88%
10 2 false 66% 63% 65% 88% 50% 80%
10 2 true 82% 25% 70% 78% 63% 75%
10 4 false 88% 25% 75% 88% 88% 88%
10 4 true 84% 13% 70% 81% 25% 70%
10 20 false 75% 25% 65% 84% 88% 85%
10 20 true 91% 13% 75% 81% 50% 75%

Table 5. Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), and accuracy
(ACC) for the faller classification using the TUG 6, SWAP 4, and SWAP 82 tasks with different
number of ANN neurons (averaged over number of epochs and regularisation approach).

TUG 6 SWAP 4 SWAP 82

TPR TNR ACC TPR TNR ACC TPR TNR ACC

5 neurons 89% 23% 75% 88% 31% 77% 86% 56% 80%
7 neurons 91% 21% 77% 84% 19% 71% 86% 73% 83%

10 neurons 84% 29% 73% 81% 27% 70% 83% 60% 78%

Table 6. Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), and accuracy
(ACC) for the faller classification using the TUG 6, SWAP 4, and SWAP 82 tasks with different
number of epochs in ANN learning (averaged over number of neurons and regularisation approach).

TUG 6 SWAP 4 SWAP 82

TPR TNR ACC TPR TNR ACC TPR TNR ACC

2 epochs 73% 31% 65% 80% 42% 73% 86% 54% 80%
4 epochs 95% 13% 79% 88% 15% 73% 84% 58% 79%

20 epochs 95% 29% 82% 84% 21% 72% 85% 77% 84%

Table 7. Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), and accuracy
(ACC) for the faller classification using the TUG 6, SWAP 4, and SWAP 82 tasks with different
regularisation approach in ANN learning (averaged over number of neurons and number of epochs).

TUG 6 SWAP 4 SWAP 82

TPR TNR ACC TPR TNR ACC TPR TNR ACC

Without regularisation 87% 36% 76% 79% 43% 71% 88% 71% 84%
With regularisation 89% 13% 74% 90% 13% 74% 83% 56% 77%
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Table 8. Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), accuracy, and
Matthews correlation coefficient (MCC) for the faller classification using the TUG 6, SWAP 4, and
SWAP 82 tasks. The outcomes are mean results for all network structures analysed in this study.

Parameter TUG 6 SWAP 4 SWAP 82

TPR 88% 84% 85%
TNR 24% 26% 63%

Accuracy 75% 72% 81%
MCC 14% 10% 45%

It should be stressed that the computation time of the introduced SWAP 82 procedure,
using contemporary PC computers, is negligible: the classification decision is computed
by the ANN in less than 10 µs when using a 4.8 GHz PC processor. Therefore, there is no
penalty for using such an extensive number of features as input to the ANN.

9. Discussion

The TUG and SWAP tests include quite similar tasks: standing up, sitting down, and
turning. The main differences are related to the walking task, which is not performed in the
SWAP, and the rotation angle, which is 180 degrees in the TUG but 90 degrees in the SWAP.
Consequently, SWAP is a simpler test and should therefore be less informative than TUG.

In this study, the TUG was analysed using more features than in the conventional test
(viz. the times of each component phase versus total time). This was done in order to make
the comparison with the SWAP test fairer, thus providing the ANN with more input to
work with. Nevertheless, the TUG appears to offer mediocre predictive value regarding
falls. This is a similar finding to that given in the literature [8]. Note that sensitivity was
found to be higher than specificity in the present study, while most authors report higher
specificity than sensitivity. However, similar values for Youden’s index (J.), a parameter
that combines sensitivity and specificity (J. = sensitivity + specificity − 1), were obtained in
the present study (J. = 0.12) as in previous studies (J. = 0.05) [36]. The SWAP test appears to
be less informative (J. = 0.1); however, when more features are used as input values to the
ANN, the specificity for this test increases dramatically, giving J. = 0.48.

The obtained results also suggest that walking is not an indispensable part of the test
when the aim is to efficiently assess fall risk: unlike the TUG test, the SWAP test does
not contain a walking phase, yet it outperforms TUG if analysed using a large number of
features computed from the body movements. However, it has to be added that further
investigation is needed to confirm these conclusions on a significantly broader group
of subjects.

In constructing a classifier, it is important to find a combination of hyperparameters
that allow both a good fit to the learning data and good generalisation properties. These
two aims are contradictory. In particular, overfitting should be avoided, as it leads to
seemingly good performance on the learning set, but poor performance on the test set.
Overfitting can be avoided by limiting the size of the network, limiting learning duration,
and using regularisation during learning. All of these approaches have been tested in the
present study and verified using leave-one-out cross-validation. The analysis of the impact
of ANN hyperparameters on the performance of the classifier reveals that a relatively
small network is sufficient, even in the case of the SWAP 82 task: best performance for
the SWAP 82 task was observed when seven neurons were included in the hidden layer,
while even a smaller network with five neurons was best suited for SWAP 4 (Table 5). On
the other hand, there was no need to limit the number of epochs during classifier learning
(Table 6). L2 regularisation did not prove useful, at least for the tested network sizes—this
is particularly visible for the SWAP 82 test (Table 7). The SWAP 82 test remains the best
performer, regardless of the employed network structure.

In view of the results, it is tempting to further investigate the possibility of moving
from lengthy and complicated tests designed for being evaluated using almost no technical
equipment, such as the BBS, towards simple and fast tests evaluated using state-of-the-art
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technical equipment. This is particularly true considering that scales such as the BBS have
been shown to be ineffective at predicting falls as a two-state classifier [9,10].

Constructing objective methods for detecting subjects at increased risk of falls is
important as this allows for the introduction of procedures for fall prevention before
actual falls happen. Therefore, one of the main aims of this study was to discriminate
between fallers and non-fallers. However, a fall is not, strictly speaking, an illness; it is only
a manifestation of various ailments that may have fundamentally different underlying
causes. Hence it is difficult to construct “universal” classifiers, as the subjects who fall due
to one illness may present vastly different movement patterns to those with others.

An important consideration is that recruitment for the study group was not restricted
to persons with clearly defined illness. This could be considered a limitation of the study.
On the other hand, the long-term aim of the authors is to provide a tool for evaluating fall
risk before an illness is diagnosed. One possible approach to the problem of constructing a
classifier based on a study group restricted to a single illness, yet capable of identifying
mobility problems resulting from many illnesses, is to initially limit classifier learning to
patients with a single, clearly defined illness, with the aim of eventually using a combination
of such classifiers specialized for different illnesses. In addition to the abovementioned
approach, further work will focus on constructing more advanced classifiers, for example
convolutional neural networks, which have proven capable of discovering patterns in
raw data.

Another limitation of the presented experiment is clearly the relatively small study
group. Future studies will also aim to confirm the obtained results on larger databases.

10. Conclusions

Adding the inclination angles and angular speeds of body segments to the analysis
significantly improves test performance. Among the tested group, the described approach
based on data obtained from the SWAP 82 test allowed for noticeably better classification
of fallers and non-fallers (when considered together) than the TUG 6 test: the findings were
characterised by a true-positive ratio of 85% and a true-negative ratio of 63%. They are also
better than those previously reported for the TUG test [8] and the BBS score [9,10], both
considered as robust methods for evaluating patient mobility. This indicates that even very
simple tests carry significant amounts of information and that such information can be
extracted and effectively processed by the proposed measurement and analysis approach.

The obtained results offer comparable sensitivity, specificity, and accuracy to other
solutions utilising IMU sensors, as referenced in the Introduction. However, unlike pre-
vious approaches, the present study attempted to label subjects as fallers and non-fallers
based on an objective SOT test instead of fall history or clinical assessment; in addition, the
classifier was also strictly tested through leave-one-out cross-validation.

The main contribution of this study was the aforementioned use of the SOT test, which
has never been employed before in labelling the subjects prior to the construction of a
fallers classifier, and also the investigation of a fast mobility test that has never before been
used as sole data source for such a classifier.
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