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ABSTRACT

More than 110 000 publications have used microar-
rays to decipher phenotype-associated genes, clin-
ical biomarkers and gene functions. Microarrays
rely on digital assaying the fluorescence signals of
arrays. In this study, we retrospectively constructed
raw images for 37 724 published microarray data,
and developed deep learning algorithms to automat-
ically detect systematic defects. We report that an
alarming amount of 26.73% of the microarray-based
studies are affected by serious imaging defects. By
literature mining, we found that publications associ-
ated with these affected microarrays have reported
disproportionately more biological discoveries on
the genes in the contaminated areas compared to
other genes. 28.82% of the gene-level conclusions re-
ported in these publications were based on measure-
ments falling into the contaminated area, indicating
severe, systematic problems caused by such con-
taminations. We provided the identified published,
problematic datasets, affected genes and the im-
puted arrays as well as software tools for scanning
such contamination that will become essential to fu-
ture studies to scrutinize and critically analyze mi-
croarray data.

INTRODUCTION

Since their invention >20 years ago, microarrays have had
myriad applications, including discovering gene functions,
biomarkers for diseases and biological pathways (1,2). Mi-
croarrays are widely used and an essential tool in all ar-
eas of biology and medicine. Today, >110 000 papers have
been published using microarray data. In 2020 alone, ∼6800
microarray-based studies have been published. To the ma-
jority of biologists or bioinformaticians, transcriptomic
data from microarrays are presented as a list of numbers for
probes, transcripts or genes. The raw data format, a fluores-
cence image directly acquired from the microarray facilities,

is rarely accessible to the users. As matter of fact when us-
ing microarray data to make biology discoveries, no one can
be assured that the original fluorescence image is valid and
meaningful.

A microarray measures gene expression by probes that
bind to reversely transcribed RNAs (Figure 1A). The bound
probes illuminate fluorescent light and the intensity is mea-
sured to represent the expression level of the genes (3). Each
gene is mapped to multiple probes corresponding to several
independent sampling regions of the gene (Figure 1B)––this
property will turn out to be useful as independent support
to the image-based analysis pipeline developed in this study.
Fluorescence signals are subject to several sources of noise.
One is cross-array batch effects, which are often corrected
by adjusting the readout values by the overall distribution of
the microarray chip (4–9). The other source of noise comes
from defects localized at certain parts of the array. Methods
have been developed to correct background noises based on
the estimation of intensity of the neighboring pixels (10–13),
with the assumption that the surrounding areas of the noise
spot are correct. As we will see in the analysis later, such as-
sumptions are not complete, and cannot account for large
quantities of contaminations.

In this study, we carried out a retrospective examination
of 37 724 microarray samples. We reconstructed the fluo-
rescence images for these microarray data from probe read-
outs, and hand labeled defective areas. This allowed us to
develop a deep learning model that automatically detects
the contaminations in such images and associated microar-
ray data. Reanalyzing the expression data reveals less co-
ordinance across probes of the same gene affected by con-
tamination. We found that 4.80% of the microarrays, cor-
responding to 26.73% of the studies, are affected by such
defects, while literature mining showed a disproportionate
enrichment of reporting of significant findings of the genes
in the affected area. Overall, 28.82% of the gene-level con-
clusions reported in these publications were in fact based
on measurements falling into the contaminated area, while
such contamination only occupies 2.78% in area on these
images. This implies that a large quantity of microarray-
based publications were making conclusions based on con-
tamination rather than biology. We provided this microar-
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Figure 1. Reconstruction of microarray images generated by Affymetrix GeneChip. (A) Illustration of microarray sample processing and hybridization. (B)
HG-U133 Plus 2 GeneChip microarray distribution: one microarray represents over 20 000 genes, each of which has at least one corresponding probeset.
Each probeset contains 11 probe pairs [perfect match (PM):mismatch (MM)], and the probe pairs are scattered on the whole microarray. There is one PM
probe cell and one MM probe cell in each pair. (C) Mapping CEL files to images according to CDF annotation. (D) Reconstruction of the microarray
images reveals different types of contamination on the original microarray chips.
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ray contamination information as well as re-imputed mi-
croarray data using uncontaminated surrogate probes as a
resource to the research community, and we also provided
the code to scan for such contamination, in the hope that
this can inform the trustability of the relevant studies and
can be useful to future studies that reanalyze these datasets.

MATERIALS AND METHODS

Recovering of microarray images from CEL files

We reconstructed and hand labeled 37 724 published Hu-
man Genome U133 Plus 2.0 Array (HG-U133 Plus 2) im-
age files (see the ‘Data Availability’ section). These images
came from a total of 3165 studies. Although microarray
data are presented as gene- or probe-level expression levels,
the original data were acquired from reading the fluorescent
level on the microarray chips. Retrospectively reconstruct-
ing the microarray images from CEL files was a critical and
challenging step in this study. We accomplished it by writ-
ing an API to the Affymetrix software developer’s kit that
is internally used by Affymetrix; this API maps the value of
each probe to a unique position on the original image (Fig-
ure 1C). This API is shared at https://github.com/GuanLab/
Microarray.

For the HG-U133 Plus 2 platform, it is a 1164 × 1164
matrix, corresponding to a total of 1 354 896 possible probe
positions (Figure 1B). The HG-U133 Plus 2.cdf file pro-
vided by Affymetrix gives a total of 54 675 probesets. For
each probeset, it gives a list of associated probes and their
corresponding x, y positions in the 1164 × 1164 matrix (Fig-
ure 1B). This allows us to remap the probe-level readout
values into an image, typically with a value between −3.30
× 1038 and 6.08 × 1037. On average, each probeset contains
22 probes, and this value ranges between 16 and 138 (Sup-
plementary Figure S1). This information is useful for us to
reconstruct and estimate the values in contaminated areas
later. Each probe is 25 bp. The HG-U133 Plus 2 platform
has 62 reference probesets used to adjust microarray facility
and readouts, and the remaining probesets correspond to
genes. Each gene typically has a couple of probesets (aver-
age 2, range 1–22) associated with it, corresponding to dif-
ferent DNA positions in the gene (Supplementary Figure
S1). Visually inspecting a normal microarray image will im-
mediately reveal the position of a group of reference probe-
sets that form a bright spot at about the middle position of
the microarray image. However, not all reference probes are
located at this spot. It is a typical design for the probes of a
gene to be scattered across images as well, which is intended
to minimize the effect of contamination.

The probes in one probeset are always designed in a se-
ries of pairs. One has a single base pair change from the
reference genome, the other is a perfect match of the orig-
inal sequence, and the two probes of the pair are immedi-
ately adjacent to each other (Figure 1B). For example, probe
200097 s at, mapped to the gene HNRNPK, contains a to-
tal of 22 probes. These probes are grouped into 11 pairs
positioned at (row column) [(144 259); (144 260)], [(1051
1101); (1051 1102)], [(257 901); (257 902)], [(146 95); (146
96)], [(883 997); (883 998)], [(675 829); (675 830)], [(856 597);
(856 598)], [(916 249); (916 250)], [(397 327); (397 328)],
[(1000 741); (1000 742)] and [(856 1099); (856 1100)] (Fig-
ure 1B). For the probe at (144 259), it has a single base pair

change from G→C compared to the reference genome and
the probe at (144 260) (Figure 1B). This design is intended to
correct noises in the image. The inference of a probe value
takes into account the ratio of the readout of the perfect
match over the non-perfect match.

Web interface-based annotation tool

We first scaled the values of the images to 0–255 to allow
viewing on a computer screen. Hand-annotating tens of
thousands of microarray images is a tedious task. To facili-
tate efficient annotation, we developed an annotation tool,
which allows fast annotation of the images through drag-
ging the mouse. Using this tool, we can load a predefined
number of images on a single screen. After labeling each
page, the next screen is loaded by refreshing the webpage.
The unlabeled images will be then recycled after every image
is seen, and thus allowed us to double label the collection of
the microarray images. If a wrong annotation is made, the
annotation tool allows unsetting the annotation. All anno-
tations are then dumped into a database and ready to be
trained.

The labeling procedure was carried out below: because
the annotation tool allows fast viewing of many images at
a time (typically thousands in an hour) through mouse op-
eration. The labelers first went through the images once to
observe the overall pattern of the images. This procedure
helped us to recognize several distinct patterns (character-
ized by stripes) likely produced by different microarray ma-
chine production batches. These are not defects. Then, the
labelers proceeded with hand labeling of the images. We
double labeled the images by two passes and discussed am-
biguous cases together. We used the union of the two as the
gold standard, as it is much easier to miss out defect regions
than to find false positives.

Deep learning training loss and procedures

We used a representative U-Net structure (Figure 2A). The
nonlinear activation after each convolution layer is a rec-
tified linear unit. At the output layer, we used sigmoid ac-
tivation. A combination of cross-entropy (CE) and mean
square error (MSE) loss was used for model training and it
is defined as

CE = − 1
N

N∑
i = 1

(yi log (ŷi ) + (1 − yi ) log (1 − ŷi )) ,

where N is the number of test cases, y is the true value and ŷ
is the predicted value that was clipped by [1e−7, 1 − 1e−7]
due to the use as log loss.

MSE = 1
N

N∑
i = 1

(yi − ŷi )
2

and

combined loss = CE + MSE.

Training and testing loss is included in Supplementary
Figure S3.

The whole training process was carried out by Keras and
TensorFlow. In each cross-validation fold, we carried out

http://arxiv.org/abs/https://github.com/GuanLab/Microarray
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Figure 2. Overview of the workflow of the algorithm. (A) U-Net model structure. (B) Partition of images into training, validation and test sets. (C) Image
preprocessing, U-Net model training and result evaluation. (D) Examples of model output, compared with human labels: our model can detect the defective
areas that were initially identified and missed by human labeling. White regions in the output/label images indicate the defected areas. (E) Dice coefficients
for each fold of cross-validation are 0.6054, 0.6356, 0.6493, 0.5722 and 0.6244.

nested training to generate five models to ensemble into the
final parameters. For each model, training samples were re-
sampled to balance the positives (with defects) and nega-
tives (without defects) by bootstrap resampling and then
were further divided, respectively, into the true training
(50%) and validation sets (50%) randomly for five times
(Figure 2B). Models were trained for five times using dif-
ferent random seeds. The validation sets were used to call
back the best model. Network structure is presented in Fig-
ure 2A, and small variations of this structure by filter sizes
and network depth did not result in substantial changes in
performance. We trained with a batch size of 2, Adam opti-
mization with learning rate of 3e−5 and the combination of
cross entropy loss and MSE loss. We iterated for five epochs
corresponding to over 100 000 batches of samples, and the
training loss was fairly stable at the end of the training pro-
cess.

Evaluation procedure

The Dice coefficient was used for model evaluation by mea-
suring the overlap between the predicted area (A) and gold
standard annotation (B). The Dice coefficient is defined
as

DiceA,B = 2 |A∩ B|
|A| + |B| .

In order to further confirm the contamination and the
effectiveness of our model, we compared the expression
of genes with and without contamination. Specifically, we
compared the deviation of probeset expression levels of the
two kinds of genes. First of all, we set a threshold = 0.5:
for every pixel of a predicted segmentation mask of de-
fected regions, if it is ≥0.5, we consider it contaminated
and otherwise not. By extracting the location-to-probeset
mapping information from the CDF file and the probeset-
to-gene mapping information from the corresponding an-
notation on R Bioconductor, we were able to map probe
locations to genes and know which genes have contami-
nation and which do not. In the meantime, we have CEL
files for each sample and calculated robust-multiarray av-
erage (RMA) for each dataset. The resulting informa-
tion is the transformed expression level for each probe-
set in every sample. For each sample, due to the factors
about microarray design mentioned above, we corrected
the affinity biases across probes by matrix-wisely divid-
ing the mean value of each probeset across all microar-
rays without contamination. Combining the resulting cor-
rected expression on probeset level, probeset-to-gene map-
ping formation and gene identity (defected versus non-
defected), we calculated standard errors for all probesets
in defected genes and non-defected genes. The average lev-
els of the deviation from two groups of genes were then
compared.
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Procedure to recover contaminated microarray data

We extracted the probe intensities of each sample using R
package affxparser from the corresponding CEL file and
resulting 1164 × 1164 matrix. We selected 35 043 samples
without predicted contamination, positive label or missing
values and calculated the average intensity matrix for ref-
erence. One thousand seven hundred three contaminated
samples were recovered following the logistics described in
the ‘Results’ section. In order to make our recovered data
more user friendly, we extracted the probe location informa-
tion from the CDF file and saved the recovered intensities
mapped to unique probe indices in TXT files. Of note, in
each TXT file there are 1 208 516 probes since other probes
do not have corresponding probeset annotations.

RESULTS

Pixel-level segmentation of contaminated regions on recon-
structed microarray images by translational convolutional
neural networks

We downloaded a total of 37 724 microarray data from
GEO, and reconstructed the images by the described local-
ization identification procedure in the ‘Materials and Meth-
ods’ section (Figure 1). As no ground truth of contamina-
tion currently exists for these published microarray data,
we normalized the ranges of microarray readout values for
each image between 0 and 255, which allowed us to visu-
ally inspect each one of them and hand label the defected or
contaminated areas. We identified several prominent types
of contamination: (1) recognizable large areas of whitening,
likely caused by sudden increase in mRNA materials in that
area (Figure 1D); (2) recognizable large areas of blacken-
ing, likely caused by the material not covering the entire
microarray chips (Figure 1D); and (3) artificially induced
contaminations such as fingerprints, written characters on
the chips (Figure 1D, Supplementary Figure S2). The above
types of contaminations are not expected to be corrected by
neighboring paired probes, and we are interested in investi-
gating alternative methods based on reconstructed images
to detect these regions.

The above reconstructed microarray images and labels of
contaminated regions provided ground truth to develop a
deep learning model for automatically detecting contami-
nated regions in a public microarray dataset. An interest-
ing development in the deep learning field is a method that
translates an input image to an output image. This trans-
lation can be colorization of a black-and-white image, seg-
mentation of regions of interest or changing an image to a
specific artistic style (14–16). For example, in a translational
network that changes black-and-white images to colored
images, the input is an image with a single channel repre-
senting pixel intensity, and the output is an image with three
channels representing the values for red, green and blue, re-
spectively. In this context of segmenting defected regions in
microarray, the input is a microarray chip’s image intensity,
and the translated image is the segmentation mask of the
defected region.

A variety of such pixel-value translational deep learning
architectures have been developed, including fully convolu-
tional networks (FCNs) and U-Net (14,17). Both architec-

tures share a common global layout with an encoder that
extracts hidden features from the original image and a de-
coder that reconstructs the translated image. In FCNs, the
decoder is relatively shallow, usually with several layers of
deconvolution. In U-Net, the encoder and decoder form a
symmetrically structured convolutional neural network. We
deployed the U-Net structure in this study (Figure 2A).

We carried out five-fold cross-validation to evaluate
whether we are able to identify the contaminations. Briefly,
the data were partitioned into five parts, and in each round,
four out of the five parts were used as the training set, and
the other part was used as the test set to evaluate the abil-
ity of the models in recovering ground truth labels (Figure
2B). As this is a segmentation task, we evaluated the perfor-
mance using Sørensen–Dice coefficient, which is the overlap
between the predicted region and the ground truth over the
union of the two. The random baseline Dice coefficient for
this dataset is 0.00214, i.e. the percentage of contaminated
regions by the hand label. The model achieved an average
Dice coefficient of 0.61703 in the cross-validation, 288 times
over random baseline (Figure 2C–E).

Compared to the initial bounding box labeling, predic-
tions made by deep learning cover the contaminated regions
more accurately (Figure 2D). Further inspection of the re-
sults shows that the imperfect Dice score mainly comes from
overprediction, and such overprediction almost invariably
identifies defected regions that were initially missed by hu-
man labeling. We randomly surveyed 500 such new predic-
tions, manually rescrutinized the images and found 455 out
of them are indeed correct predictions and can be seen by
human eyes. For the other 45 images on which we could
not visually observe defects, their predicted masks showed
that only a tiny part of them have defects. This observation
supports the application of the models to be used to detect
contaminated regions in microarray data, and correct the
expression data using this information.

Expression data in contaminated regions detected by recon-
structed images show less coordinance within probesets

We further explored whether expression patterns of the con-
taminated regions and contaminated microarrays showed
less coordinance compared to non-contaminated ones. To
do so, we made predictions of defective areas for all recon-
structed microarray images through cross-validation pro-
cedure. Specifically, when a microarray image belongs to
the test set, we record its predicted contaminated areas for
follow-up experiment.

To examine the coordinance of probes within probesets,
we must consider several important factors in microarray
design. First, the binding affinity of each probe is different.
This will cause probe readouts for the same gene not equiva-
lent, even without any type of noise or contamination. Thus,
normalization for each probe is needed. Second, probes of
some probesets have naturally larger deviations than others.

Considering the above factors, we first identified all mi-
croarray images that are predicted to have no contamina-
tion at all. We inferred the RMA transformed expression
level of each probeset using software R for all microar-
rays. We next calculated the mean expression value of each
probe across all microarrays without predicted or labeled
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contamination, Xmean, and used Xmean as a reference to cor-
rect the affinity biases across probes by vector element-wise
division (Figure 2C). That is, we created new expression val-
ues for each probe of datasets by dividing the original value
against the corresponding value in the reference matrix.

The above normalized data allowed us to carry out
one type of evaluation. First, for specific genes, we com-
pare whether the ones that are partly or wholly covered in
contaminated regions show higher intragene probeset-level
variance compared to the ones that are completely in non-
contaminated regions. Specifically, suppose we have a total
of N microarray images and a total of P genes, and each
gene j corresponds to nj probesets, whose expression level is
denoted as xijk, where i refers to the index of the image and
k refers to the index of the probeset. For each image i, we
calculated the standard error of all probesets in a gene:

s.d.i j =

√√√√√ 1
n j − 1

n j∑
k=1

[
xi jk

Xmean jk
−

(∑n j

k=1
xi jk

Xmean jk

n j

)]2

.

We examined whether overall contaminated areas are
more likely to show higher deviation than uncontam-
inated areas at the image level. Thus, for each image
that contains contamination, we grouped the genes into
{s.d.contaminated} and {s.d.uncontaminated}, and com-
pared the overall distribution of the two. If a gene
has at least one probe falling into the contaminated re-
gions, it is grouped into {s.d.contaminated}. We then
calculated the above standard error across all probe-
sets in a gene. We found out of 96.0% of the images,
{s.d.contaminated} showed higher standard error overall
than the {s.d.uncontaminated} group, supporting that such
areas of contamination are indeed a problem for microar-

ray data analysis. This result also corroborated the validity
of the deep learning models and necessity to correct these
errors in microarray data analysis.

Over a quarter of the biological conclusions were drawn based
on contaminated regions in microarray studies

We crawled down 480 publications that are directly accessi-
ble from PubMed that can be associated with 846 microar-
ray datasets (out of 3165 datasets) predicted to be affected
by contamination. This is 15.17% of the total affected stud-
ies we were able to download an associated publication.
This is a tiny fraction of the entire publication repertoire
based on microarray, but can reflect the overall biases.

We text-mined the genes that were mentioned in each of
these papers and discovered an accumulative 30 528 genes
mentioned in total. We found 8797 of the cases (28.82%) are
within the contaminated areas (Figure 3A). This indicates
around a quarter of the publications (26.73%) are using
microarray data relying on data with defects, and around
one quarter of conclusions of them were drawn based on
contaminated regions (28.82%). Importantly, only 2.78% of
genes are affected by the contamination. If contamination
does not affect what we discover in biology, we would expect
around 2.78% of the discoveries made for these genes. How-
ever, 28.82% of the reported discoveries of genes came out of
the 2.78% of the genes affected by contamination. Thus, the
‘discoveries’ made on contaminated regions are dispropor-
tionately high, strongly supporting that many conclusions
were reporting contamination rather than biology.

We would like to highlight the damaging effects of such
contaminations for our understanding of science using
two examples. By no means that this serious issue is lim-
ited to the examples we listed here, again it is widespread
and estimated to affect a quarter of the studies. Sample
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GSM948634 (GEO sample ID) belonging to the study
GSE38718 (GEO series ID) has defects as shown in Figure
3B (18). There are 116 genes mentioned in the associated
publication, but 74 of them are in contaminated areas. Sam-
ple GSM1366662 in study GSE56670 has defects as shown
in Figure 3B (19). There are 41 genes mentioned in the pa-
per and 4 of them are in contaminated areas. For another
example, study GSE38718 was cited by a publication (18), in
which researchers found that ‘genes involved in lipids stor-
age, such as SCD, GPAM, and PPARG (Table 3), were sig-
nificantly upregulated with aging in women, but only minor
or nonsignificant changes were observed in men’. However,
the expression levels of all three genes in the young man’s
sample (Muscle Young Men Rep5, GSM948634) were af-
fected by contaminations. The contamination is mislead-
ing for comparing transcript levels between young men and
older men. This highlights how published conclusions are
erroneously made according to microarray data contami-

nation, and suggests the necessity of an algorithm to scan
and potentially correct the microarray data.

Software can detect defects and recover 99% of the contam-
inated microarray signals by surrogate probe-based imputa-
tion

We sought to correct the contaminated microarray experi-
ments and provide it as a resource for the community for
the follow-up studies and rescrutinization of the discover-
ies generated by previous studies (Figure 4). Toward this
goal, we read the probe intensities from the CEL files of
35 043 samples without labeled or predicted contamination
or NaN and calculated the average intensity matrix Xreference.
Let us suppose we have probe intensity xijkc that resides in a
contaminated region, where i refers to the ith image, j refers
to the jth gene, k refers to the kth probeset and c refers to the
cth probe in the probeset. We identify all the probes for this
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probeset that reside in the non-contaminated region, and
calculate the surrogate value for kc by

xi jkc′ = Xreference jkc × xi jkn

Xreference jkn
{n ∈ non-contaminated} .

Essentially, the values of the contaminated probes are re-
placed by the non-contaminated ones normalized by the
reference of the average matrix obtained from the non-
contaminated images. Because for each probe set the probes
are designed to be scattered across the images, 99.09% of the
gene-associated probes in the contaminated regions can be
replaced using this approach. The remaining 0.91% will be
left as missing values, as in traditional microarray data anal-
ysis; rare missing values can be imputed by algorithms such
as KNNimpute (20).

We provided the corrected microarray data, the
hand-labeled contamination arrays and associated
genes and the predicted contaminations and genes as
a public resource at https://osf.io/g4qxu/?view only=
3aaf0f0469744e54befbc4f86143ab47 on Open Science
Framework for researchers to revisit and reanalyze the
published experimental results. Overall, 26.7% of the pub-
lished microarray studies are affected by this correction.
We also provided the software (see the ‘Code Availability’
section) to scan for such contaminations, so that future
studies can avoid similar errors.

DISCUSSION

Microarray data have been used in >100 000 publications
to date. Numerous important genes and significantly en-
riched pathways have been reported based on these types
of data. Yet, this retrospective reconstruction of the orig-
inal microarray images and inspection efforts reveal that
∼26.7% of the published microarray datasets are affected
by contamination. Among this set, 28.8% of the conclu-
sions on genes have been drawn on the defective areas. This
spurred us to reflect how, as end users, we should use, scru-
tinize and trust this and other genomic technologies.

These defects include possible chip defects, uncovered ar-
eas and human-induced artifacts such as writings and fin-
gerprints on the microarray chips. More alarmingly, these
defects are significantly associated with important gene-
wise conclusions and discoveries reported in the literature.
To correct these errors and screen the trustable results based
on microarray data retrospectively, we developed a deep
learning framework that reconstructs images, and identifies
and corrects defects. We applied it to all microarray images
we have at hand, and validated the predictions by both ex-
pression patterns and visual inspection. These predictions
are now provided as a community resource, which we think
will become a reference to facilitate retrospective analysis
and scrutinization of these datasets. The model for recon-
struction and prediction is certainly directly useful for scru-
tinizing new, ongoing microarray experiments.

Despite a tremendous number of studies relying on mi-
croarray data, no approach has been streamlined to detect
defects among them at the original chip imaging level. As
a matter of fact, end users such as biologists or bioinfor-
maticians do not typically have access to such images. Uti-
lizing a set of Affymetrix development kits, we managed to

reconstruct these images by probe level readouts. For the
first time, we revealed a surprising fraction of the studies
(26.73%) affected by such studies, indicating many of the
discoveries we now see are simply results of such contam-
inations. For many other genomics tools, such as RNA-
sequencing and single cell sequencing, what the end users
obtain are similarly processed numbers, rather than original
readout signals by machines. The result of this study sug-
gests that careful scrutinization of the biases in large-scale
datasets generated by genomic tools is perhaps in general
necessary.
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