PROKARYOTES

Complete Genome Sequence of the *Campylobacter cuniculorum* Type Strain LMG 24588

AMERICAN SOCIETY FOR MICROBIOLOGY gen@meAnnouncements™

William G. Miller,^a Emma Yee,^a Joana Revez,^b James L. Bono,^c Mirko Rossi^d

Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA^a; European Centre for Disease Prevention and Control, Stockholm, Sweden^b; Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, USA^c; Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland^d

ABSTRACT Campylobacter cuniculorum is a thermotolerant species isolated from farmed rabbits (*Oryctolagus cuniculus*). Although *C. cuniculorum* is highly prevalent in rabbits farmed for human consumption, the pathogenicity of this organism in humans is still unknown. This study describes the whole-genome sequence of the *C. cuniculorum* type strain LMG 24588 (=CCUG 56289^T).

C(*Oryctolagus cuniculorum* is a thermotolerant species isolated from farmed rabbits (*Oryctolagus cuniculus*) (1, 2). Although rabbit meat is consumed by humans, there have been no reported cases of *C. cuniculorum*-related human illness. The pathogenicity of this organism is unknown; however, similar to *Campylobacter jejuni*, the *C. cuniculorum* type strain was shown to adhere to and invade Vero, HeLa, and COLO205 cells (3). The *C. cuniculorum* type strain LMG 24588 (= $150B^{T}$ = CCUG 56289^T) was isolated in Italy from the cecal contents of a farmed rabbit (2). In this study, we report the first closed genome sequence of the *C. cuniculorum* type strain.

The Roche GS-FLX, Illumina HiSeq, and PacBio RS next-generation sequencing platforms were used to complete the genome of the *C. cuniculorum* type strain LMG 24588. Shotgun and paired-end Roche 454 reads were assembled (using Newbler version 2.6) into a single array of 200 unique and repeat chromosomal contigs. Most of the contig gaps were closed using Illumina HiSeq reads (SeqWright, Houston, TX) and/or PCR amplification/Sanger sequencing. However, the repeat topography of the LMG 24588^T chromosome required PacBio sequencing for both genome closure and assembly validation. Two single-contig plasmid scaffolds were closed/circularized, and all base calls were validated using Illumina HiSeq reads (913× coverage). The final coverage across the genome was 1,363×.

C. cuniculorum strain LMG 24588^T has a circular genome of 1,931 kbp, with an average G+C content of 31.6%. Protein-, rRNA- and tRNA-coding genes were identified as described previously (4). The genome contains 1,786 putative protein-coding genes, 63 pseudogenes, and 2 sets of rRNA genes. The LMG 24588^T chromosome contains six putative genetic islands: one encodes a putative type VI secretion system, and another encodes a putative type IV secretion system. The chromosome also contains 89 G+C tracts \geq 8 bp. Seventy-seven of these tracts were demonstrated to be hypervariable; thus, the *C. cuniculorum* type strain is predicted to encode at least 60 contingency genes. Two small plasmids, pCUN1 (4,923 bp) and pCUN2 (1,834 bp), were identified in the LMG 24588^T genome.

The Embden-Meyerhof-Parnas glycolytic pathway is incomplete in *Campylobacter* spp.; therefore, these organisms cannot utilize sugars as a carbon source, with the exception of fucose for some strains (5, 6). However, some *C. jejuni* and *Campylobacter coli* strains encode a complete set of enzymes for the alternative Entner-Doudoroff

Received 27 April 2017 Accepted 28 April 2017 Published 15 June 2017

Citation Miller WG, Yee E, Revez J, Bono JL, Rossi M. 2017. Complete genome sequence of the *Campylobacter cuniculorum* type strain LMG 24588. Genome Announc 5:e00543-17. https://doi.org/10.1128/genomeA.00543-17.

Copyright © 2017 Miller et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to William G. Miller, william.miller@ars.usda.gov.

pathway (7–9), which has been shown to be functional (9). Similar to *C. jejuni* and *C. coli*, strain LMG 24588^T is also predicted to encode a complete Entner-Doudoroff pathway; however, unlike *C. jejuni* and *C. coli*, this gene cluster is not embedded within an rRNA locus.

Another noteworthy locus contained in *C. cuniculorum* is *tcuABC*, which is involved in tricarballylate utilization (10). Within *Campylobacter* spp., these genes were also identified in the reptile-associated *C. fetus* subsp. *testudinum* and *C. iguaniorum* (11, 12) and the swine-associated *C. hyointestinalis* subsp. *lawsonii* (11). Tricarballylate utilization was proposed to be associated with the hindgut niche potentially inhabited by these organisms (11). Rabbits, like pigs and reptiles, are also hindgut fermenters; thus, tricarballylate utilization may be used by *C. cuniculorum* to more efficiently colonize their hosts.

Accession number(s). The complete genome sequence of *C. cuniculorum* strain LMG 24588^T has been deposited in GenBank under the accession numbers CP020867 (chromosome) and CP020868 and CP020869 (plasmids pCUN1 and pCUN2, respectively).

ACKNOWLEDGMENTS

This work was funded by the U.S. Department of Agriculture, Agricultural Research Service, CRIS projects 2030-42000-230-047, 2030-42000-230-051, and 3040-42000-015-00D.

We thank Sandy Fryda-Bradley for excellent technical assistance.

REFERENCES

- Revez J, Rossi M, Piva S, Florio D, Lucchi A, Parisi A, Manfreda G, Zanoni RG. 2013. Occurrence of epsilon-proteobacterial species in rabbits (*Oryc-tolagus cuniculus*) reared in intensive and rural farms. Vet Microbiol 162:288–292. https://doi.org/10.1016/j.vetmic.2012.08.009.
- Zanoni RG, Debruyne L, Rossi M, Revez J, Vandamme P. 2009. Campylobacter cuniculorum sp. nov., from rabbits. Int J Syst Evol Microbiol 59:1666–1671. https://doi.org/10.1099/ijs.0.007286-0.
- 3. Revez JMC. 2010. Survey on the spirilar flora of lagomorphs. Dissertation thesis. Università di Bologna, Bologna, Italy.
- Miller WG, Yee E, Chapman MH, Smith TP, Bono JL, Huynh S, Parker CT, Vandamme P, Luong K, Korlach J. 2014. Comparative genomics of the *Campylobacter lari* group. Genome Biol Evol 6:3252–3266. https://doi .org/10.1093/gbe/evu249.
- Muraoka WT, Zhang Q. 2011. Phenotypic and genotypic evidence for L-fucose utilization by *Campylobacter jejuni*. J Bacteriol 193:1065–1075. https://doi.org/10.1128/JB.01252-10.
- Stahl M, Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A. 2011. L-Fucose utilization provides *Campylobacter jejuni* with a competitive advantage. Proc Natl Acad Sci U S A 108:7194–7199. https://doi.org/10 .1073/pnas.1014125108.
- Miller WG. 2008. Comparative genomics of *Campylobacter* species other than *Campylobacter jejuni*, p 73–98. *In* Nachamkin I, Szymanski C, Blaser MJ (ed), Campylobacter, 3rd ed. ASM Press, Washington, DC.
- 8. Vegge CS, Jansen van Rensburg MJ, Rasmussen JJ, Maiden MC, Johnsen

LG, Danielsen M, MacIntyre S, Ingmer H, Kelly DJ. 2016. Glucose metabolism via the Entner-Doudoroff pathway in *Campylobacter*: a rare trait that enhances survival and promotes biofilm formation in some isolates. Front Microbiol 7:1877. https://doi.org/10.3389/fmicb.2016.01877.

- Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, Spröer C, Fruth A, Flieger A, Schmidt-Hohagen K, Schomburg D, Eisenreich W, Hofreuter D. 2015. A transferable plasticity region in *Campylobacter coli* allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol 98:809–830. https://doi.org/10.1111/mmi .13159.
- Lewis JA, Horswill AR, Schwem BE, Escalante-Semerena JC. 2004. The tricarballylate utilization (*tcuRABC*) genes of *Salmonella enterica* serovar Typhimurium LT2. J Bacteriol 186:1629–1637. https://doi.org/10.1128/JB .186.6.1629-1637.2004.
- Gilbert MJ, Miller WG, Yee E, Kik M, Zomer AL, Wagenaar JA, Duim B. 2016. Comparative genomics of *Campylobacter iguaniorum* to unravel genetic regions associated with reptilian hosts. Genome Biol Evol 8:3022–3029. https://doi.org/10.1093/gbe/evw218.
- Gilbert MJ, Miller WG, Yee E, Zomer AL, van der Graaf-van Bloois L, Fitzgerald C, Forbes KJ, Méric G, Sheppard SK, Wagenaar JA, Duim B. 2016. Comparative genomics of *Campylobacter fetus* from reptiles and mammals reveals divergent evolution in host-associated lineages. Genome Biol Evol 8:2006–2019. https://doi.org/10.1093/gbe/evw146.