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Correlation of ultra-high field MRI 
with histopathology for evaluation 
of rectal cancer heterogeneity
Trang T. Pham   1,2,3, Timothy Stait-Gardner4, Cheok Soon Lee2,3,5,6, Michael Barton1,2,3, 
Petra L. Graham   7, Gary Liney1,2,3, Karen Wong1,2,3 & William S. Price   1,4,5

Current clinical MRI techniques in rectal cancer have limited ability to examine cancer stroma. The 
differentiation of tumour from desmoplasia or fibrous tissue remains a challenge. Standard MRI cannot 
differentiate stage T1 from T2 (invasion of muscularis propria) tumours. Diffusion tensor imaging (DTI) 
can probe tissue structure and organisation (anisotropy). The purpose of this study was to examine 
DTI-MRI derived imaging markers of rectal cancer stromal heterogeneity and tumour extent ex vivo. 
DTI-MRI at ultra-high magnetic field (11.7 tesla) was used to examine the stromal microstructure of 
malignant and normal rectal tissue ex vivo, and the findings were correlated with histopathology. 
Images obtained from DTI-MRI (A0, apparent diffusion coefficient and fractional anisotropy (FA)) were 
used to probe rectal cancer stromal heterogeneity. FA provided the best discrimination between cancer 
and desmoplasia, fibrous tissue and muscularis propria. Cancer had relatively isotropic diffusion (mean 
FA 0.14), whereas desmoplasia (FA 0.31) and fibrous tissue (FA 0.34) had anisotropic diffusion with 
significantly higher FA than cancer (p < 0.001). Tumour was distinguished from muscularis propria (FA 
0.61) which was highly anisotropic with higher FA than cancer (p < 0.001). This study showed that DTI-
MRI can assist in more accurately defining tumour extent in rectal cancer.

Standardised surgical technique with total mesorectal excision, and multimodality treatment strategies with neo-
adjuvant chemoradiotherapy have led to improved survival in rectal cancer1–3. In selected patients with early rec-
tal cancer, local excision may be an appropriate treatment option. Accurate pre-operative staging in rectal cancer 
is therefore of paramount importance in the selection of optimal surgical technique, and stratification of patients 
into those who can undergo surgery alone or those who would benefit from neoadjuvant chemoradiotherapy. 
Current clinical magnetic resonance imaging (MRI) techniques using T2-weighted imaging have an established 
role in the primary staging of rectal cancer, however, there are limitations with their use. Firstly, T2-weighted MRI 
is unable to accurately differentiate stage T1 (tumour invades submucosa) from stage T2 (tumour invades muscu-
laris propria) tumours4,5, and endoscopic ultrasound is currently the recommended imaging modality of choice 
by the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) to differentiate between T1 and 
T2 tumours if local resection is being considered4. Secondly, T2-weighted MRI has limited ability to examine the 
rectal cancer stromal microenvironment, and differentiation of tumour from desmoplastic reaction or fibrous 
tissue can be challenging. Stranding into the mesorectal fat is an equivocal sign that may indicate either a T2 
tumour with desmoplasia or a T3 (tumour invades through the muscularis propria into perirectal tissue) tumour 
with tumoural strands4. Functional MRI has the capability to non-invasively characterise tumour heterogeneity 
and its role in more accurate staging of rectal cancer should be further explored.

Tumour stroma evolves during cancer progression and is associated with increased extracellular matrix. The 
increased deposition of extracellular matrix (fibrosis) in tumours is known as desmoplasia, and characteristic of 
many advanced cancers6,7. Histopathologic studies in colorectal cancer have identified changes in the tumour 
stroma, including increased collagen fibril stiffness and anisotropy, compared to normal healthy mucosa8. Fibril 
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anisotropy (degree of organisation) may serve as a novel predictive stromal biomarker for cancer invasion and 
assist in more accurate staging in rectal cancer. Since the fibres cause anisotropic restriction of the diffusion of 
tissue water, diffusion tensor imaging (DTI) MRI may provide a non-invasive method for characterising such 
fibril anisotropy. DTI-MRI, which provides a rotationally invariant description of tissue diffusion for each voxel 
in the image, has the potential to supply additional information about the tumour stromal microenvironment. 
DTI-MRI can probe stromal microstructure and organisation (anisotropy). The apparent diffusion coefficient 
(ADC) and fractional anisotropy (FA) for each voxel can be calculated from the diffusion tensor measured for 
each voxel. Viable tumours restrict cellularity and water movement, resulting in a low ADC. FA may be useful for 
more accurate tumour delineation and detection of tumour invasion into tissues with highly structured organisa-
tion9. Most tumours typically exhibit relatively isotropic diffusion, whereas organised tissues exhibit anisotropic 
diffusion. To our knowledge, the potential clinical utility of DTI-MRI in rectal cancer has not yet been investi-
gated in the ex vivo or clinical settings.

We hypothesise that DTI-MRI can assess stromal heterogeneity in rectal cancer, thereby allowing for more 
accurate delineation of rectal cancer extent and staging. This paper examines the potential of DTI-MRI to char-
acterise fibril anisotropy as a probe of the stromal microenvironment and tumour extent. This proof of principle 
study was performed on an ultra-high field MRI at 11.7 tesla. The advantage of ultra-high field MRI is that the 
microscopic spatial (i.e., voxel) resolution (200 µm) can be used to reveal cancer microstructure ex vivo. This 
allows for direct correlation with ‘ground-truth’ histopathology analysis of the same tissue specimen.

The purpose of this exploratory study was to examine DTI-MRI derived imaging markers of rectal cancer 
stromal heterogeneity and tumour extent, ex vivo. Specifically, the stromal ultrastructure of rectal cancer and 
adjacent normal rectum was examined by high field strength DTI-MRI at 11.7 tesla ex vivo, and the MRI findings 
were correlated with histopathology.

Methods
Patients and biobank tissue collection.  Patients with biopsy proven rectal cancer undergoing rectal sur-
gery alone were eligible for this study. All patients who participated in this study provided written informed con-
sent. All study protocols were approved by the institutional ethics committee South Western Sydney Local Health 
District (SWSLHD) Human Research Ethics Committee (HREC) (Approval numbers: HREC/14/LPOOL/152, 
HREC/14/LPOOL/370, Local Project Number 14/209, SSA/14/LPOOL/371, SSA/14/LPOOL/372, H10843). All 
study methods were carried out in accordance with SWSLHD HREC approved study protocols and SWSLHD 
Centre for Oncology Education Research Translation (CONCERT) Biobank procedures10.

Tissue was collected from the surgical specimens of rectal cancer patients. Two fresh tissue specimens were 
collected from each patient’s surgical specimen: (i) full thickness (containing both mucosal and serosal surface) 
rectal cancer with peri-lesional adjacent normal rectum, and (ii) full thickness adjacent normal rectum tissue 
5–10 cm away from cancer. The specimens collected were up to 1.5 cm wide and 3 cm long, depending on the 
amount of tissue available for Biobank collection. Collected specimens were immediately fixed in 10% formalin 
for 24–48 hours. Tissue specimens were subsequently embedded in 1% agarose (1 g agarose in 100 ml distilled 
water) containing 2 mM gadopentetate dimeglumine (0.4 ml of Bayer Magnevist 0.5 M) for MR imaging. Care 
was taken to avoid tissue folding within the agarose gel. The orientation of mucosal and serosal surface in the MRI 
vial was marked. Photos were taken of gross specimens to document specimen orientation and aid in subsequent 
MRI – histopathology correlation.

Magnetic resonance imaging.  All rectal cancer and normal rectum tissue specimens were scanned on the 
Bruker Avance II 500 MHz (11.7 tesla) wide bore MRI spectrometer at the Western Sydney University Biomedical 
Magnetic Resonance Facility. The MRI vials were placed in the MRI bore with the specimen mucosal surface ori-
entated to the left, and serosal surface orientated to the right of the MRI bore. An initial 3-dimensional MRI with 
100 μm voxels (using Bruker’s TurboRARE-3D method with RARE factor 2, repetition time 300 ms, echo time 
10.34 ms, 90° excitation pulse and 4 averages) was acquired for some specimens to facilitate anatomical registra-
tion of MR images with histopathology until it was determined that the A0 data from the DTI scan was equally 
suitable for this task. Three-dimensional spin-echo DTI were acquired with isotropic voxel resolution of 200 μm 
with b-values 200, 800, and 3200 s/mm2. The FOV was 27 × 27 mm in the axial plane and typically between 12 and 
16 mm longitudinally depending on the length of the specimen. The echo time was 26 ms and repetition time was 
900 ms. Eight diffusion directions were acquired with 3 diffusion experiments per direction. One A0 (i.e., b = 0) 
image was acquired. The diffusion gradient separation was 15 ms, and diffusion gradient duration was 5 ms. No 
image acceleration such as echo-planar imaging (EPI) was used leading to relatively long experimental times 
between 41 and 67 hours.

Histopathology examination.  Following ex vivo MR imaging, the rectal cancer and normal rectum tissue 
specimens were histologically examined by light microscopy. Specimens were sectioned axially from mucosal sur-
face to serosal surface, as per conventional histopathology sectioning for diagnostic purposes. The slice thickness 
was 90 µm. Sections were mounted onto slides and stained with haematoxylin and eosin (H&E) stain, masson 
trichome stain and elastic Van Gieson (eVG) stain. Unmarked histopathology slides were scanned with an Aperio 
ScanScope Model CS digital scanner at 40× resolution. Histopathology slides could be viewed at any resolution 
up to a maximum resolution of 40× (0.25 µm/pixel) using the zoom window.

H&E stains were used to assess cancer and normal rectum ultrastructure. The masson trichome and eVG 
stains were used to analyse the extracellular matrix ultrastructure, and identify regions of desmoplasia and fibro-
sis. Histopathology assessment was undertaken by a pathologist with sub-specialisation in gastrointestinal pathol-
ogy. Regions of interest were annotated on the digital histopathology images, viewed via Aperio ImageScope 
(version 12.3.2.9013). The following regions of interest were annotated on rectal cancer digital histopathology 
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images: (a) cancer (b) cancer-associated desmoplasia (c) fibrous tissue and (d) non-malignant rectum (if present). 
The histologic sub-type and depth of carcinoma invasion into the rectal wall was also assessed. The following 
regions of interest were annotated on normal rectum digital histology images: (a) mucosa (b) submucosa (c) 
muscularis propria and (d) serosa. Any additional regions of interest that were identified in the histopathology 
specimen, such as granulation tissue, were also annotated.

MRI - Histopathology correlation and co-registration.  A pathologist sub-specialising in lower gas-
trointestinal malignancy, and a radiation oncologist with MRI expertise sub-specialising in lower gastrointestinal 
malignancy worked together to match the MRI with histopathology. Either the 3-dimensional MRI TurboRARE 
sequence or the A0 data from the DTI scan was used to select the MRI slice that visually matched with his-
topathology. As the MRI voxels acquired were isotropic, the MRI data could, through software processing, be 
visualised along arbitrary axes to ensure a good match with histopathology. The documented orientation of 
mucosal and serosal surfaces in the MRI vial, gross specimen images, and histopathology slicing direction (axial 
from mucosal to serosal surface) were used to indicate virtual slicing direction on MRI TurboRARE images to 
match the histopathology slice. The MRI TurboRARE dataset was aligned with the DTI-MRI dataset, allowing 
for automatic translation of the selected MRI TurboRARE slice to the corresponding DTI-MRI slice for anal-
ysis. Anatomic landmarks that were identifiable on both the MRI TurboRARE sequence and H&E slides were 
used to correlate MRI with histopathology. These landmarks included the specimen contour along the outer and 
inner rectal wall (including peaks and curvatures along the edges), mucosal surface, muscularis propria, serosal 
surface, and blood. A minimum of 7 landmarks were identified for MRI – histopathology correlation. Tissue 
regions, including tumour, fibrous tissue, desmoplasia, and rectal wall layers, identifiable on both modalities were 
contoured on corresponding DTI-MRI and histopathology images for subsequent evaluation of co-registration.

The DTI-MRI slice for analysis and annotated histopathology image were then co-registered to validate the 
visual match. A rigid co-registration method developed by Reynolds et al.11 was used to fuse the DTI-MRI slice 
with annotated histopathology using the MATLAB Image Processing Toolbox software R2018a version 16.4 
(MathWorks, Natick, United States). This co-registration method was previously quantitatively validated by 
Reynolds et al. and found to have a mean distance of 0.57 mm between control points after registration11. To 
initialise the registration between annotated histopathology and DTI-MRI, multiple control points were placed 
on the MR image and histopathology image. The pathologist and radiation oncologist worked in conjunction to 
select a minimum of 7 control points based on histopathology landmarks described above. The co-registration 
method used the co-ordinates of the control points to compute a similarity transformation, by minimising the 
Euclidean distance between the selected control points.

The ex vivo MRI – histopathology co-registration results were then qualitatively validated by the pathologist 
and radiation oncologist working in conjunction. This involved visual assessment of alignment on co-registered 
ex vivo MRI – histopathology of (i) anatomic landmarks used to drive registration, (ii) additional tissue regions of 
interest contours, including tumour, desmoplasia, fibrous tissue and rectal wall layers, independent of those used 
to drive registration, and (iii) geometry of the tissue specimen.

MRI analysis.  Histopathology was the standard reference for analysis. Regions of interest for analysis on 
annotated histopathology slides were identified on the matching DTI slice by visual inspection. MR image and 
quantitative measurements of DTI were performed in Amira 6 (FEI Visualization Sciences Group, Mérignac 
Cedex, France). The rectal tissue specimen was contoured on the selected DTI slice for analysis to provide a rectal 
mask. For MRI analysis, regions of interest were placed on cancer, desmoplasia, fibrous tissue, mucosa, submu-
cosa, and muscularis propria. All voxels within regions of interest were included for analysis. The A0, ADC and 
FA maps were generated from the DTI-MRI dataset and used to probe rectal cancer stromal heterogeneity. To 
completely determine the diffusion tensor, diffusion measurements along at least six non-collinear directions are 
required. A0 and ADC can both be acquired from a subset of directions but FA requires determination of the full 
diffusion tensor.

The signal intensity from the A0 images were obtained. ADC values were calculated using the formula 
ADC = (Dxx + Dyy + Dzz)/3 where Dxx, Dyy and Dzz are the diagonal elements of the diffusion tensor. The FA values 
were calculated using the formula
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where the λ1, λ2, λ3, and 〈λ〉 are the diffusion eigenvalues in three orthogonal directions and their average value, 
respectively12. FA maps were generated on a voxel-by-voxel basis with FA = 0 indicating isotropic diffusion (dis-
organised) and FA = 1 indicating anisotropic diffusion (organised) and provide a greyscale image of variations 
in fractional anisotropy. Direction encoded colour FA maps that show anisotropy in different colours according 
to the direction of the major axis were also produced; the colours green, blue and red were assigned to three 
orthogonal orientations.

Statistical analysis.  A linear mixed-effects model using a random intercept to control for repeated measures 
on the same individual was used to explore the relationship between estimated mean A0, ADC, and FA and tissue 
regions of interest. Following determination that the mean A0, ADC, and FA for at least one pair of tissue regions 
differed significantly, Dunnett’s multiple comparisons13 with control (cancer) methods were used to determine 
which tissue regions (if any) differed compared to cancer. A 5% significance level was used throughout the paper. 
The fold difference in A0, ADC and FA between cancer and other tissue regions was calculated using the ratio 
of mean values. Fold difference provides a useful unitless interpretation of the differences allowing comparison 
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between the MRI measurements. A number of packages within R version 3.5.1 (R Core Team 2018, Vienna, 
Austria) statistical software were used for all analyses.

Results
Patients.  A total of 10 rectal tissue specimens were collected by the SWSLHD CONCERT Biobank for this 
study from 5 patients with a diagnosis of rectal adenocarcinoma undergoing surgery. Three patients were male, 
two were female. The age range was 56–89 years. All patients had upper rectal tumours. All patients underwent 
primary surgery; 4 patients had an anterior resection and 1 had a pelvic exenteration. No patients had neoadju-
vant radiotherapy or chemotherapy. Nine rectal tissue specimens were analysed at 11.7 tesla. One normal rectal 
specimen which was analysed at 14 tesla was excluded.

MRI – Histopathology co-registration.  MR images and histopathology analysis showed that the tissue 
preparation method used in this study was able to maintain tissue integrity between MR scanning and histopa-
thology. The MRI – histopathology co-registration results shown in Fig. 1 confirmed good correlation between 
annotated MRI and histopathology. Qualitative assessment of the co-registration results demonstrated good 
alignment of anatomic landmarks used to drive registration, additional annotated regions of interest and tissue 
geometry between ex vivo MRI and histopathology (Fig. 1). The results demonstrated good geometric preser-
vation of the rectal specimens from MR analysis to histopathology analysis. The suspension of rectal specimens 
within the agarose gel allowed prevention of tissue folding during MR imaging. Our co-registration results 
showed there was a minimal amount of tissue fragmentation, which occurred at the step of histopathology slicing 

Figure 1.  MRI – Histopathology co-registration process. Images for co-registration process performed using a 
co-registration method developed by Reynolds et al.11. The diffusion tensor imaging fractional anisotropy (FA) 
map (first column) was fused with the annotated histopathology (middle column). The MRI-histopathology 
co-registration image in shown in the last column. (a) A region of fibrous tissue was contoured on FA map 
and histopathology. Evaluation of the co-registration results showed good correlation between MRI and 
histopathology. (b) A region of demosplasia annotated on the FA map (cross-hairs) and histopathology matched 
well on the MRI-histopathology image. There was a small triangular area of tissue fragmentation that occurred 
during histopathology slicing and mounting onto the slide. (c) The contoured regions of interest on FA map 
and histopathology match well on the co-registered image. Annotated regions were A cancer, B desmoplasia, 
C muscularis propria, D fibrous tissue and E mucosa. Mucosa was flattened on histopathology mounting, 
resulting in some co-registration discrepancy in this region. The results show the value of MRI in assessing the 
true geometry of the tissue, within minimal distortion, allowing for MRI-histopathology correlation.
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and mounting onto slides. The results show the value of MRI in being able to assess the true geometry of the spec-
imen and avoid fragmentation and distortion, thereby allowing for direct correlation with histopathology analysis 
of the same tissue sample after MR imaging.

Diffusion tensor imaging evaluation of rectal cancer stroma and adjacent normal rectum.  
Ultra-high resolution DTI-MRI was able to depict stromal heterogeneity in rectal cancer. Of the A0 images, 
ADC maps and diffusion encoded colour FA maps, the diffusion encoded colour FA maps provided the best 
contrast for depicting the different tissue regions of interest. The A0 images showed that cancer had a higher 
signal intensity compared to fibrous tissue (Fig. 2a). However, the differences between cancer and other tissue 
regions of interest were less obvious on qualitative evaluation of the A0 images. On the ADC maps it was difficult 
to differentiate the different tissue regions of interest on qualitative evaluation. The direction encoded colour 
FA maps exhibited relatively low signal intensity in regions of cancer, indicating relatively isotropic diffusion 
(Fig. 3). DTI-MRI allowed heterogeneity within the cancer stroma to be visualised, with regions of relatively high 
signal intensity corresponding to desmoplasia (Figs 2 and 4) or normal fibrous tissue (Figs 2 and 3) on direction 
encoded colour FA maps. Cancer invasion into muscularis propria (stage T2) was identifiable in the direction 
encoded colour FA map (Fig. 2). Muscularis propria was clearly distinguished from tumour, with muscularis 
propria having high signal intensity with highly anisotropic FA maps (Figs 2, 4 and 5). Muscularis propria, and its 
different muscular fibre orientations of the inner circular and outer longitudinal layers were able to be visualised 
on the direction encoded colour FA maps, and corresponded well with histopathology. Amongst the A0 images, 
ADC maps and direction encoded colour FA maps, muscularis propria was most clearly distinguished from can-
cer on the direction encoded colour FA maps.

A0, ADC and FA values of rectal cancer and adjacent normal rectum.  The DTI-MRI derived A0, 
ADC and FA mean estimate and standard error for rectal cancer and other tissue regions of interest are tabulated 
in Table 1. The A0 mean of cancer was significantly higher than all other tissue regions of interest (p < 0.001). 
The A0 image was most useful in discriminating between cancer and fibrous tissue (× 0.37 fold difference com-
pared with cancer). The ADC mean of cancer was significantly lower than desmoplasia (p = 0.046), fibrous tissue 
(p = 0.026), mucosa (p < 0.001) and submucosa (p < 0.001), and significantly higher than muscularis propria 
(p < 0.001). The ADC mean was useful in discriminating between cancer and submucosa (× 1.82 fold increase 
compared with cancer). However, the fold differences in ADC for cancer and other tissue regions were very 
small (× 0.93–1.09). The FA mean of cancer was significantly lower than desmoplasia, fibrous tissue, submucosa 
and muscularis propria (p < 0.001). The FA mean of cancer was low (0.14) indicating near-isotropic diffusion 
and lack of stromal organisation. Desmoplasia and fibrous tissue had moderate mean FA values (0.31, and 0.34, 
respectively), indicating some degree of tissue organisation. Muscularis propria had high mean FA value (0.61), 
indicating highly organised and anisotropic diffusion. FA was most useful in discriminating between cancer and 
desmoplasia (× 2.15 fold increase compared with cancer), fibrous tissue (× 2.37 fold increase compared with 
cancer), and muscularis propria (× 4.25 fold increase compared with cancer).

Figure 6 shows A0, ADC and FA box plots summaries for each tissue region of interest. The box plots sum-
marise the upper and lower quartiles, and median values. Of the A0, ADC and FA box plots, FA had the greatest 
separation of median values and interquartile ranges between cancer and desmoplasia, fibrous tissue and muscu-
laris propria. The box plots show that FA discriminates the most between cancer and desmoplasia, fibrous tissue, 
or muscularis propria.

Discussion
This exploratory MRI – histopathology correlative study demonstrated the ability of DTI-MRI to assess rectal 
cancer stromal heterogeneity and tumour extent ex vivo. The DTI-MRI derived A0, ADC and FA values were able 
to differentiate between cancer and other tissue regions (desmoplasia, fibrous tissue, mucosa, submucosa and 
muscularis propria). The A0 images were useful in discriminating between cancer and fibrous tissue. The differ-
ences in ADC values between cancer and other tissue regions were very small. The direction encoded colour FA 
maps and FA values provided the best discrimination between cancer and regions of desmoplasia, fibrous tissue 
and muscularis propria. DTI revealed that tumour is disorganised and consequently has relatively isotropic diffu-
sion (low FA). In contrast, desmoplasia and normal fibrous tissue have moderate stromal organisation and signif-
icantly higher FA than cancer. DTI was also useful in assessing the depth of tumour invasion into the rectal wall. 
DTI enabled clear differentiation of tumour from muscularis propria which was highly organised and anisotropic, 
allowing for detection of tumour infiltration into muscularis propria. This finding could be particularly useful in 
the differentiation between stage T1 and T2 tumours. This study has shown that FA constitutes a potential novel 
MRI biomarker of rectal cancer stromal organisation and infiltration ex vivo.

For each of the specimens three derived images were obtained from the DTI experiments, these being the 
A0, FA and ADC. Of these, the ADC and FA are derived from the diffusion tensor and are theoretically instru-
mentation independent. The A0 image is the intensity image when the diffusion gradients are zero. Its voxels are 
weighted by T1, T2 and proton density and its contrast is more dependent on the instrument and parameters. Thus 
the ADC and FA results are more suited to clinical translation as the contrast between tissue types should remain 
similar across instrumentation.

Our MRI – histopathology co-registration results demonstrated good correlation between MRI and histo-
pathology. This study demonstrated the value of MRI in assessing the true geometry of tissue with little defor-
mation. Tissue preparation and MRI scanning in this study resulted in no tissue destruction between imaging 
and histopathology, allowing for direct correlation with ‘ground-truth’ histopathology for analysis. The method 
of tissue fixation and suspension in agarose gel ensured preservation of tissue geometry and orientation from 
MR imaging to histopathology slicing resulting in a good match between MRI and histopathology. This study 
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Figure 2.  High field DTI-MRI and histopathology correlation results for rectal cancer tissue specimen 1. The 
DTI-MRI images shown are (a) A0, (b) ADC map, (c) direction encoded colour fractional anisotropy (FA) 
map, and (d) FA map. The corresponding histopathology is shown in (e) and (f). The annotated regions on the 
diffusion tensor image and histopathology (including zoomed images) are: A cancer B desmoplasia C cancer 
invasion into muscularis propria D fibrous tissue E muscularis propria inner circular layer F muscularis propria 
outer circular layer and G mucosa. The A0 image was able to identify the band of fibrous tissue which had lower 
signal intensity. Cancer appeared hypointense on the ADC map, indicating restricted diffusion in cancer. The 
direction encoded colour FA map was the best MRI image for distinguishing the different tissue regions of 
interest; cancer and muscularis propria were most clearly distinguished on this image.
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Figure 3.  High field DTI-MRI and histopathology correlation results for rectal cancer tissue specimen 2. (a) 
An MRI TurboRARE image was used as the reference image to obtain the same slice on the DTI-MRI dataset as 
histopathology for analysis. The DTI-MRI images shown are (b) A0, (c) ADC map, and (d) direction encoded 
colour fractional anisotropy map. (e) Histopathology haematoxylin and eosin (H&E) stain with a region of 
cancer zoomed in. (f) Histopathology masson trichome stain with a region of mature fibrous tissue zoomed 
in. The direction encoded colour fractional anisotropy map was the best DTI-MRI derived image to identify 
fibrous tissue within the cancer specimen; fibrous tissue had brighter signal intensity and higher fractional 
anisotropy value than cancer.
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used an ex vivo MRI – histopathology co-registration framework developed and validated by Reynolds et al.11. 
The quantitative validation of the co-registration method by Reynolds et al. demonstrated a mean distance of 
0.57 mm (range 0.06–1.99 mm) between the control points after registration. Various other MRI – histopathology 
correlation methods have been used in previous studies. Yamada et al. examined oesophageal and gastric cancer 
tissue ex vivo using DTI-MRI at 7 tesla14,15. They performed a qualitative visual correlation between MRI and his-
topathology, without formal co-registration, in their analysis. A technique for co-registration of in vivo MRI with 
histopathology in rectal cancer has been developed by Antunes et al.16. Antunes et al. imaged in vivo at 3 tesla. 
For in vivo imaging and histopathology co-registration, there are additional factors leading to tissue deformation 
that need to be considered. Rectal peristalsis in vivo, surgical removal of rectum and tissue fixation can lead to 
tissue deformation, shrinkage and distortion of tissue geometry between in vivo imaging and histopathology. 
A deformable registration process was used by Antunes et al. to overcome this. The spatial alignment strategies 
used in this study were similar to that used by Antunes et al., with both studies visually identifying landmarks 
on histopathology corresponding to edges or curvatures along the rectal wall to drive the MRI – histopathology 
co-registration procedure. Antunes et al. quantitatively validated their co-registration results by using additional 
independent landmarks. Their quantitative validation demonstrated excellent co-registration with overall devi-
ation of 1.50+/−0.63 mm between in vivo MRI and histopathology. The present study performed a qualitative 
validation of the co-registration. A quantitative validation of the co-registration results was not performed, as 
the co-registration method had previously been validated. The present study was performed at ultra-high field 
(11.7 tesla). A huge advantage of ultra-high field imaging is that the high resolution images allows excellent vis-
ualisation of tissue regions such as rectal wall layers and fibrous tissue, otherwise not seen at low field, to then 
validate co-registration results. Ultimately, the ‘microscopic’ resolution of images at ultra-high field allows visual 
confirmation of the co-registration results.

MRI plays an important role in the primary staging of rectal cancer, and is the staging imaging of choice. 
Despite the important role of conventional MRI for staging rectal cancer, there are some limitations. Conventional 
high spatial resolution T2-weighted MRI has moderate reproducible accuracy in the prediction of tumour stage 
of rectal cancer, with accuracy of 67% and 83% by 2 independent observers in a study by Beets-Tan et al.17 A 
study by Brown et al. found that the majority of disagreements between thin-slice T2-weighted MRI and his-
topathology were between T1 and T2 tumours, and between T2 and T3 tumours18. Conventional MRI is poor 
at separating stage T1 from stage T2 rectal tumours, making it inadequate in the selection of patients for local 
excision4,5,18,19. A desmoplastic reaction in rectal cancer can also pose challenges in accurate staging of rectal 

Figure 4.  High field MRI and histopathology correlation results for rectal cancer tissue specimen 3. The MRI 
images shown are (a) A0, (b) ADC map, and (c) direction encoded colour fractional anisotropy (FA) map. The 
annotated regions are diffusion tensor image and histopathology are: A cancer B desmoplasia C muscularis 
propria inner circular layer D muscularis propria outer longitudinal layer and E heterogeneous regions of 
granulation tissue and inflammation. The direction encoded colour FA map was the best image to distinguish 
the different tissue regions of interest; muscularis propria was clearly distinguished from cancer on this image.
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cancer, as desmoplastic stranding can appear similar to tumour on MRI, resulting in overestimation of tumour 
extent. The presence of fibrous tissue can also lead to staging difficulty as this has similar appearance to tumour 
on conventional T2-weighted MRI20. This study has shown that DTI-MRI was clearly able to differentiate cancer 
from muscularis propria. DTI-MRI was able to visualise tumour invasion into muscularis propria, with dis-
ruption of the muscularis propria at the invasive tumour front. In addition, DTI-MRI was able to assess can-
cer stromal heterogeneity and was able to distinguish desmoplasia or normal fibrous tissue, with these regions 
having significantly higher FA than cancer. FA was able to characterise fibril anisotropy as a probe of stromal 
microenvironment.

This study has also shown the power of quantitative analysis of DTI-MRI in detecting differences in A0, ADC 
and FA between cancer and other tissue regions that were not obvious on qualitative review of the images. The FA 
value for cancer was significantly different compared with all other tissue regions, except mucosa. DTI-MRI may 
add value in more accurately defining tumour extent in rectal cancer which would assist with surgical planning 
and warrants further investigation. Yamada et al. have examined DTI-MRI at 7 tesla in oesophageal and gastric 

Figure 5.  High field MRI and histopathology correlation for adjacent normal rectum tissue. The muscularis 
propria layer was most clearly identified on the direction encoded colour FA map.

Tissue region of 
interest

A0 ADC FA

Mean (SE) and p-value 
for comparison with 
cancer

Fold difference 
compared with 
cancer

Mean (SE) and p-value 
for comparison with 
cancer

Fold difference 
compared with 
cancer

Mean (SE) and p-value 
for comparison with 
cancer

Fold difference 
compared with 
cancer

Cancer 12405 (693) 0.002508 (0.00018) 0.1441 (0.011)

Desmoplasia 8346 (766)
p < 0.001 × 0.67 0.002736 (0.00019)

p = 0.046 × 1.09 0.3096 (0.016)
p < 0.001 × 2.15

Fibrous tissue 4646 (723)
p < 0.001 × 0.37 0.002680 (0.00019)

p = 0.026 × 1.07 0.3413 (0.013)
p < 0.001 × 2.37

Mucosa 10543 (708)
p < 0.001 × 0.85 0.002751 (0.00018)

p < 0.001 × 1.09 0.1389 (0.012)
p = 0.956 × 0.96

Submucosa 9612 (712)
p < 0.001 × 0.77 0.004567 (0.00018)

p < 0.001 × 1.82 0.1849 (0.012)
p < 0.001 × 1.28

Muscularis propria 9896 (692)
p < 0.001 × 0.80 0.002329 (0.00018)

p < 0.001 × 0.93 0.6127 (0.011)
p < 0.0001 × 4.25

Table 1.  Estimated A0, apparent diffusion co-efficient (ADC), and fractional anisotropy (FA) means and 
standard errors (SE) (from the linear mixed effects model) for each tissue region of interest with p-values from 
Dunnett’s multiple comparison with cancer, and fold difference compared with cancer.
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cancers ex vivo and found that DTI was a feasible means of evaluating mural depth of invasion14,15,21. To the best 
of our knowledge, there are no other published studies examining the role of DTI-MRI in rectal cancer.

This study was performed on an ultra-high field 11.7 tesla MRI, with a magnet bore size of 89 mm. An advan-
tage of higher field is the approximately linear increase in signal, resulting in the potential to acquire data with 

Figure 6.  Box plots of (a) A0, (b) apparent diffusion co-efficient (ADC) and (c) fractional anisotropy 
(FA) values for each tissue region of interest for all patients. The boxes represent the 25th to 75th percentile 
(interquartile range), the lines within the box represent the median values and the whiskers show the range 
of values. The dots are outliers. The box plots showed that FA had the clearest contrast between cancer and 
desmoplasia, fibrous tissue and muscularis propria.
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improved spatial resolution. An increase in signal-to-noise ratio is also important for functional imaging tech-
niques. Most clinical MRI systems are now available at both 1.5 and 3 tesla, and it is anticipated that over the next 
decade the market share of clinical MRI systems will change toward higher field strengths22. Human MRI scan-
ners at 7 tesla have been installed in recent years23,24. Preliminary results from human brain MRI studies at 9.4 
tesla have indicated that safe and successful human imaging is feasible at even higher field strengths25. Ongoing 
work into increasing the field strengths of clinical MRI scanners and the adoption of clinical 7 tesla MRI scanners, 
should facilitate the translation of this DTI-MRI protocol to clinical usage.

This study focused on the potential of DTI-MRI in the differentiation of stromal heterogeneity and primary 
staging of rectal cancer. Our results demonstrated the feasibility of DTI-MRI in distinguishing fibrosis from 
tumour. We propose that this finding could be useful in the assessment of chemoradiotherapy response and 
should be investigated in this setting. In patients who have received neoadjuvant chemoradiotherapy, the role 
of diffusion weighted imaging (DWI) in the clinical assessment of response is emerging26–32. However, the dif-
ferentiation of radiotherapy-induced fibrosis from residual tumour on T2-weighted and DWI-MRI remains a 
challenge33. Radiotherapy-induced fibrosis can result in restricted diffusion that is detectable in DWI, mimicking 
the appearance of residual tumour and making it difficult to correctly identify pathologic complete responders 
to chemoradiotherapy. Jang et al. found that 42% of patients with pathologic complete response had restricted 
diffusion on DWI-MRI, and that radiotherapy-induced fibrosis was a significant predictor of diffusion restriction. 
The potential of DTI-MRI has not yet been investigated in patients who have received neoadjuvant radiotherapy; 
whether DTI-MRI can add value to current clinical MRI techniques in distinguishing residual tumour from 
fibrosis and contribute to radiotherapy response assessment should be investigated.

There were a number of limitations in this study. Firstly, the sample size in this study was small due to the lim-
ited number of rectal cancer patients participating in CONCERT Biobank. Secondly, this study did not compare 
DTI-MRI with standard T2-weighted MRI. A future study with a larger sample size would enable assessment of 
the accuracy (sensitivity and specificity) of DTI-MRI in defining tumour extent in rectal cancer compared with 
conventional T2-weighted MRI. Thirdly, the scan time was considerably long. Reducing the number of b-values 
and utilising image acceleration would substantially reduce the scan time. We are currently working on further 
DTI-MRI experiments at 7 and 9.4 tesla fields to facilitate clinical translation of our findings.

In conclusion, this exploratory MRI-histopathology correlative study demonstrated the ability of DTI-MRI to 
examine rectal cancer stromal heterogeneity and tumour extent at high field ex vivo. DTI-MRI derived A0, ADC 
and FA values made it possible to probe rectal cancer stromal heterogeneity. FA provided the best discrimination 
between cancer and desmoplasia, fibrous tissue and muscularis propria. This study has shown that FA is a poten-
tial novel biomarker of rectal cancer stromal organisation and tumour infiltration, ex vivo. DTI-MRI at 11.7 tesla 
was able to differentiate tumour regions from desmoplasia or fibrous tissue ex vivo; cancer had relatively isotropic 
diffusion, whereas regions of desmoplasia or fibrous tissue had anisotropic diffusion with higher FA than cancer. 
DTI-MRI was also useful in assessing extent of tumour infiltration into the rectal wall. DTI was able to identify 
cancer invasion into muscularis propria, which was highly anisotropic and clearly able to be distinguished from 
tumour. Thus, DTI-MRI may provide clear characterisation of tumour stromal heterogeneity and accurate delin-
eation of tumour extent in rectal cancer and warrants further investigation.
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