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Background: In the field of diabetes research, many studies on cell therapy have been conducted using mesenchymal
stem cells. This research was intended to shed light on the influence of canine adipose-tissue-derived mesenchymal
stem cell conditioned medium (cAT-MSC CM) on in vitro insulin resistance models that were induced in differentiated
3T3-L1 adipocytes and the possible mechanisms involved in the phenomenon.

Results: Gene expression levels of insulin receptor substrate-1 (IRS-1) and glucose transporter type 4 (GLUT4) were
used as indicators of insulin resistance. Relative protein expression levels of IRS-1 and GLUT4 were augmented in the
CcAT-MSC CM treatment group compared to insulin resistance models, indicating beneficial effects of cAT-MSC to DM,
probably by actions of secreting factors. With reference to previous studies on fibroblast growth factor-1 (FGF1), we
proposed FGF1 as a key contributing factor to the mechanism of action. We added anti-FGF1 neutralizing antibody to
the CM-treated insulin resistance models. As a result, significantly diminished protein levels of IRS-1 and GLUT4 were
observed, supporting our assumption. Similar results were observed in glucose uptake assay.

Conclusions: Accordingly, this study advocated the potential of FGF-1 from cAT-MSC CM as an alternative insulin
sensitizer and discovered a signalling factor associated with the paracrine effects of cAT-MSC.
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Background

Diabetes mellitus (DM) is an important endocrine dis-
ease that accounts for a serious proportion of small ani-
mal medicine. In dogs, most DM patients are known to
be type 1 DM (T1DM), which is usually well managed
by exogenous insulin supplements. However, canine DM
with insulin resistance, ‘poorly controlled T1DM, not
only needs expensive treatment, but also has poor prog-
nosis. Several reports advocate that concurrent diseases
such as obesity and inflammatory diseases are associated
with insulin resistance in human DM patients [1-4]. A
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study in dogs also asserts the obesity is a cause of insulin
resistance [5, 6]. However, the exact pathophysiology of
insulin resistance development is not fully understood.
Although insulin sensitizers could be an option for the
treatment of uncontrolled T1DM, their possible adverse
effects such as weight gain, bone loss, and congestive
heart failure encourage further effort to develop new
strategy for insulin resistance [7].

Mesenchymal stem cells (MSCs) are multipotent stro-
mal cells that have immunomodulatory and regenerative
effects. Because they are relatively free from ethical is-
sues, their therapeutic uses for various diseases including
DM have been studied globally. Many studies have
shown that they have advantageous effects in in vivo ex-
periments using diabetic rodent models [8—13]. Until
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now, the known mechanisms of MSC actions when ap-
plied to DM are as follows: to differentiate directly into
insulin-producing cells (IPCs), to regulate the immune
system, and to secrete beneficial cytokines and growth
factors [14]. In particular, the paracrine effects of MSCs
are thought to enhance insulin sensitivity [15].

Fibroblast growth factor-1 (FGF1) which is a member
of the FGF family has been known to play crucial role in
glucose homeostasis [16]. Perry et al. reported that FGF1
and FGF19 improved glucose metabolism via down
regulation of the hypothalamic-pituitary-adrenal axis
[17]. It has been documented that exogenous recombin-
ant FGF1 (rFGF1) improved insulin sensitivity as well as
normalized blood glucose levels in diabetic mice models
[18]. Recently, FGF1 is getting attention as a leading
candidate of novel insulin sensitizer.

This study was designed to investigate the effects of
canine adipose tissue-derived MSC-conditioned medium
(cAT-MSC CM) on an in vitro induced insulin resistance
model. To explore this, gene expression of markers re-
lated to glucose uptake were evaluated and the specific
effective factors were discovered.

Results

Characterization of cAT-MSCs

Cells obtained from canine adipose tissue were charac-
terized by their ability to express stem cell markers and
to differentiate toward adipogenic, osteogenic, and chon-
drogenic lineages when cultured in media containing
lineage-specific factors. The known MSC markers such
as CD29, CD73, CD44, and CD90 were highly expressed
by the cells. Negative markers such as CD31, CD34, and
CD45 were not expressed (Fig. 1la). The multi-lineage
plasticity of cAT-MSCs was confirmed by specific stain-
ing methods: Oil Red O staining, Alizarin Red S staining,
and Alcian Blue staining, respectively (Fig. 1b).

Differentiation into adipocytes and development of an
insulin resistance model in 3T3-L1 adipocytes

All processes of differentiation and induction of insulin
resistance in the 3T3-L1 are depicted schematically in
Fig. 2a. During differentiation, 3T3-L1 pre-adipocytes
transformed from a fibroblast-like appearance to an
adipocyte-like appearance and cytoplasmic lipid droplet
accumulation became remarkable (Fig. 2b-d). After over
70% of 3T3-L1 cells differentiated, cells were treated
with TNF-a and incubated in hypoxic conditions for
24 h to induce insulin resistance. The mRNA expression
levels of IRS-1 and GLUT4 were compared as markers
of insulin resistance. As a result, both IRS-1 and GLUT4
mRNA levels showed similar tendencies through the dif-
ferentiation to insulin resistance induction, but the de-
gree of alterations was greater in GLUT4. The mRNA
expression levels of insulin resistance markers were
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remarkably increased during the differentiation, while
they were markedly decreased in the insulin resistance
model (Fig. 2e, f).

Effects of cAT-MSC CM treatment on IRS-1 and GLUT4
expressions in the insulin resistance model

To evaluate the therapeutic effects of cAT-MSC CM on
the insulin resistance model, the expression levels of
IRS-1 and GLUT4 were examined by qRT-PCR and
western blot analysis. Both IRS-1 and GLUT-4 mRNA
expression levels were significantly increased after
cAT-MSC CM treatment in the insulin resistance model
(Fig. 3a, b). Similar results were observed in protein ana-
lysis (Fig. 3c-e, Additional file 1: Figure SI).

Reduced therapeutic effects of cAT-MSC CM with anti-
FGF1 neutralizing antibody treatment

We suspected that FGF1 in the cAT-MSC CM played an
important role in the alterations in the expression levels
of IRS-1 and GLUT4. To verify our hypothesis, we mea-
sured FGF-1 concentrations in DMEM and cAT-MSC
CM by ELISA. FGF-1 concentrations were significantly
increased in cAT-MSC CM compared to DMEM
(Fig. 4a). Moreover, added an anti-FGF1 neutralizing
antibody to the cAT-MSC CM treated insulin resistance
model. By measuring the protein levels of insulin resist-
ance markers and evaluating glucose uptake abilities, we
confirmed that the improvement of expression levels of
IRS-1, GLUT4 (Fig. 4b-d), and glucose uptake ability
(Fig. 5, Additional file 1: Figure S1) were significantly
reduced after anti-FGF1 neutralizing antibody treatment
compare to cAT-MSC CM treated group.

Discussion

There have been doubts that exogenous insulin supple-
ments for poorly controlled TIDM or T2DM were not
enough to maintain the patient in a good condition. In this
regard, researches into cell therapy using MSCs have been
actively conducted. Mechanisms of their therapeutic effects
to DM may be explained through various molecular pro-
cesses. MSCs have the ability to directly differentiate into
IPCs [19-21] and regulate the immune system to protect
pancreatic islet cells from further destruction [22—26]. In
addition, they possess powerful paracrine effects via secre-
tion of a variety of cytokines and growth factors, enabling
them to have anti-inflammatory effects and regulate insulin
signalling and resulting in the improvement of insulin sen-
sitivity [15, 27-29]. Several insulin sensitizers (such as
biguanides and thiazolidinediones) were considered as
therapeutics for DM with insulin resistance. However,
long-term medication with these drugs can cause various
adverse effects, which highlights the necessity for a new
strategy.
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Fig. 1 Flow cytometry and special staining characterized cAT-MSCs. a Immunophenotypic analysis was performed by flow cytometry using
positive markers CD29, CD73, CD44, and CD90 and negative markers CD31, CD34, and CD45. b Adipogenic (Oil Red O staining), osteogenic
(Alizarin Red S staining), and chondrogenic (Alcian Blue staining) differentiation abilities of cAT-MSCs (from left to right) were confirmed. Original
magnification: 400x (left), 200x (middle, right)
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In these experiments, we used 3T3-L1 adipocytes to
develop an in vitro insulin resistance model. There have
been diverse studies into inducing insulin resistance in
3T3-L1 cell lines. For example, various agents including
TNE-a, Interleukin-1 (IL-1), IL-6, free fatty acids, dexa-
methasone, and high insulin were used to make models
of insulin resistance in 3T3-L1 adipocytes [30—35]. Lo et
al. compared transcriptome analysis data of in vitro
insulin resistance models and in vivo diet-induced obese
mouse models. Considering their finding that the TNF-a
and hypoxia co-treatment model most closely resembled
in vivo alterations [36], we employed this model in our
experiment. For the purpose of monitoring insulin re-
sistance, we selected IRS-1 and GLUT4 as markers of

glucose uptake ability [37, 38]. IRS-1 is a signalling pro-
tein that plays an important role at the initial part of in-
sulin signalling pathway [39]. GLUT4 is a transporter
protein that is mainly expressed in the skeletal muscle,
adipose tissue, and heart [40]. Its up regulation and
translocation to the cell membranes are thought to be
critical steps of the insulin responsive increment of glu-
cose uptake [41].

According to early studies, the effectiveness of MSC in
DM originated from the potential to trans-differentiation
towards IPCs [42, 43]. However, these theories were un-
able to give a good explanation for the disappointing re-
sults of in vivo cell tracking studies [44, 45]. Recent
studies suggested that the secretory capacity of MSCs
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Fig. 2 Insulin resistance was induced in 3T3-L1 adipocytes in vitro. a Adipocyte differentiation of 3T3-L1 cells and following induction of insulin
resistance were summarized with the course of time. b Fibroblast-like 3T3-L1 pre-adipocytes at day 0. ¢ Differentiating 3T3-L1 cells at day 3. d
Differentiated 3T3-L1 adipocytes containing cytoplasmic lipid droplets at day 9. Original magnification: 200x. e, f Alterations in mRNA expression
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would play a crucial role for the therapeutic effects.
Gao et al. isolated and injured pancreatic islets in vitro
and then assessed islet regeneration after the treat-
ment with MSC CM. They found that both P cell rep-
lication and islet progenitor differentiation were
promoted and the PI3K / Akt signal pathway was in-
volved [46]. Another study revealed that AT-MSC CM
enhanced glucose uptake in 3T3-L1 and C2C12 insu-
lin resistance models [47]. We also utilized cAT-MSC

CM to explore the paracrine effect of cAT-MSC in our
experiments.

FGF family is a signalling protein group composed of 18
members mediating a variety of biological functions in cell
proliferation and developmental processes. Each family
member performs unique actions by binding to FGF re-
ceptors, which results in activation of intracellular down-
stream cascades [48]. FGFI1, identified as a regulator of
adipose tissue remodelling and metabolic homeostasis, is
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a downstream molecule of peroxisome proliferator-
activated receptor-y (PPAR-y), which is a target of the
thiazolidinedione class of insulin sensitizers [49]. It has
been established that rFGF1 injection normalized glucose
levels and enhanced insulin sensitivity in diabetic mice.

What was noteworthy is that the effect was insulin-
dependent. Moreover, rFGF1 did not induce side effects
that could be incurred by chronic use of traditional insulin
sensitizers. Furthermore, genetically modified rFGF1 lack-
ing the mitogen properties of rFGF1 had similar glucose
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Fig. 4 Protein expressions of IRS-1 and GLUT4 were down regulated in differentiated 3T3-L1 adipocytes after blocking of FGF1 function. a FGF-1
concentrations in cAT-MSC CM and DMEM were measured by ELISA assay. b Protein expression levels of GLUT4 and IRS-1 were analysed by
western blot. ¢, d Relative protein levels of IRS-1 and GLUT4 were lower in the insulin resistance models treated with both cAT-MSC CM and anti-
FGF1 antibody than the models treated with cAT-MSC CM alone. Naive: differentiated 3T3-L1 cells, (—): insulin resistance models of 3T3-L1 cells,
cAT-MSC CM: cAT-MSC CM-treated insulin resistance models of 3T3-L1 cells, cAT-MSC CM + Ab: cAT-MSC CM- and anti-FGF1 antibody-treated
insulin resistance models. Results are presented as mean + SD obtained from three independent experiments *P < 0.05, **P < 0.01

lowering effects to some extent [18], intensifying the pos-
sibility of rFGF1 as a substitute of conventional insulin
sensitizers. Based on the fact that MSC CM contains con-
siderable amounts of FGF1 [50], we attempted to find out
whether FGF1 from cAT-MSC CM was contributed to the
advantageous effects of cCAT-MSC CM on insulin resistant
models.

In the present study, we evaluated gene expression levels
of IRS-1 and GLUT4, which were considered as markers
of insulin responsive glucose uptake. It was shown that re-
duced expression levels of these markers in 3T3-L1

insulin resistance models were restored after the treat-
ment of cAT-MSC CM. This finding was consistent with
previous research that suggested that MSC could improve
insulin resistance through the paracrine signalling of vari-
ous cytokines and growth factors [47]. Since we suspected
FGF1 would have a role in this effect, we measured FGF1
concentrations in cAT-MSC CM and added an anti-FGF1
neutralizing antibody into CM-treated 3T3-L1 insulin re-
sistance models and assessed alterations of glucose uptake
levels. The anti-FGF1 antibody group represented dimin-
ished expression levels of insulin resistance markers in
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MSC CM- and anti-FGF1 antibody-treated insulin resistance models.
Results are presented as mean + SD obtained from three independent
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comparison to the CM-treated group. This information
led to the inference that FGF1 included in cAT-MSC CM
is one of the mediators of the signalling pathways that in-
duces therapeutic effects. Although we could not exclude
the possibility that various cytokines and growth factors
abundantly contained in cAT-MSC CM (other than FGF1)
could affect the alterations in expression levels, it is worth
mentioning that this study is the first work that revealed
FGF1 as a specific mediator of insulin-sensitizing effects
of cAT-MSC CM in DM.

Conclusions

We identified that the induced insulin resistance in 3T3-L1
cells was ameliorated in the presence of cAT-MSC CM by
measuring mRNA and protein expression levels of IRS-1
and GLUT4. Additional data showed that the improve-
ment was inhibited by the addition of anti-FGF1 neutraliz-
ing antibody, suggesting that FGF1 would act as a
mediator of the beneficial effects of cAT-MSC CM. It is
noteworthy that the present study is the first to reveal a
specific functioning component of MSC CM in in vitro in-
sulin resistance models, and further studies to find out
other effective factors of MSC CM will be necessary.

Methods

Cell culture and characterization

Adipose tissue was obtained from three healthy dogs
(1-year-old) during ovariohysterectomy at the Seoul
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National University Veterinary Medicine Teaching Hos-
pital (SNU VMTH). The owners were provided an in-
formed, written consent for research use. The procedure
was also approved by the Institutional Animal Care and
Use Committee (IACUC) of SNU and the protocol was
performed in accordance with the approved guidelines.
Canine adipose tissue-derived mesenchymal stem cells
(cAT-MSCs) were isolated and cultured as previously de-
scribed [51]. Before their use in this study, cells were
characterized by their ability to express several stem cell
markers using flow cytometry. Cells were suspended in
30 pl DPBS and 3 pl monoclonal antibodies against the
following proteins: cluster of differentiation (CD)
29-Fluorescein isothiocyanate (FITC), CD31-FITC, CD34-
phycoerythrin (PE), CD73-PE (BD Biosciences, Franklin
Lakes, NJ, USA), CD44-FITC, CD45-FITC, and CD90-
allophycocyanin (APC) (eBiosciences, San Diego, CA,
USA)-conjugated antibodies. Non-stained cells were used
as controls for autofluorescence. Cells were analysed by a
BD FACSAria II system (BD Biosciences). Cellular differ-
entiation was confirmed using PRIME-XV*® Chondrogenic
Differentiation Xeno-Free Serum-Free Medium (XSFM),
PRIME-XV® Osteogenic Differentiation Serum-Free
Medium (SEM), and PRIME-XV® Adipogenic Differen-
tiation SFM (all from Irvine Scientific, Santa Ana,
CA, USA) according to the manufacturer’s instruc-
tions followed by Alcian Blue staining, Alizarin Red
staining, and Oil Red O staining, respectively.

In vitro cellular insulin resistance models

The in vitro induced insulin resistance model was devel-
oped in differentiated 3T3-L1 adipocytes. Murine 3T3-L1
cells were purchased from the Korean Cell Line Bank
(Seoul, Korea). 3T3-L1 pre-adipocytes were differentiated
using 3T3-L1 Differentiation Kit (Sigma-Aldrich) and all
the differentiation procedures performed following the
manufacturer’s instructions. In brief, 3 x 10° cells were
seeded in 6 well cell culture plate (SPL Life Science,
Pocheon, Korea) and reached 70%, induction of insulin
resistance was initiated. Cells were washed with
phosphate-buffered saline (PBS; PAN Biotech, Aidenbach,
Germany) and changed to serum-free Dulbecco’s modified
Eagle’s medium: Nutrient Mixture F-12 (1:1) (DMEM /
F12 (1:1); PAN Biotech). Insulin resistance was induced
with treatment with both 40 ng/mL of tumour necrosis
factor-a (TNF-a; PeproTech, Rocky Hill, NJ, USA) and
1% oxygen for 24 h. For hypoxic incubation, cells were
placed in a hypoxic incubator (ViVAGEN, Sungnam,
Korea) with the conditions of 1% O, at 37 °C.

Preparation of cAT-MSC-conditioned medium (CM), and

anti-fibroblast growth factor-1 (FGF1) antibody treatment
cAT-MSCs (3 x 10° cells / well) were seeded in 6-well
plates and cultured in 3 mL of DMEM medium
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containing 2% fetal bovine serum (FBS; PAN Biotech)
for 3 days, yielding conditioned medium. After 3 days,
conditioned medium was harvested and centrifuged at
850 rpm for 3 min to remove cellular debris. After cen-
trifugation, the supernatant was transferred to a conical
tube and stored at —80 °C until use. In addition, the
concentration of FGF-1 in the cAT-MSC CM were de-
termined by Fibroblast Growth Factor 1 ELISA Kit
(Mybiosource, San Diego, CA, USA) according to the
manufacturer’s instructions. Anti-FGF1 neutralizing anti-
body (Abcam, Cambridge, MA, USA) was added to final
concentrations of 0.9 pg / ml of culture medium.

RNA extraction, cDNA synthesis, and quantitative reverse-
transcription PCR

Total RNA was extracted from all groups using the
Easy-BLUE Total RNA Extraction kit (Intron Biotech-
nology, Seongnam, Korea) according to the manufac-
turer’s instructions. cDNA was synthesized from 1 pg of
total RNA with LaboPass M-MuLV Reverse Transcript-
ase (Cosmo Genetech, Seoul, Korea) and the samples
were analyzed in triplicates using AMPIGENE qPCR
Green Mix Hi-ROX with SYBR Green dye (Enzo Life
Sciences, Farmingdale, NY, USA). The expressions of
target genes were analyzed according to the 27244/C%
method and normalized to mRNA levels of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). Primer sequences
used in this study are listed in Table 1.

Western blot analysis

Total proteins were extracted from all cell groups using
PRO-PREP Protein Extraction Solution (Intron Biotech-
nology) according to the manufacturer’s instructions. The
concentrations of the protein samples were measured
using the Bio-Rad DC Protein Assay Kit (Bio-Rad,
Hercules, CA, USA). The 30 pg of proteins were loaded
and separated by sodium dodecyl sulphate-polyacrylamide
gel electrophoresis and transferred to polyvinylidene
difluoride membranes (Millipore, Billerica, MA, USA).
The membranes were blocked by 5% non-fat dry milk in
Tris-buffered saline containing 0.1% Tween 20 and incu-
bated with primary antibodies against insulin receptor
substrate 1 (IRS-1, 1:500; Abcam) and glucose transporter
type 4 (GLUT4, 1:500; Santa Cruz Biotechnology, Santa
Cruz, CA, USA) at 4 °C overnight. The membranes were

Table 1 List of primer for gRT-PCR

Gene Forward (5-3") Reverse (5'-3"

GAPDH AGTATGTCGTGGAGTCTAC AGTGAGTTGTCATATTTCT
TGGTGT CGTGGT

GLUT4 CCCAGTGAGTCTGTCATCT GGACTAGAACCATACTCAT
AGTAGT CAGAAG

IRS-1 GAACACTGGTCCTAGCTGT GTAGCTCTGTTCAATCACC
ATTCTC TTCTGT
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incubated with secondary antibodies at room temperature
for 1 h. The immunoreactive bands were visualised using
enhanced chemiluminescence (Advansta, Menlo Park,
CA, USA) and normalised to B-actin levels (Santa Cruz
Biotechnology).

2-Deoxyglucose (2-DG) uptake assay

The differentiated 3T3-L1 adipocytes were treated with
TNF-a and incubated in hypoxia for 24 h. After that, the
2-DG concentration was measured by Glucose Uptake
Assay Kit (Abcam) according to the manufacturer’s in-
structions. Measurements were performed at least three
replicates and then averaged.

Statistical analysis

Data are shown as mean * standard deviation. Statistical
comparisons between groups were made with use of
one-way ANOVA and an unpaired Student’s t test using
the GraphPad Prism v.6.01 software (GraphPad Inc., La
Jolla, CA, USA). P value of <0.05 was considered statis-
tically significant.

Additional file

[ Additional file 1: Figure S1. Original western blot image. (PPTX 444 kb) ]
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