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The extensive use of antibiotics has caused antimicrobial resistance and multidrug

resistance in Escherichia coli and gradual expands it into a worldwide problem. The

resistant E. coli could be transmitted to humans through animal products, thereby

creating a problem for bacterial treatment in humans and resulting in a public health

issue. This study aims to investigate the molecular typing and drug resistance of swine

and human origin E. coli within the same prefecture-level cities of Shandong Province

and the potential risk of E. coli on public health. The drug sensitivity results indicated

that tetracycline (TE) (97.17%) is a major antibiotic with high drug resistance in 106

swine origin E. coli. There was a significant difference in the drug-resistant genotypes

between the two sources, of which the blaTEM positive rate was the highest in the genera

of β-lactams (99% in swines and 100% in humans). Among the 146 E. coli isolates, 98

(91.51% swine origin) and 31 (77.5% human origin) isolates were simultaneously resistant

to three or more classes of antibiotics, respectively. The multi-locus sequence typing

(MLST) results indicate that the 106 swine origin E. coli isolates are divided into 25 STs

with ST1258, ST361, and ST10 being the dominant sequence analysis typing strains.

There were 19 MLST genotypes in 40 strains of human E. coli from Tai’an, Shandong

Province, with ST1193, ST73, ST648, ST131, ST10, and ST1668 being the dominant

strains. Moreover, the cluster analysis showed that CCl0 and CC23 were the common

clonal complexes (CCs) from the two sources. Our results provide a theoretical basis

for guiding the rational use of antibiotics and preventing the spread of drug-resistant

bacteria, and also provide epidemiological data for the risk analysis of foodborne bacteria

and antimicrobial resistance in swine farms in Shandong Province.

Keywords: Escherichia coli, analysis of drug resistance, drug-resistant phenotype, drug-resistant genotype,

multi-locus sequence typing
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INTRODUCTION

Escherichia coli is one of the most common bacteria in human
and animal intestines, which can cause a variety of infectious
diseases, such as peritonitis, cholecystitis, cystitis, and diarrhea.
Meanwhile, it is also an important health indicator in food
(1). In recent years, the unreasonable use of antibiotics, such
as aminoglycoside, sulfonamide, and fluoroquinolone, has led
to increasingly serious drug resistance of E. coli, particularly
the emergence of multi-drug-resistant (MDR) strains and even
superbugs, due to the production of extended-spectrum β-
lactamamide (ESBL), thereby bringing huge economic losses
to Chinese animal husbandry and posing a serious threat to
human health (2, 3). All the main subtypes are the ESBLs
producing E. coli isolated from diarrhea swinelets (4) in South
Central Taiwan, slaughterhouse healthy swines (5) in central
Portugal, farm healthy swines (6) in Denmark, and dairy farms
(7) in Israel.

There are many ways for antibiotic residues to enter the
environment. Some antibiotics like fluoroquinolones and
tetracyclines (TEs) could not be completely metabolized
in swines, consequently their residues may be detected in
dust, feces, sewage, soil, surface water, and crops (8–12).
These different antibiotic residue pools are ideal breeding
grounds for resistance bacteria. The drug resistance of
bacteria from edible animals in the process of breeding
may be transmitted through the food chain, as well as
exemplified by swine breeding, which is a part of human
food chain. Unlimited proliferation of super bacteria and the
highly frequent occurrence of MDR strains will bring new
challenges to the existing medical and healthiness conditions in
China (13).

Multi-locus sequence typing (MLST) is a method to accurately
record the variations in the bacterial gene level by measuring the
nucleotide sequences of four to eight housekeeping genes. MLST
technology can conveniently transmit nucleic acid sequences
through the internet to analyze the evolution and population
biological characteristics of bacteria (14), thereby reflecting their
epidemiology, pathogenicity, and evolution (15). Additionally,
MLST can also be used to trace the source and spread of drug-
resistant strains. By using the MLST method and sequence
analysis of one or two resistance genes, the E. coli-producing
ESBL can be well-distinguished (16).

Previous studies mainly focused on the drug resistance of
E. coli in chickens, swines, and other major food animals
(17, 18) while the relationship between the resistance of
E. coli from swine and human sources was less studied.
To provide a guidance for the rational use of antibiotics in
clinical practice, we studied the drug sensitivity of E. coli
strains in swine samples from the different areas of Shandong
Province, China. In this study, the drug sensitivity results
indicated that TE (97.17%) is a major antibiotic with high
drug resistance in swine origin E. coli. So, we focused on the
genetic evolutionary relationship between human- and swine-
derived TE-resistant E. coli and the potential risk of E. coli on
clinical public.

TABLE 1 | The results of isolation and identification of swine origin Escherichia coli

strains.

Area

source of

sample

Sample

size

No. of

E. coil

Contamination

rate (%)

No. in

the study

JLW 50 20 40 1∼20

TXT 70 22 31 21∼42

JN 45 18 40 43∼60

TDY1 100 25 25 61∼85

TDY2 60 21 35 86∼106

METHODS AND MATERIALS

Ethics Statement
The study protocol and swine studies were approved by the
Animal Care and Use Committee of Shandong Agricultural
University, Tai’an, China. Human sample collection was carried
out in accordance with the approved guidelines of the Ethics
Committee of Tai’an City Central Hospital during routine
checkups by medical professionals. All the subjects gave written
informed consent in accordance with the Declaration of Helsinki.

Sample Collection of E. coli
As shown in Table 1, a total of 325 swine samples were
collected from 5 fattening swine farms of 3 cities in Shandong
Province from January to August 2018, with a sample and region
distribution of the following: 230 from Tai’an City [100 in Daiyue
District 1 (TDY1), 60 in Daiyue District 2 (TDY2), and 70
in Xin’tai District (TXT)], 50 in Laiwu District of Jinan City
(JLW), and 45 from Jining City (JN). In the meantime, 40 non-
repetitive TE-resistant E. coli strains were selected randomly from
the 236 TE-resistant E. coli strains of clinical patient samples
from 1 hospital in Tai’an from December 2017 to February 2018.
The cases in this hospital came from Tai’an and surrounding
prefecture-level cities, which are the same as the swine-sourced
cases. In addition, these strains were identified using the Vitek-2
Compact Automatic Microbiology Analysis System (Biomérieux,
Marcy-l’Étoile, France) in accordance with the standards of the
American Society for Clinical and Laboratory Standardization
Institute (CLSI) (19).

Sensitivity Testing of Antimicrobial Drugs
For the analyses of 146 isolated strains, the antimicrobial
susceptibility testing was performed using the Kirby–Bauer
disk (purchased from Thermo Fisher Scientific, Shanghai,
China) diffusion method to test 29 commonly used antibiotics,
including amikacin (AK), gentamicin (CN), imipenem (IPM),
meropenem (MEM), cefazolin (KZ), ceftazidime (CAZ),
cefotaxime (CTX), cefepime (FEP), aztreonam (ATM), ampicillin
(AMP), ampicillin/sulbactam (SAM), piperacillin tazobactam
(TZP), ciprofloxacin (CIP), levofloxacin (LEV), tetracycline
(TE), chloramphenicol (C), piperacillin (PRL), cotrimoxazole
(trimethoprim/sulfamethoxazole, SXT), moxifloxacin (MXF),
colistin B (PB), and amoxicillin with clavulanic acid (AMC),
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methicillin (MET), cefuroxime (CXM), ceftriaxone (CRO),
tobramycin (TOB), cefoxitin (FOX), cefoperazone/sulbactam
(SCF), ertapenem (ETP), and tigecycline (TGC). The results of
the minimal inhibitory concerting (MIC) of antibacterial drugs
were interpreted according to the CLSI and were classified as
sensitive, drug resistance, and intermediary, with the sensitive
laboratory E. coli strain DH5α as a negative control (19). The
MIC90 values of antibiotics of 146 E. coli strains were shown
in Supplementary Tables 1, 2. In this study, we defined the
strains with resistance to three or more classes of antimicrobials
(β-lactams as one class) as MDR strains and identified the
synergistic effect among AMC, CTX, and FEP as the sign of
ESBL (20).

Genotype Detection of Antibiotic
Resistance
For genotypic analyses of 146 isolated strains in this study, the
bacterial DNA templates were prepared by the boiling method
as follows: adding 10 µl of single bacteria into a 1.5-ml EP tube
with the pre-added 300 µl of sterile water, heating at 105◦C in a
metal bath for 10min, centrifugating at a speed of 12,000 r/min
for 3min, transferring the supernate into a new centrifuge tube
as the bacterial nucleic acid template, and then storing at −20◦C
until use. PCR was performed as described previously (21–26)
(Table 2) to detect the five genes for SXT resistance (qacE11-sull
for quaternary ammonium compounds (QACs-) sulfonamide-
related gene and dfrA 1, dfrA 5, dfrA 12, and dfrA17 for four
dihydrofolate reductase coding genes), eight TE-resistant genes
(tetA, tetB, tetC, tetW, tetO, tetK, tetL, and tetM), four plasmid-
mediated quinolone-resistant genes (PMQR) [qnrA, qnrB, qnrS,
and aac (6′)-Ib-cr], three C-resistant genes (cat1, cmlA, and
flor), and β-lactamase genes (blaTEM, blaSHV, blaCTX−M, and
blaDHA). Due to the overlapping of 3′ end of QAC resistance
gene qacE11-sul1 with the first two codons of dihydropteroate
synthase- (DHPS-) encoding gene sul1, only a pair of primers
were designed in this study to complete the amplification of
qacE11-sul1 gene (21). The sequences of primers and annealing
temperature used to test the presence of genes are described in
Table 2. All PCR amplificons were sequenced by Sangon Biotech
Co., Ltd., Shanghai, China, and the obtained DNA sequences
were sequenced by BLAST with database at the National Center
for Biotechnology Information (NCBI) (https://www.ncbi.nlm.
nih.gov/genbank/).

MLST Analysis
For the MLST analysis of the isolated E. coli strains,
the internal fragments of seven housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA) were amplified
by PCR from bacterial DNA (the primers are indicated in
Supplementary Table 3), and the resultant sequences were
imported into the E. coli MLST database website (http://mlst.
warwick.ac.uk/mlst/dbs/Ecoli/documents/primers Coli_html) to
determine sequence types (STs) and clonal complexes (CCs)
(Supplementary Tables 4, 5). The clustering of the different ST
types of E. coli was carried out using the eBURST v3.0 software,
which could reveal the existence of the same origin strains among

distinct strains of various geographical sources as described
previously (27).

RESULTS

Isolation and Identification of Swine Origin
E. coli Strains
As shown in Table 1, a total of 106 E. coli strains were isolated
from 325 fattening swine farm samples with a contamination
rate of 32.62%. Of these samples, the contamination rate
by JLW and JN samples was the highest (40%) followed
by TDY2 samples (35%), TXT samples (31%), and TDY1
samples (25%).

Antibiotic Susceptibility Testing of E. coli
As indicated in Figure 1A, 21 antibiotics were tested and 13
kinds displayed high resistance to E. coli strains in swines as
TE was the highest one (97.17%), followed by C (93.4%), AMP
(89.62%), PRL (85.85%), and SXT (80.19%). The rates of the
resistance to E. coli strains in other swines were lower than
KZ (38.68%), SAM (25.47%), MXF (23.58%), CIP (22.64%),
LEV (21.7%), CN (3.77%), CTX (2.83%), and ATM (1.87%).
Three kinds of antibiotics such as PB (40.56%), TZP (0.94%),
and AMC (0.94%) were the intermediate, while five kinds of
antibiotics such as FEP, AK, IPM, MEM, and CAZ were sensitive
(Figure 1).

In addition to TE (100%), the other 22 antibiotics with high
resistance to human-derived E. coli strains were AMP (90%),
followed by MET (82.5%), SAM (75%), CXM (60%), KZ (57.5%),
LEV (55%), CIP (55%), CTX (52.5%), CRO (52.5%), FEP (52.5%),
ATM (45%), TOB (40%), CN (37.5%), CAZ (20%), FOX (15%),
TZP (7.5%), and SCF (5%). In addition, the other five species (i.e.,
ETP, AK, MEM, TGC, and IPM) were sensitive (Figure 1B). The
results of antibiotic susceptibility rates of the two sources of E. coli
were summarized in Table 3.

Antibiotic Resistance Spectrum of E. coli
Swine-sourced drug resistance spectrum could be
divided into 35 spectral types, 15 stains with 7 drug
resistance/KZ+AMP+PRL+PB+SXT+C+TE and 15 stains
with 5 drug resistance/AMP+PRL+SXT+C+TE being the
most popular drug-resistant ones (Supplementary Table 4).
The strains of seven drug resistance antibacterial spectra
involved in seven ST types, which were distributed in all the
five detection regions, while five drug resistances involved six
ST types, which were also distributed in all the five detection
areas (Supplementary Table 4). The two kinds of drug resistance
antibacterial spectra were 28.30%. The other strains had
more than three drug resistance types, except of No. 3 strain
(from JLW and TE), No. 45 strain (from JN and C), and No.
103/94 strain (from TDY2) (-) only with one drug resistance
(Supplementary Table 4).

The drug-resistant spectrum of the human
source could be divided into 34 spectral types, with
KZ+CTX+FEP+AMP+CIP+MET+CM+CAZ+TOB+SAM+
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TABLE 2 | Tested genes and their specific primer sequences.

Gene name Primer Sequences (5′-3′) Primer size (bp) Annealing temperature/◦C References

Cotrimoxazoles

qacE11-sull

F-TAGCGAGGGCTTTACTAAGC

R-ATTCAGAATGCCGAACACCG 300 55 (21)

dfrA 1 F-TTGTGAAACTATCACTAATGGTAG

R-CTTGTTAACCCTTTTGCCAGA 480 55

dfrA 5 F-TCCACACACATACCCTGGTCCG

R-ATCGTCGATATATGGAGCGTA 300 55

dfrA 12 F-ATGAACTGGGAATCAGTACGC

R-TTAGCCGTTTCGACGCGCAT 498 55

dfrA17 F-TTGAAAATATTATTGATTTCTGCAGTG

R-GTTAGCCTTTTTTCCAAATCTGGTATG 475 55

Tetracyclines

tetA

F-GCTACATCCTGCTTGCCTTC

R-CATAGATCGCCGTGAAGAGG 210 60 (22)

tet B F-TTGGTTAGGGGCAAGTTTTG

R-GTAATGGGCCAATAACACCG 659 60 (22)

tetC F-CTTGAGAGCCTTCAACCCAG

R-ATGGTCGTCATCTACCTGCC 418 60 (22)

terW F-GAGAGCCTGCTATATGCCAGC

R-GGGCGTATCCACAATGTTAAC 168 60 (23)

tetO F-AACTTAGGCATTCTGGCTCAC

R-TCCCACTGTTCCATATCGTCA 740 60 (24)

tet K F-TATTTTGGCTTTTGTATTCTTTCAT

R-GCTATACCTGTTCCCTCTGATAA 519 60 (24)

tet L F-ATAAATTGTTTCGGGTCGGTAAT

R-AACCAGCCAACTAATGACAATGAT 1,159 60 (24)

tetM F-GAACTCGAACAAGAGGAAAGC

R-ATGGAAGCCCAGAAAGGAT 1,077 60 (24)

Plasmid-mediated

quinolones

qnrA

F-TCAGCAAGAGGATTTCTCA

R-GGCAGCACTATGACTCCCA 516 53 (25)

qnrB F-TCGGCTGTCAGTTCTATGATCG

R-TCCATGAGCAACGATGCCT 469 56

qnrS F-TGATCTCACCTTCACCGCTTG

R-GAATCAGTTCTTGCTGCCAGG 566 58

aac(6′)-Ib-cr F-GCGATGCTCTATGAGTGGCTA

R-CGAATGCCTGGCGTTT 482 57

Chloramphenicols

Catl

F-AACCAGACCGTTCAGCTGGAT 550

R-CCTGCCACTCATCGCAGTAC 54 (26)

Flor F-GGCTTTCGTCATTGCGTCTC 650

R-ATCGGTAGGATGAAGGTGAGGA 54

cmlA F-TGCCAGCAGTG,CCGTTTAT 900

R-CACCGCCCAAGCAGAAGTA 550 53

bla-Lactamases

blaTEM

F-CAGAAACGCTGGTGAAAGTA

R-ACTCCCCGTCGTGTAGATAA 719

F-ATGAGTATTCAACATTTCCGTG-

R-TTACCAATGCTTAATCAGTGAG 861 55

(Continued)
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TABLE 2 | Continued

Gene name Primer Sequences (5′-3′) Primer size (bp) Annealing temperature/◦C References

blaSHV F-TGGTTATGCGTTATATTCGCC

R-GCTTAGCGTTGCCAGTGCT 867 55

blaCTX−M1group(−1/−3) F-CGTCACGCTGTTGTTAGGAA

R-ACGGCTTTCTGCCTTAGGTT 780 55

blaCTX−M2group(−2) F-ATGATGACTCAGAGCATTCG

R-TGGGTTACGATTTTCGCCGC 865 55

DHA F-AACTTTCACAGGTGTGCTGGGT

R-CCGTACGCATACTGGCTTTGC 405 60

FIGURE 1 | Antibiotic susceptibility testing of swine origin Escherichia coli. (A) 21 antibiotics were tested and 13 kinds displayed high resistance to E. coli strains in

swines as tetracycline (TE) was the highest one (97.17%), followed by chloramphenicol (C, 93.4%), ampicillin (AMP, 89.62%), piperacillin (PRL, 85.85%), and

trimethoprim/sulfamethoxazole (SXT, 80.19%). The rates of the resistance to E. coli strains in other swines were lower as cefazolin (KZ, 38.68%), ampicillin/sulbactam

(SAM, 25.47%), moxifloxacin (MXF, 23.58%), ciprofloxacin (CIP, 22.64%), levofloxacin (LEV, 21.7%), gentamicin (CN, 3.77%), cefotaxime (CTX, 2.83%), and aztreonam

(ATM, 1.87%). (B) In addition to TE (100%), the other 22 antibiotics with high resistance to human-derived E. coli strains were AMP (90%), followed by methicillin

(MET, 82.5%), SAM (75%), cefuroxime (CXM, 60%), KZ (57.5%), LEV (55%), CIP (55%), CTX (52.5%), ceftriaxone (CRO, 52.5%), cefepime (FEP, 52.5%), ATM (45%),

tobramycin (TOB, 40%), CN (37.5%), ceftazidime (CAZ, 20%), cefoxitin (FOX, 15%), piperacillin tazobactam (TZP, 7.5%), and cefoperazone/sulbactam (SCF, 5%). In

addition, the other five species [i.e., ertapenem (ETP), amikacin (AK), meropenem (MEM), tigecycline (TGC), and imipenem (IPM)] were sensitive.

ATM+LEV+TE being the most popular drug-resistant one
(Supplementary Table 5).

Multiple Drug Resistance of E. coli
Among the 106 E. coli strains isolated from swines, 98 strains
displayed MDR (i.e., resistance to three or more classes of
antibiotics at the same time) accounting for 92.45% of the total
isolates. Among them, the four classes of antibiotic-resistant (4R)
strains were the most common ones, accounting for 32.08%
(34/106), followed by strains resistant to the five classes of
antibiotics (5R) accounting for 29.25% (31/106), resistant to the
six classes of antibiotics (6R) occupying 20.75% (22/106), and the
seven classes of antibiotics (7R) with 0.94% (1/106), respectively
(Figure 2).

Among the randomly selected 40 TE-resistant human E. coli
strains, 31 strains exhibited multi-drug resistance, accounting for
77.5% of the total isolates. The strains resistant to 4R and 5R
were the most common ones, each accounting for 27.5% (11/40),

followed by the strains resistant to 6R, occupying 7.5% (3/40)
(Figure 2).

Antibiotic Resistance Genotyping Testing
of E. coli
About 26 genotypes of 5R commonly used in a clinic were
studied, and the results revealed that the detection rate of Cs-
resistant flor gene (100%) was the highest one in E. coli of swine
origin, followed by blaTEM gene (99%) of β-lactamases and cmlA
gene of C (97.17%), tetW genes (96.22%) and tetC gene (95.28%)
of TEs, and the qacE11-sulI gene of SXT (93.4%) and quinolones
aac (6′)-Ib gene (93.4%) (Figure 3). Meanwhile, the detection
rate of blaTEM gene (100%) of β-lactamases was the highest in
human E. coli, followed by tetC gene of TEs (97.5%), 90% of drfA
17 gene of SXT, and 90% of tetA gene of TE (Figure 3).
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TABLE 3 | The results of antibiotic susceptibility rates of the two sources of E. coli.

Antibiotics Sensitivity of antimicrobial drugs/%

Swine (n = 106) Human (n = 40)

S I R S I R

AK 100 0 0 100 0 0

CN 96.23 0 3.77 62.5 0 37.5

IPM 100 0 0 100 0 0

MEM 100 0 0 100 0 0

KZ 61.32 0 38.68 42.5 0 57.5

CAZ 100 0 0 77.5 2.5 20

CTX 97.17 0 2.83 47.5 0 52.5

FEP 100 0 0 47.5 0 52.5

ATM 97.17 0.94 1.87 50 5 45

AMP 10.38 0 89.62 10 0 90

PRL 13.21 0.94 85.85 – – –

AMC 99.06 0.94 0 – – –

SAM 44.34 30.19 25.47 25 0 75

TZP 99.06 0.94 0 92.5 0 7.5

PB 59.43 40.56 0 – – –

SXT 19.81 0 80.19 – – –

C 6.6 0 93.4 – – –

CIP 75.47 1.87 22.64 45 0 55

LEV 77.36 0.94 21.7 45 0 55

MXF 71.7 4.72 23.58 – – –

TE 2.83 0 97.17 0 0 100

SCF – – – 85 10 5

ETP – – – 100 0 0

MET – – – 17.5 0 82.5

TGC – – – 100 2.5 0

CXM – – – 37.5 0 60

CRO – – – 47.5 0 52.5

FOX – – – 85 0 15

TOB – – – 60 0 40

– means no detection.

MLST-Based Genotyping
There are 25 MLST genotypes in the 106 E. coli strains,
with ST1258, ST361, and ST10 being the dominant strains.
ST1258 was the most popular strain type among all the
tested E. coli strains, which were detected in each swine
farm. A total of 10 strains of ST361 were detected in
4 regions [JLW (1), TXT (2), TDY1 (3), and TDY2 (4)]
(Supplementary Table 4). There are 19 MLST genotypes in
40 strains of human E. coli from Shandong Province, with
ST1193, ST73, ST648, ST131, ST10, and ST1668 being the
dominant strains. ST1193 covered five strains (12.5%), followed
by ST73, ST648, and ST131 each containing four strains (each
accounting for 10.00%), ST10 and ST1668 each containing
three strains (each occupying 7.50%), ST457, ST393, ST69,
and ST617 each containing two strains (each occupying 5%),
while each of the other nine genotypes contained one strain
(Supplementary Table 5).

Cluster Analysis of MLST Genotyping
Relationship
The cluster analysis of swine E. coli isolates showed that the
25 different ST types can be classified into 3 CCs, namely
CC10 [ST10 (7) and ST48 (1)], CC155 [ST58 (3)], and
CC23 [ST410 (2)], and the other 21 ST types including no
CCs. CC10 contains seven strains, including ST10 [JN (1),
TDY1 (5), and TDY2 (1)] and ST48 [JN (1)]. The three
ST58 swine E. coli strains derived from TDY2 belonged to
the group CC155, while the other two ST410 swine E. coli
strains derived from TDY2 belonged to the group CC23
(Supplementary Table 4).

There were 10 CCs in 40 human E. coli strains such as
CC14 (ST1193), CC73 (ST73), CC648 (ST648), CC131 (ST131),
CC10 (ST10, ST617, ST6896, ST5296, and ST710), CC31 (ST393),
CC69 (ST69), CC38 (ST2003), CC95 (ST2619), and CC23 (ST88).
CC10 contains multiple ST types, such as sputum ST10 (2),
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FIGURE 2 | Percentage of the E. coli strains from swines with no, one, or multiple drug resistance. Among the 106 E. coli strains isolated from swines, 98 strains

displayed multi-drug resistance (i.e., resistance to three or more classes of antibiotics at the same time), accounting for 92.45% of the total isolates. Among them, the

four classes of antibiotics-resistant (4R) strains were the most common ones, accounting for 32.08% (34/106), followed by strains resistant to the five classes of

antibiotics-resistant (5R), accounting for 29.25% (31/106), resistant to the six classes of antibiotics resistant (6R), and the seven classes of antibiotics-resistant (7R),

occupying 20.75% (22/106), and 0.94% (1/106), respectively.

FIGURE 3 | The resistance genotypes of the swine and human E. coli strains. In this study, 26 genotypes of antibiotics commonly used in clinic were studied. The

results revealed that the detection rate of C-resistant flor gene (100%) was the highest one in E.coli of swine origin, followed by blaTEM gene (99%) of β-lactamases

and cmlA gene of Cs (97.17%), tetW genes (96.22%), and tetC gene (95.28%) of TEs, the qacE11-sulI gene of SXT (93.4%) and quinolones aac (6′)-Ib gene (93.4%).

urine ST10 (1), sputum ST617 (1), and blood ST617 (1), sputum
ST6896 (1), blood ST5296 (1), and urine ST710 (1), respectively.
Two ST393 from the urine and blood each belonging to CC31.
One strain of ST 88 detected from the sputum belongs to
CC23 (Supplementary Table 5). Moreover, the results of the
cluster analysis showed that CCl0 and CC23 with different

ST types were the common CCs between the two sources of
E. coli. CC10 was the most important one, including six ST
types [swine E. coli [ST10 (7) and ST48 (1)], while human
CC10 contained more ST types, such as [ST10 (3), ST617
(2), ST6896 (1)], ST5296 (1), and ST710 (1)], accounting for
0.11% (16/146).
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Finally, a strain evolution diagram was constructed using the
eBURST v3.0 software in accordance with the MLST analysis and
identification of the 106 strains of E. coli from swines and 40
strains from human sources, as shown in Figure 4. Figure 4A
indicated that ST10 is the common ancestor of each ST type
of E. coli from swines, and 11 single-locus variants (SLVs) are
closely related to ST10. ST542 was identified as the SLV of
ST4429 and connected. On the other hand, three derived SLVs
of ST48 (ST3529, ST58, and ST5420) were identified and linked.
This process continued to expand outward, and ST3529 further
expanded two SLVs (ST2628 and ST5851). Similarly, ST4417 was
identified as the SLV of ST5420 and linked. Three derived SLVs
(ST3685, ST767, and ST906) of ST58 were identified and linked.
Additionally, ST3685 further extended ST410 outward, identified
ST5694 as the SLV of ST906 and linked the identified SLV, and
further extended ST1258 outward. Figure 4B demonstrated that
ST10 was the common ancestor of each ST type of human E.
coli, and eight SLVs were closely related to it. Then, it allocated
each SLV of the eight SLVs, marked ST2674 as the SLV of
ST710, and linked the marked SLV. Furthermore, two derived
SLVs (ST88 and ST5296) of ST2674 were identified and linked.
Similarly, three derived SLVs (ST2003, ST7176, and ST69) of
ST393 were identified and linked. Additionally, the two derived
SLVs (ST1193 and ST73) of ST1668 were identified and linked,
and the two derived SLVs (ST131 and ST2619) of ST73 were
identified and linked.

DISCUSSION

Antibiotics-based treatment of colibacillosis is frequently used
in the production of swines. Due to the pressure in the long
term, the irregular use and abuse of antibiotics usually lead to the
resistance of E. coli to antibiotics, even multiple drug resistance.
A 100% isolation rate of E. coli reported by Guan et al. (28)
suggested that the prevalence of swine colibacillosis is serious.
The reported isolation rates of pathogenic E. coli from swines
separately were 100% in Zhoukou area (29), 88.5% in Shanxi
Province (30), and 68.4% in Jiangsu Province (31). In this study,
the isolation rate of E. coli from swines was 32.62% (106/325),
which is relatively low and closer to the value (36.2%) in Henan
Province (32). The detection and analysis of resistance of E. coli
isolates from swine revealed that the resistance rate of isolates to
TE, C, AMP, PRL, and SXT was higher than 80.19%, while that of
the other 16 antibiotics was <38.68%.

Tetracyclines, aminoglycosides, and β-lactams are the first
antibiotic choices for the clinical prevention and treatment of
E. coli. Due to the abuse or unreasonable use of antibiotics
for many years, E. coli drug-resistant genes appear constantly.
Based on the MIC value detection of antibiotic types, we further
detected the drug-resistant genes of corresponding antibiotics
and combined the results of the two methods to interpretate
the final result. The blaTEM gene was mostly positive for β-
lactams, with 99% for swine E. coli. The tetC gene in TE
genotype was the highest, with 95.28%. The positive rate of
qacE11-sulI gene with 93.4% was the highest in SXT. aac(6′)-
Ib gene was the highest in quinolones, with 93.4%. The positive

FIGURE 4 | Homogeneity group analysis of swine- (A) and human-derived E.

coli (B) using the eBRUSTv3 software. ST10 is a common ancestor (Founder),

which is blue colored and subgroup yellow colored, and a unit point variant

[single-locus variants (SLVs)], which are purple colored that are closer to their

kinship. The areas of each of the circles indicate the prevalence of the

sequence types (STs) in the input data. Lines between the circles indicate the

relationships between various STs.

rate of cmlA gene with 97.2% was the highest in Cs. It has
been found that β-lactams are the main genotypes of swine E.
coli in China, while blaSHV is the main genotype in France,
Germany, and Taiwan (33). Wang et al. (34) detected 64.0%
of the tetA resistance genes from swines in Jilin Province. The
results of Kuo et al. (35) showed that the main resistance gene
was florR (82.90%). Especially, Zhang et al. (36) pointed out
that ESBL E. coli causes a high recurrence rate in patients
with urinary tract infection, furthermore, the recurrence is
related to the genotype blaCTX−M and blaTEM of this pathogen.
In 2016, it was reported that ESBL E. coli in a hospital of
India had the most blaSHV types, followed by blaTEM and
blaCTX−M types (37). Our study indicated that blaTEM genotype
is the main genotype of E. coli from both the sources, while
blaSHV genotype is almost not detected, as contrary to the
abovementioned studies. The detection rate of TE resistance gene
tetC with 95.28% indicated that tetC is a common resistance
gene in E. coli in Shandong Province. Obviously, the existence
of tetC resistance gene is closely related to the long-term
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widespread use of TE drugs in treatment, prevention, and other
aspects (38). The presence of many complex types of drug
resistance genes in Shandong should lay a foundation for the
clinical prevention and treatment of the disease, which receive
enough attention.

In recent years, the detection rate of drug-resistant genes has
reached a new high level, and most are multi-genotype drug-
resistant strains. Zhu et al. (39) conducted a test of the drug
sensitivity of 50 strains of E. coli isolated and preserved in
the 1970s, and the results showed the strains being antibiotic-
sensitive to varying degrees and the presence of multiple drug-
resistant strains, and this trend was on the rise. Sellera et al. (40)
found that the rapid spread of MDR strains caused the public
choice of alternative antibiotics used in the control of bacteria.
The continuous emergence of drug resistance in E. coli and the
cross of drug-resistant genes result in the difficulty in the disease
prevention and treatment (41). Our finding was consistent with
the previous reports. The results of antibiotics of 106 strains of
E. coli showed that 98 strains were resistant to 3 or over 3 types
of 21 kinds of antibiotics, and multiple drug resistance reached
92.45%. The strains of 7 (15 strains)/5 (15 strains) drug-resistant
antibacterial spectra involved in 7/6 ST types with a distribution
in all the 5 detection regions (Supplementary Table 4). The two
kinds of drug-resistant antibacterial spectra were 28.30%. These
results indicated the severity of the multi-drug resistance rate of
E. coli in Shandong Province.

Regarding a few studies on ESBLs E. coli from animal and
food sources in China, in recent years, growing reports from
foreign investigators showed the potentiality of detecting the
same drug-resistant genes present in animals also in people who
are in close contact with animals (42–44). MLST can reflect
the evolutionary biology of bacteria. There is also a certain
correlation between the drug-resistant genes of E. coli and ST
types. Importantly, E. coli from human and animal sources
belonging to STs ST10, ST131, and ST648, has become multi-
potency and MDR bacteria, and ST10 (CTX-M-1) has been
previously found in livestock, poultry meat, and healthy humans
(45). Wang et al. (46) pointed out that ST10, ST218, ST3037,
ST744, ST6929, and ST48 all belong to CC10, and the ST10
group is considered to be the most prevalent ST group of ESBL-
producing E. coli from humans now. According to the related
reports, CCl0 is a common clone group of strains in livestock
(47). In line with this, ST10 was also found in ST type of E. coli
from both sources in this study. Among them, the two ST types
(ST10 and ST48) of JN belong to CC10 group. Similarly, the
detection of CCl0 in a large-scale fattening swine farm, together
with a local hospital case as a supplementary example, suggests
the possible occurrence of pathogen transmission from animal
to human in this area. Dissanayake et al. show that ST10, ST23,
ST95, ST117, and ST131 are the main popular ST types of
EXPEC (48), Among them, ST10 is the most common type in
human, poultry, and swine source EXPEC at home and abroad
(49, 50). In this study, the presence of ST1258 was detected in
JLW (6), TXT (11), JN (9), TDY1 (8), and TDY2 (8). As the
most common type of ST strains from swines, ST1258 has not
been found in the related literature of E. coli, while it has been
detected in Bacillus cereus (51), Acinetobacter dijkshoorniae (52),

and Streptococcus pneumoniae (53). There is an intimation that
attention should be paid to the epidemic of the type ST1258.
In conclusion, the results showed that the ST types of E. coli
collected in this experiment were complex and diverse, showing
a genetic diversity.

Furthermore, there is still a need for verifying which CCl0
and CC23 aggregation may pose the transmission risk to humans
through the food chain or not. Zhou et al. (54) found that the
ST type of swine ExPEC was classified into ST410, ST88, ST612,
ST2505, and ST2371, and was closely related to ST23, belonging
to CC23. ST23 is commonly found in human hemolytic uremia
syndrome (Expec) (O157:H7) and avian ExPEC (55, 56). In this
study, the ST type of the tested bacteria belonging to CC23 was
attributed to ST410 [TDY2 (2)] from swine and ST88 (1) from
Tai’an human, which was consistent with the abovementioned
conclusion. Although ST648 is not recognized as the main
prevalent ST type, it is also widely distributed in swine, human,
and poultry sources ExPEC (57). There no ST648 was found in
swines, but ST648 was found in humans [urine (2) and blood (2)].
To some extent, porcine E. coli has the same genetic background
as human and avian ExPEC. There was a certain correlation
between the ST types of swine E. coli, its antibiotic spectrum, and
resistance genotypes.

CONCLUSION

This study shows that the antibiotic resistance of E. coli is a
serious issue as represented by several fattening swine farms in
Shandong Province. The detection rate of clinical multi-drug
resistance is high, and the main types of Cs and β-lactamase
are mainly flor and blaTEM gene. The ST1258 is a novel popular
genotype in some swine herds in Shandong Province. The cluster
analysis showed that CCl0 and CC23 were the common CCs
from the two sources. Our results provide a theoretical basis for
guiding the rational use of antibiotics and preventing the spread
of drug-resistant bacteria, and also provide epidemiological data
for the risk analysis of foodborne bacteria and antimicrobial
resistance in swine farms in Shandong Province.
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