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Background: Schizophrenia is associated with a significant increase in the risk of

violence, which constitutes a public health concern and contributes to stigma associated

with mental illness. Although previous studies revealed structural and functional

abnormalities in individuals with violent schizophrenia (VSZ), the neural basis of psychotic

violence remains controversial.

Methods: In this study, high-resolution structural magnetic resonance imaging (MRI)

data were acquired from 18 individuals with VSZ, 23 individuals with non-VSZ (NSZ), and

22 age- and sex-matched healthy controls (HCs). Whole-brain voxel-based morphology

and individual morphological covariance networks were analysed to reveal differences

in gray matter volume (GMV) and individual morphological covariance network topology.

Relationships among abnormal GMV, network topology, and clinical assessments were

examined using correlation analyses.

Results: GMV in the hypothalamus gradually decreased from HCs and NSZ to VSZ

and showed significant differences between all pairs of groups. Graph theory analyses

revealed that morphological covariance networks of HCs, NSZ, and VSZ exhibited

small worldness. Significant differences in network topology measures, including global

efficiency, shortest path length, and nodal degree, were found. Furthermore, changes in

GMV and network topology were closely related to clinical performance in the NSZ and

VSZ groups.

Conclusions: These findings revealed the important role of local structural abnormalities

of the hypothalamus and global network topological impairments in the neuropathology

of NSZ and VSZ, providing new insight into the neural basis of and markers for VSZ and

NSZ to facilitate future accurate clinical diagnosis and targeted treatment.
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INTRODUCTION

Schizophrenia (SZ) is a serious mental disorder affecting 1% of
the world’s population in terms of thinking, feeling, and behaviors
that cause abnormal perceptions of reality (1). The link between
SZ and violent offending has long been the subject of research
with a significant impact on mental health policy. Patients with
SZ have an elevated risk for aggression and violent behavior,
which leads to fear and contributes to the major stigma of
this disease (2). Although previous studies have reported that
environmental factors, such as low socio-economic status and
childhood trauma, may lead to violence in SZ (3–5), increasing
evidence indicates that neurobiological factors may also play a
key role in the increased risk of violence in individuals with SZ
(6, 7). The origins of violent behavior in people with SZ are not
yet sufficiently understood (8). Moreover, the management of
aggression in SZ patients is a challenging clinical dilemma given
that violence or aggressive behavior is heterogeneous in origin
(8–10). Therefore, delineating the underlying neurobiological
basis of violence in SZ may facilitate its management and
effective therapy.

Non-invasive magnetic resonance imaging (MRI) provides
the opportunity to study brain structure and function in
vivo. Widely used structural MRI (sMRI), diffusion MRI, and
functional MRI enable investigations of brain morphology,
white matter (WM) microstructure, and functional activities,
respectively (11–17). In recent decades, mounting studies
have demonstrated that brain function is not only fulfilled
by a single area but also involves interactions across multiple
distributed systems to form a complex brain network (18–
22). Traditionally, brain networks were mapped using
diffusion MRI for axonal connections or functional MRI
for functional connectivities (23–28). Recently, using sMRI
to map whole-brain morphological connectivity patterns by
characterizing interregional morphological similarities was
proposed due to its advantages of easy access, high signal-
to-noise ratio, and robustness to artifacts (29–31). Unlike
four-dimensional functional MRI, sMRI only contains three-
dimensional location information. Early studies thus constructed
the morphological covariance network at the population
level by taking each individual subject as a time point to
model time series of functional MRI (30, 32). A group of
subjects can only obtain one connectivity matrix to reflect
the group-level morphological covariance, ignoring individual
variability. Recently, Wang et al. (33) developed an individual
morphological covariance networkmethod used for brain disease

research (34, 35). Thus, individual morphological covariance

networks with graph theory analysis may provide new insight
into brain network organization patterns and improve the
understanding of the neurobiological underpinnings of violent
SZ (VSZ) patients.

In the current study, we aimed to explore structural and
topological differences in gray matter volume (GMV) and
individual morphological covariance networks among healthy
controls (HCs) and individuals with non-VSZ (NSZ) and VSZ.
In addition, we evaluated the associations of changes in GMV and
network topology with clinical variables.

MATERIALS AND METHODS

Participants
This study was approved by the Ethics Committee of West China
Hospital, Sichuan University. A total of 18 VSZ, 23 NSZ, and
22 HCs participated in the present study. All the subjects were
male and were matched based on age and education level among
the three groups. All participants were right-handed, and written
informed consent was provided and obtained. All subjects were
recruited from the forensic psychiatry department of Preclinical
Science and Forensic Medicine College of Sichuan University,
Chengdu, Sichuan. Psychiatric diagnoses were determined by two
experienced psychiatrists using the Structured Clinical Interview
for Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV) (SCID-I/P), Chinese version. The
inclusion criteria for VSZ were murder, attempted murder, and
severe physical assault toward other people (including sexual
assaults) based on the MacArthur criteria (36). These individuals
committed serious violence with at least one fatal or near-
fatal act of violence against their victims and were referred to
forensic psychiatric examination for legal competence before
court decisions. All participants were diagnosed with SZ before
receiving any medical treatment. The exclusion criteria were
(1) age <18 years or over 65 years; (2) other psychiatric co-
morbidities; (3) any history of cardiovascular diseases, major
physical illness, or neurological disorder; and (4) substance abuse
or dependence. Brain MRI performed under the supervision of
an experienced neuroradiologist showed no gross abnormalities.

Clinical Assessments and Criminal
Information
Psychopathology was assessed using the Chinese version of the
Positive and Negative Syndrome Scale (PANSS) (37), which
provides a total score and positive, negative, and general
symptoms, and supplement scores. The Chinese version of the
PANSS consists of the original PANSS plus three supplementary
excitability items, including anger, difficulty in delay gratification,
and affective liability, to measure the excitement dimension. The
supplement scores were not added to the PANSS total score.
The assessments were conducted by clinical psychiatrists who
were professionally trained to conduct the PANSS interview and
employ rating methods. Individual incidents of aggression were
recorded using self-reporting criminology-characterized tables
and modified overt aggression scale (MOAS) (38). The tables
characterized by self-reported criminology include types of cases,
attack targets, preparation of crime, criminal motivation, and
self-protection. All of the information was collected based on
criminal case files.

Structural MRI Data Acquisition
sMRI data were acquired using a 3-Tesla Siemens MRI system
with an eight-channel phase-array head coil. Head motion was
controlled using foam pads. Prior to scanning, participants were
instructed to lie still with their eyes closed and not to fall
asleep. High-resolution T1-weighted data were acquired using
the following scan parameters: repetition time (TR) = 1,900ms,
echo time (TE)= 2.28ms, flip angle= 9◦, 176 sagittal slices with
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slice thickness = 1.0mm, field of view = 240 × 240 mm2, and
data matrix= 256× 256.

Voxel-Based Morphometry Analyses
The sMRI images were processed using the CAT12 toolbox
in SPM12 software (http://dbm.neuro.uni-jena.de/wordpress/
vbm/download/). Voxel-based morphometry (VBM) analysis
included the following steps. MRI images were first assessed to
exclude artifacts or gross anatomical abnormalities and were
reoriented to the anterior commissure. Then, the structural
images were segmented into GM, WM, and cerebrospinal fluid
(CSF). Next, GM images were normalized to the Montreal
Neurological Institute (MNI) space using the Diffeomorphic
Anatomical Registration using Exponentiated Lie algebra
(DARTEL) normalization approach and were modulated to
account for volume changes. Finally, the GM images were
smoothed using a Gaussian kernel of 8-mm full-width at half
maximum (FWHM) (32, 39), and whole-brain voxelwise one-
way ANOVA with PANSS and disease duration as covariates was
performed to identify differences in GMV among HCs, NSZ,
and VSZ. The significance level was set as p < 0.05 using false
discovery rate (FDR) correction and a minimum cluster size of
>30. After identification of GMV differences, the mean GMV in
brain areas with altered GMV in the HC, NSZ, and VSZ groups
was calculated. Post-hoc two-sample t-tests were further used to
identify between-group differences, and the significance was set
at p < 0.05 with Bonferroni correction.

Individual Morphological Covariance
Network Analysis
Defining Network Nodes

To explore brain network topology changes across different
groups, individual morphological covariance networks were
studied with GM images in the template space for each subject.
The brain network includes network nodes and network edges.
In this study, network nodes were defined with automated
anatomical labeling (AAL) atlases (40). Each cortical and
subcortical subregion served as a node in the morphological
covariance network.

Defining Network Edges

After the nodes of the morphological network were defined, the
edge was defined as the interregional similarity in the distribution
of the regional GMV. The edge of the individual morphological
covariance network was calculated as follows: kernel density
estimation (KDE) was first used to estimate the probability
density function of the extracted GMV values of each subregion
in the AAL atlas, and the variation in the Kullback–Leibler (KL)
divergence (KLD) was calculated to define the similarity of GM
values between each pair of subregions. The similarities were
taken as the edges of the morphological covariance network (33).
Given that the AAL atlas segments the cortex and subcortex into
90 subregions, a 90 × 90 matrix was obtained for each subject.
Finally, a binary network was generated for each subject for
further analyses.

Graph Theory-Based Network Analyses
To explore network topology parameter differences among
HCs, NSZ, and VSZ, graph theory-based network analyses
were performed with sparsity values from 0.05 to 0.39 using
steps of 0.02. First, small worldness was assessed for each
morphological covariance network. If each morphological
covariance network met the small-world property (normalized
clustering coefficient >> 1, normalized characteristic path
length ≈ 1, and small worldness > 1), the global and nodal
topological parameters, including clustering coefficient (Cp),
global efficiency (Eg), local efficiency (Eloc), shortest path
length (Lp), assortativity, modularity, nodal degree, and nodal
betweenness, were calculated. One-way ANOVAwith PANSS and
disease duration as covariates was first used to identify differences
in network parameters among HCs, NSZ, and VSZ; and the
significance level was set at p < 0.05. Post-hoc two-sample t-
tests were further used to determine between-group differences
corrected with the Bonferroni method with p < 0.05.

Correlation Analyses
To explore whether GMV and network topology abnormalities
were associated with illness duration, PANSS, and aggression,
correlation analyses were conducted in NSZ and VSZ patients.
The significance level was set at p < 0.05 corrected using the
FDR method.

RESULTS

Demographic and Clinical Information
No significant differences in age (p = 0.53) or education (p =

0.38) were noted among the HC, NSZ, and VSZ groups as shown
in Table 1. Patients with VSZ had longer disease duration (p =

0.0063), higher PANSS (p < 0.001), and higher aggression scores
(p < 0.001) than NSZ patients (Table 1).

Abnormal Gray Matter Volume
Abnormal GMV in the right hypothalamus (peak coordinate,
x= 3, y=−11, z=−6) was noted among the HC, NSZ, and VSZ
groups. Post-hoc two-sample t-tests found significantly lower
GMVs in SZ patients compared with HCs and significantly lower
GMVs in VSZ patients compared with NSZ patients (Figure 1).

Abnormal Network Topology
All the morphological covariance networks of HCs, NSZ,
and VSZ showed small-worldness properties at sparsity values
ranging from 0.05 to 0.39 (Figure 2). Abnormal network
topological parameters, including Eg, Lp, and nodal degree,
were found among the HC, NSZ, and VSZ groups (Figure 3).
Both NSZ and VSZ patients showed significantly higher Eg
than HCs; and VSZ individuals had significantly higher Eg
than NSZ individuals. For Lp, both NSZ and VSZ patients
exhibited significantly lower Lp than HCs, and VSZ exhibited
significantly lower Lp than NSZ. The mean nodal degree in
NSZ individuals was significantly greater than that observed in
HCs and VSZ, but no significant difference was noted between
HCs and VSZ. For other network topological parameters,
including small worldness (Gamma, Lambda, and Sigma),
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TABLE 1 | Subject demographics.

HC (n = 22) NSZ (n = 23) VSZ (n = 18) F/t values p-values

Age (years) 32.36 (4.93) 31.22 (6.54) 33.61 (8.62) 0.64 0.53

Sex (M/F) 22/0 23/0 18/0 NA NA

Education (years) 12.48 (2.61) 12.78 (2.98) 11.56 (2.97) 0.98 0.38

Duration (months) NA 16.1 (28.88) 59.89 (65.25) 2.89 0.0063*

PANSS NA 86.3 (16.49) 112 (7.4) 6.13 <0.001*

MOAS NA 14.96 (3.99) 29 (3.33) 12 <0.001*

HCs, healthy controls; NSZ, nonviolent schizophrenia; VSZ, violent schizophrenia; M, male; F, female; PANSS, Positive and Negative Syndrome Scale; MOAS, modified overt

aggression scale.

*Significant differences.

FIGURE 1 | Abnormal gray matter (GM) volume in the hypothalamus was found among healthy controls (HCs), nonviolent schizophrenia (NSZ) patients, and violent

schizophrenia (VSZ) patients. A gradient decrease in GM volume from HCs to NSZ and VSZ was observed. *Significant difference with p < 0.05.

FIGURE 2 | All the HC, NSZ, and VSZ groups showed small-worldness properties of the individual morphological covariance network at sparsity values ranging from

0.05 to 0.39. HC, healthy control; NSZ, nonviolent schizophrenia; VSZ, violent schizophrenia.

Eloc, assortativity, modularity, Cp, and nodal betweenness, no
significant differences were noted among HCs, NSZ, and VSZ
(Supplementary Figure 1).

Correlation Analysis Results
As shown in Figure 4, after correction for multiple comparisons,
GMV of the hypothalamus and nodal degree showed
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FIGURE 3 | Significant differences in global efficiency (Eg), shortest path length (Lp), and nodal degree were found among the HC, NSZ, and VSZ groups. A gradient

increase in Eg and a gradient decrease in Lp from HCs to NSZ and VSZ were found. NSZ had a significantly higher nodal degree than both HCs and VSZ. * Significant

difference with p < 0.05. HC, healthy control; NSZ, nonviolent schizophrenia; VSZ, violent schizophrenia.

FIGURE 4 | Significant correlations between GM volume of the hypothalamus and nodal degree and PANSS scores as well as between GM volume of the

hypothalamus and Eg, Lp, nodal degree, and MOAS scores were found. GM, gray matter; PANSS, Positive and Negative Syndrome Scale; Eg, global efficiency; Lp,

shortest path length; MOAS, modified overt aggression scale.
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significantly negative correlations with PANSS scores. The
GMV of the hypothalamus, Lp, and nodal degree showed
significantly negative correlations with aggression scores,
whereas Eg exhibited a significantly positive correlation with
aggression scores.

DISCUSSION

In the current study, we revealed alterations in GMV and
disrupted network topology in SZ patients with and without
violence using voxel-based morphology and novel individual
morphological covariance network analyses. Significantly
decreased GMV in the hypothalamus and significantly disrupted
global efficiency, short path length, and nodal degree were found
in the NSZ and VSZ groups. Moreover, these changed GMVs and
network topologies were significantly associated with clinical
characteristics. These findings highlighted the important role of
the hypothalamus in SZ patients with and without violence and
deepened our understanding of the neuropathology of SZ and
violence in SZ from a network perspective.

The hypothalamus is the control center for many autonomic
functions of the peripheral nervous system and plays a vital role
in maintaining homeostasis (41–43). As a part of the limbic
system, the hypothalamus also influences various emotional
responses (44). Many recent studies have demonstrated that the
hypothalamus is important for circadian control aggression in
both humans and animals (45–47). Decreased hypothalamus
volume has been reported in patients with SZ (48–50). The
decreased GMV in the hypothalamus supported our finding of
decreased GMV in NSZ patients compared with HCs. However,
few studies have reported abnormal GMV in the hypothalamus
in SZ patients with aggression. Only one study by Schiffer et
al. (51) found increased GMV in the hypothalamus in patients
with SZ with conduct disorder, which is associated with violent
behavior. In our study, we found decreased GMV in individuals
with VSZ. The difference may result from different subtypes of
VSZ, suggesting that different subtypes of VSZ may have distinct
neural circuits. Moreover, we found that the GMV gradually
decreased from HCs to NSZ and VSZ and was significantly
correlated with PANSS and aggression scores in patients. These
findings indicate that abnormal GMV of the hypothalamus may
be an intrinsic biomarker to distinguish individuals with SZ from
healthy individuals and to differentiate individuals with VSZ
and NSZ.

The human brain is conceptualized as a complex network
structured to optimize the interplay between segregation and
integration of functionally specialized subsystems (19, 52). Many
previous studies have utilized diffusion MRI or functional MRI
to map anatomical or functional brain networks to explore
network topological abnormalities in SZ (53–57). By measuring
across-subject covariance in morphological measures, such as
cortical thickness (29), gyrification (58), and GMVs (31, 59),
structural network topological attributes were also studied in SZ.
Although the GMV covariance network has been analyzed in
SZ, all previous studies use population-level data to construct
only one single connectivity network across all subjects, which
cannot account for individual network topology. To the best

of our knowledge, this is the first study to map the individual
morphological covariance network to investigate abnormal
network topology in VSZ andNSZ.We found gradually increased
global efficiency and gradually decreased shortest path length
from HCs to NSZ and VSZ. We also found an increased
mean nodal degree in NSZ individuals compared with both
HC and VSZ individuals. The findings in our study were
supported by previous complex brain network analyses in SZ
(54, 56, 60). All the evidence suggested higher information
processing efficiency in NSZ and VSZ individuals compared with
HCs. Our results together with previous findings may support
the “hyperconnectivity” hypothesis of SZ (61–63). In addition,
abnormal global efficiency, shortest path length, and nodal degree
were significantly correlated with PANSS and aggression scores.
Thus, global efficiency and shortest path length may serve
as biomarkers to distinguish individuals with VSZ and NSZ,
whereas nodal degree may be a specific neurobiomarker for NSZ.

The current study also has several limitations. First,
in our study, the sample size was limited, and all the
subjects were male. These results need to be interpreted
with caution; thus, the findings in our study also require
further validation. Second, longitudinal studies are warranted
to better reveal the neuropathology of NSZ and VSZ
using multimodal MRI data and to extend the findings in
further studies.

In conclusion, our study found a gradual decrease in GMV
in the hypothalamus and disrupted global topological properties,
including global efficiency, shortest path length, and nodal
degree, in individuals with VSZ and NSZ. In addition, we
found that abnormal GMV and network topological properties
were significant clinical measures. These findings highlight the
important roles of the hypothalamus in individuals with VSZ
and NSZ and provide neural biomarkers to distinguish SZ from
healthy subjects and to differentiate subtypes of SZ.
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