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Purpose: Digital pathology is becoming an increasingly popular area of advancement in both research and clinically.
Pathologists are now able to manage and interpret slides digitally, as well as collaborate with external pathologists
with digital copies of slides. Differences in slide scanners include variation in resolution, image contrast, and optical
properties, which may influence downstream image processing. This study tested the hypothesis that varying slide
scanners would result in differences in computed pathomic features on prostate cancer whole mount slides.
Design: This study collected 192 unique tissue slides from 30 patients following prostatectomy. Tissue samples were
paraffin-embedded, stained for hematoxylin and eosin (H&E), and digitized using 3 different scanning microscopes
at the highest available magnification rate, for a total of 3 digitized slides per tissue slide. These scanners included a
(S1) Nikon microscope equipped with an automated sliding stage, an (S2) Olympus VS120 slide scanner, and a (S3)
Huron TissueScope LE scanner. A color deconvolution algorithm was then used to optimize contrast by projecting
the RGB image into color channels representing optical stain density. The resulting intensity standardized images
were then computationally processed to segment tissue and calculate pathomic features including lumen, stroma, ep-
ithelium, and epithelial cell density, as well as second-order features including lumen area and roundness; epithelial
area, roundness, and wall thickness; and cell fraction. For each tested feature, mean values of that feature per digitized
slide were collected and compared across slide scanners using mixed effect models, fit to compare differences in the
tested feature associated with all slide scanners for each slide, including a random effect of subject with a nested ran-
dom effect of slide to account for repeated measures. Similar models were also computed for tissue densities to exam-
ine how differences in scanner impact downstream processing.
Results: Each mean color channel intensity (i.e., Red, Green, Blue) differed between slide scanners (all P<.001). Of the
color deconvolved images, only the hematoxylin channel was similar in all 3 scanners (all P>.05). Lumen and stroma
densities between S3 and S1 slides, and epithelial cell density between S3 and S2 (P>.05) were comparable but all
other comparisons were significantly different (P<.05). The second-order features were found to be comparable for
all scanner comparisons, except for lumen area and epithelium area.
Conclusion:This study demonstrates that both optical and computed properties of digitized histological samples are im-
pacted by slide scanner differences. Future research is warranted to better understand which scanner properties influ-
ence the tissue segmentation process and to develop harmonization techniques for comparing data across multiple
slide scanners.
Introduction

Whole slide images (WSI) result from the use of microscopes for digitiz-
ing glass slides with histology samples. Digital pathology has become
increasingly popular in recent years, as it enables fast acquisition, manage-
ment, and interpretation of histology.1,2 Digitization of standard glass
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histology slides has allowed for pathologists to interpret slides at high reso-
lutions that aid in interpretation and diagnosis of pathology. Digital slides
are also more manageable for storing and sharing slides with external
collaborators, training and diagnostic support, and treatment planning of
various diseases.3With the onset of digital pathology, additional opportuni-
ties have arisen into pathology workflows, which include computational
e, WI 53226, USA.
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Table 1
Clinicopathological information for patient cohort (n=30).

Age at RP, years (mean, SD) 58.2 (5.9)
Race (n, %) (n=77)
African American 7 (23)
White/Caucasian 23 (77)
Preoperative PSA, ng/mL (n, %)
<6 16 (53)
≥6–10 6 (20)
≥10–20 6 (20)
≥20–30 2 (7)
Grade group at RP (n, %)
6 9 (30)
3+4 16 (53)
4+3 2 (7)
8 0 (0)
≥9 3 (10)
Clinical stage (n, %)
T1 27 (90)
T2 3 (10)
Surgical stage (n, %)
2a,b 4 (13)
2c 18 (60)
3a,b 8 (27)
CAPRA score
0–2 11 (37)
3–5 13 (43)
>5 6 (20)
Cribriform presence (n, %)
Present 4 (13)
Not present 26 (87)
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algorithms and applications of artificial intelligence.4–6 Features of histo-
logical images (i.e., cells, glands, or glomeruli) can be segmented and
hand-crafted features, or pathomic features, can be calculated to create dig-
ital imaging signatures that can capture morphology, texture, or other
higher-order and spatial features.7

Whole slide imaging has increased adoption among pathologists, pa-
thology departments, and research scientists, especially over the few
years.8 Previous studies have found that pathologists’ comfort in making
a primary diagnosis with or without access to traditional glass slides has in-
creased from 54% and 23% in 2018 to 90% and 60% in 2020.9,10 This com-
fort is in no small part associated with technical developments including
state-of-the-art optics and robotics,8 as well as increased computer process-
ing power, data transfer speeds, software development, and cloud
storage solutions.11 With these advancements, WSI has been used for
telepathology, consultation, tumor boards, and archiving slides before
they get sacrificed to use for molecular studies.12 Additionally, WSI allows
for comparisons of the same slide with multiple immunohistochemical
staining.13

While the potential benefits of digital pathology are plentiful, there are
major technical drawbacks involving image processing associated with
computationally quantifying pathomic features, which, at scale, can be a
time-expensive process.11,14,15 Slide scanners have advanced optical sen-
sors but vary between manufacturers. Differing light sources, robotics for
automatically focusing, loading, and moving slides while scanning, and
lens magnification and resolution can cause inconsistencies across manu-
facturers and impact the resulting optical properties of the final digitized
image.16–18 Additionally, the slide scanning process varies between ven-
dors such as tile and line scanning techniques and area scanning, which
can create artifacts in digital images. Changing the light source of an
image can impact tissue segmentation that relies on specific color proper-
ties (i.e., RGB values at specified thresholds). Blurs on digitized histology
due to manual adjustment of slides can hinder visualization of glandular
figures, becoming especially problematic if blurs occur over regions of can-
cerous glands. Additionally, resolution is not only meaningful when quali-
tatively assessing digitized histology to determine cancers regions from
non-cancer or grading tumor extent based on glandular properties, but it
also fundamental in using image processing algorithms to automatically
segment slides. Images with lower resolution may create difficulties in dif-
ferentiating one gland from the next, especially while using an automated
image processing algorithm such as those used bymachine- and deep learn-
ing models. These changes in optics and image acquisition can hinder
generalizability of image characteristics as well as automated image
processing. These are all factors that must be considered when picking
the right slide scanner for a pathologist’s needs.

As technology advances and equipment is upgraded, it is not always fea-
sible to rescan every patient slide for new analyses. Not only due to the time
requirement, but it is also essential to have the storage capacity to house the
very large image size that results from each newly scanned slide.16,19 There-
fore, this study sought to determine whether the optical properties
(i.e., brightness, contrast, shadows, etc.) of 3 unique digital slide scanners
would differ across prostate cancer histology slides, each scanned on all 3
scanners, and if downstream computed pathomic features would be im-
pacted. Specifically, we tested the hypothesis that image RGB color proper-
ties, which are directly impacted by the optical properties of the slide
scanner, and resolution would vary across slide scanners, but quantitative
pathomic features calculated across whole slide images would see better
concordance across scanners.

Materials & methods

Patient population

Data from 30 prospectively recruited patients (mean age 58.2 years,
range 45–69 years)with pathologically confirmed prostate cancer undergo-
ing radical prostatectomy between 2014 and 2016 were analyzed for this
institutional review board (IRB) approved study. Prostate cancer histology
2

was chosen to investigate in this study as whole organ resection and digiti-
zation is readily available in our lab, and these slides provide a variety of
histological properties that can be evaluated. Written informed consent
was obtained from all patients. Patients underwent multi-parametric mag-
netic resonance imaging (MP-MRI), including T2-weighted imaging, prior
to prostatectomy on a 3T MRI scanner (General Electric, Waukesha, WI,
USA) using an endorectal coil. Inclusion criteria for this cohort included
digitized histology on 3 separate slide scanners. Demographic information
for the study cohort can found in Table 1.

Surgery and tissue processing

Radical prostatectomywas performed using the da Vinci robotic system
(Intuitive Surgical, Sunnyvale, CA, USA) by a single fellowship-trained sur-
geon (KJ) approximately 2 weeks following imaging.20,21 Whole prostates
were formalin-fixed overnight, inked, and sectioned using a custom 3D
printed slicing jig22 in 3–4 mm thick slices to match the slice thickness
and orientation of the patient’s MRI. Tissue sections were processed,
paraffin-embedded, and slides from tissue sections were created at 4 mi-
crons and stained for hematoxylin and eosin (H&E) in our histology core
lab. A total of 192 stained slides were scanned at 40× magnification on a
Nikon (S1) (Nikon Metrology, Brighton, MI, USA), Olympus (S2) (Olympus
Corporation, Tokyo, Japan), and Huron (S3) (Huron Digital Pathology,
Ontario, Canada) sliding stage microscopes at resolutions of 0.85 μm/px,
0.35 μm/pix, and 0.2 μm/px, respectively, for a total of 3 digitization per
slide. These slide scanners were chosen for this study as our equipment
has been upgraded as our lab has evolved over the last decade.

The S1 and S2 slideswere then histogram-matched to the S3 slides using
their discrete cumulative distribution functions (CDFs). Briefly, the Matlab
2021b’s (Mathworks, Inc., Natick, MA, USA) imhist function was used to
compute the histogram of each image. CDFs were calculated by dividing
the cumulative sum of the histogram by the number of elements in each
image. A mapping transform was computed to align the intensity from
the S1 or S2 image to the S3 image intensity. Upon visual inspection, this
process appeared to have accurately transformed the lower resolution im-
ages to the intensity of the S3 image. These histogram-matched images
were then used to determine if optical differences between scanners can



Fig. 1.Tissue processing: T2W image is used to create slicing jigs that correspond to theMRI slice. Tissuewas then scanned on all 3 slide scanners. The lower resolution S1 and
S2 images were histogram-matched to the S3 slides (i.e., S1-3 and S2-3). A graphical representation of this is shown in the center bottom row, with each line representing a
color channel from each individual slide scanner. Initially, histogram intensities are widely disbursed, however, upon matching, the color channel from each slide scanner is
better synced across images. Importantly, you can see on these example slides the differences between the end quality of each slide (i.e., banding on S1, cut off edges on S2,
high resolution of S3).
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be corrected for pre-processing. Fig. 1 shows an example slide scanned on
each of the scanners and histogram-matched slides.

Slide scanner descriptions

The Nikon Eclipse 80i upright microscope (S1) was designed to bridge
the gap between clinical and research markets (www.microscopyu.com).
This scanner could scan one 1”×3” slide in approximately 45 min at
40× magnification and 0.85 μm/px resolution. These slides required
manual focus adjustments while scanning and images were exported as
tile-based JPEGS (all tiles combined equate to roughly 2GB per slide).
Post-processing of these individual tiles included stitching together all
tiles to create a final whole slide image, and a white correction was com-
pleted using a median of 15 tissue-free tiles to normalize image color. All
post-processing was completed in Matlab. Due to the manual adjustments
of the slide scanning process, these slides were subject to several artifacts
including shadows and banding.

The Olympus VS120 digital slide scanner (S2) creates high resolution
brightfield images with a robustly designed slider loader (www.olympus-
lifescience.com). This scanner can two 1”×3” slides and uses the VS-ASW
acquisition software. This scanner generates a focusmap using an autofocus
function, which allows for optimal Z-position to be determined and creates
images with high-level color fidelity and image quality. Scans are limited to
the specimen area using an automatic specimen recognition function. This
scanner uses an automatic specimen recognition function, whichminimizes
stitching errors by automatically by capturing images of consecutive areas
where only the specimen exists. The scanner takes roughly 5 min to scan
a slide at 40× magnification, and images at 0.34 μm/pix resolution are
exported as 3–4 GBVSI files. These files were then transformed to a TIFF
file for image processing.

The Huron TissueScope LE120 (S3) is a high throughput line-based
scanner, which captures images of the tissue in strips and stitches them to-
gether (www.hurondigitalpathology.com). This scanner can scan up to 120
standard 1”×3” slides or 30–60 2”×3”whole mount slides. It is connected
to a Windows computer running the TissueScope software developed by
Huron Digital Pathology, which facilitates the scanning of slides. Glass
slides are loaded into slide holders and placed in up to 10 racks in the
hotel. A mechanical arm moves the slide holders from the hotel to the
stage with a bright field light source. Preview is started and low-
resolution images of the slides are taken, after which regions of interest
can be selected, white balance can be set, and focus points can be placed.
3

The scanner takes approximately 20–30 min to scan a slide at 40×magni-
fication, and images at 0.2 μm/px resolution are exported as 8–25GB TIFFs.

RGB channels and color deconvolution

After digitization, both raw and histogram-matches images were proc-
essed in Matlab to isolate red, green, and blue color channels from each
slide. These individual channels were used to calculate differences in the
simplest image properties across scanners. A color deconvolution algorithm
was then applied to both raw and histogram-matched images to project
color data in terms of relative stain intensities, resulting in an image with
color channels that represent hematoxylin, eosin, and residual color infor-
mation (HER).23,24 These color deconvolved channels were likewise iso-
lated to test whether a color deconvolved image could correct for any
RGB heterogeneity between scanners (Fig. 2).

Histomorphometric feature calculation

Custom, in-house Matlab pipelines were developed using histology dig-
itized on all 3 slide scanners to account for optical and resolution differ-
ences. As the resolution of the 3 slide scanners differed greatly (range
0.85–0.2 μm/px), designing these pipelines to account for resolution differ-
ences was critical to not over- or under-process images. These pipelines
were employed to segment histological features for quantitative analysis
from whole slide images. Optical differences including banding and bright-
ness were addressed in these pipelines to create the best possible segmenta-
tions across the 3 slide scanners. First, images were down sampled by a
factor of 2 to decrease processing time and to smooth color information.
This downsampling factor was chosen as it created the smallest file size to
be processed while maintaining clear image resolution. Next, the color
deconvolution algorithm previously described was employed to project
RGB color data from the slides in terms of relative stain intensities
(i.e., positive hematoxylin or eosin and the residual).23 This allowed for
rapid segmentation of stroma, epithelium, and lumen based on their corre-
sponding stain optical properties rather than RGB value, which upon visual
inspection proved to create better histology masks. Additionally, a tissue
mask of the entire whole slide image without background was created by
converting the WSI to grayscale and thresholding the image to capture
the histology. These masks were then filtered and de-noised using built-in
Matlab functions from the Image Processing Toolbox to segment the features
more accurately for feature calculation. First-order features including
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Fig. 2. RGB and HER color channels: An example slide scanned on the S1 (top), S2 (middle), and S3 (bottom) slide scanners. On the left, the raw RGB color channels are
displayed (all scale 0–255) and shown on the right are the color deconvolved image channels (all scale 0–1).
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lumen, stromal, epithelial, and epithelial cell densities were first calculated
from their respective masks (Fig. 3) by calculating the area of the mask and
dividing it by the sum of the tissue mask. Second-order pathomic features
were calculated at the glandular level including lumen roundness and
area; epithelial roundness, area, and wall thickness; and cell fraction, or
the ratio of epithelial cells per total gland area excluding the lumen. Briefly,
lumen were individually labeled using Matlab’s bwlabel function, bound-
aries were traced using bwboundaries, and regionpropswas utilized to calcu-
late the area of each lumen. Roundness was calculated using this area and
the perimeter of the lumen defined by bwboundaries. This process was re-
peated for the epithelium mask. Epithelial wall thickness was defined
using the calculated boundaries and taken as the minimum difference
Fig. 3. First-order features: First-order density features overlaid on their respe

4

from the inner and outer edges of the gland (Fig. 4). First- and
second-order feature maps for histogram-matched images can be found in
Supplemental Figs. 1 and 2. All comparisons can be visualized on and addi-
tional four slides in Supplemental Fig. 3.

Statistical analysis

To evaluate the effect of slide scanner differences on downstream fea-
ture calculations, linear mixed models were fit for the mean, variance,
skewness, and kurtosis of each: (1) RGB color channel, (2) color
deconvolved channel, (3) first-order feature density, and (4) second-order
pathomic features, controlling for slide nested with patient. A total of 10
ctive S1 (top), S2 (middle), and S3 (bottom) slide scanners (all scale 0–1).



Fig. 4. Second-order features: Second-order pathomic features calculated across the whole slide images for the S1 (top), S2 (middle), and S3 (bottom) slide scanners. Each
feature is displayed using the same color scale per scanner type. Units for lumen and epithelium areas are mm2; wall thickness is in mm; lumen and epithelium roundness
and cell fraction are all unitless.
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scanner comparisons were completed across moment distribution calcula-
tions when looking at S1, S2, S3, and histogram-matched S1-3 and S2-3
images. A P-value <.05 was considered statistically significant.

Results

Each of the linear mixed models by scanner and moment of distribu-
tion elicited varying results. Detailed, pairwise comparisons across
slide scanners and histogram-matched images for the RGB, color
deconvoluted, first-, and second-order feature calculations are detailed
to follow.

Mean results tables can be found in subsequent sections; variance,
skewness, and kurtosis full results can be found in Supplemental
Tables 2–3.

Color channels

Generally, across all 4 moments of distribution (i.e., mean, variance,
skewness, and kurtosis), significant differences were observed between
the 3 slide scanners and 2 histogram-matched slides. Both RGB and HER
channel pairwise comparisons are described in the following sections, orga-
nized by specific analyses (Table 2). Mean distribution comparisons can
also be visualized in Fig. 5.

Most RGB comparisons across scanners were significantly different
(P<.05). Across the Red channel, S1 v S1-3mean and variance; kurtosis
S1 v S2; skewness and kurtosis S1-3 v S2-3; and variance across S1 v S3
and S2 v S2-3 were all not significantly different (all P>.05). Green
channel S2 v S2-3 variance, S2 v S3 skewness, and S1-3 v S2-3 skewness
and kurtosis; and Blue channel S2 v S2-3 variance, S1 v S2 skewness, S1
v S3 kurtosis, and S1-3 v S2-3 skewness and kurtosis were also all
comparable.

Likewise, most HER comparisons were significantly different across
scanners (P<.05). S2 v S3mean and variance in hematoxylin and skewness
in eosin were not significantly different. Variance and skewness in hema-
toxylin across S3 v S1-3were also not significantly different. Residual com-
parisons in hematoxylin across S2 v S3, S2 v S1-3, and S3 v S2-3 were all
comparable. Additionally, mean S1 v S1-3 in eosin and residual, and S2 v
S2-3 skewness in residual were similar. Kurtosis measurements were com-
parable in S1 v S2-3 and S1-3 v S2-3 hematoxylin, S3 v S2-3 eosin, and S2
v S1-3 residual. Finally, no significant differences were observed in eosin
variance, but all residual variance were (P<.001).
5

First-order features

First-order features saw greater concordance between scanner compar-
isons as compared to the color channels; however, a great number of differ-
ences were still observed. Mean scanner comparisons can be visualized in
Fig. 6 and are detailed in Table 3.

Mean and variance in lumen and epithelial densities were all signifi-
cantly different, except for S2 v S3 lumen density variance. Variance in ep-
ithelial cell densities was also only comparable in S2 v S3 (all else P<.001).
Additionally, all epithelial density skewness and S1 kurtosis comparisons
were significantly different. All mean S1 epithelial cell densities were sig-
nificantly different (all P<.001), as well as S3 v S1, S2, and S1-3 kurtosis
(all P<.05). However, skewness in S1 and S2 v S2-3 were the only similar
scanner comparisons (all P>.05). Lumen density skewness and kurtosis
saw higher level of agreement where only skewness comparisons across
S1-3 except for S2-3, and skewness and kurtosis across all S2 comparisons
except S1 were significantly different (all P<.05). Stromal density mean
and variance between S1 v S3, as well as S1-3 v S2-3 stromal variance, skew-
ness, and kurtosis were comparable. Finally, mean S2 v S1-3, S2 v S3 skew-
ness and kurtosis, and kurtosis in S1 v S2were all not significantly different.

Second-order features

Second-order features were the most harmonious of the tested features.
Mean scanner comparisons across these features are shown in Fig. 7 and de-
scribed in Table 4. No significant differences were found in mean or vari-
ance measurements in lumen roundness and area, epithelium roundness
andwall thickness, and cell fraction. Additionally, no significant differences
were observed in cell fraction or epithelium area kurtosis, or variance in
lumen area.

Skewness and kurtosis were significantly different in all lumen round-
ness measurements (P<.001) except for S1-3 v S2-3, as well as all epithe-
lium roundness across S2 v S1-3 and S2-3 (P<.05). Significant differences
were observed in lumen area across mean S3 v S1-3 and S2-3, as well as
S1-3 v S2-3. Similarly, lumen area skewness was significantly different
across S1 v S3 and S2-3, S2 v S3, and S1-3 v S2-3. All S2 lumen areas kurtosis
comparisonswere also different (P<.05). Skewnessmeasurementswere sig-
nificantly different across all epithelium area S2 comparisons (all P<.05);
epithelium roundness across S1-3 and S2-3 v S1, S2, and S3 (all P<.001);
all epithelial wall thickness comparisons except S1 v S2-3. Epithelial wall
thickness kurtosis measurements were also significantly different between



Table 2
Color channel results from linear mixed models using mean values as input for each of the tested features. Abbrev., S1=Nikon, S2=Olympus, Huron=S3, S1-3=Nikon-Huron
histogram match, S2-3=Olympus-Huron histogram match.

Feature Scanner Mean difference Std. error df P-value 95% confidence interval

Lower bound Upper bound

Red S3 S1-3 1.95 0.61 764.00 <.001 0.75 3.16
S1 3.03 0.61 764.00 <.001 1.82 4.23
S2-3 19.79 0.61 764.00 <.001 18.58 20.99
S2 14.24 0.61 764.00 <.001 13.03 15.45

S1-3 S3 -1.95 0.61 764.00 <.001 -3.16 -0.75
S1 1.08 0.61 764.00 .08 -0.13 2.28
S2-3 17.84 0.61 764.00 <.001 16.63 19.04
S2 12.29 0.61 764.00 <.001 11.08 13.49

S1 S3 -3.03 0.61 764.00 <.001 -4.23 -1.82
S1-3 -1.08 0.61 764.00 .08 -2.28 0.13
S2-3 16.76 0.61 764.00 <.001 15.55 17.97
S2 11.21 0.61 764.00 <.001 10.00 12.42

S2-3 S3 -19.79 0.61 764.00 <.001 -20.99 -18.58
S1-3 -17.84 0.61 764.00 <.001 -19.04 -16.63
S1 -16.76 0.61 764.00 <.001 -17.97 -15.55
S2 -5.55 0.61 764.00 <.001 -6.75 -4.34

S2 S3 -14.24 0.61 764.00 <.001 -15.45 -13.03
S1-3 -12.29 0.61 764.00 <.001 -13.49 -11.08
S1 -11.21 0.61 764.00 <.001 -12.42 -10.00
S2-3 5.55 0.61 764.00 <.001 4.34 6.75

Green S3 S1-3 -29.33 0.74 764.00 <.001 -30.77 -27.88
S1 -27.24 0.74 764.00 <.001 -28.69 -25.80
S2-3 10.03 0.74 764.00 <.001 8.59 11.48
S2 6.73 0.74 764.00 <.001 5.28 8.17

S1-3 S3 29.33 0.74 764.00 <.001 27.88 30.77
S1 2.08 0.74 764.00 <.001 0.63 3.53
S2-3 39.36 0.74 764.00 <.001 37.91 40.81
S2 36.05 0.74 764.00 <.001 34.60 37.50

S1 S3 27.24 0.74 764.00 <.001 25.80 28.69
S1-3 -2.08 0.74 764.00 <.001 -3.53 -0.63
S2-3 37.28 0.74 764.00 <.001 35.83 38.72
S2 33.97 0.74 764.00 <.001 32.52 35.42

S2-3 S3 -10.03 0.74 764.00 <.001 -11.48 -8.59
S1-3 -39.36 0.74 764.00 <.001 -40.81 -37.91
S1 -37.28 0.74 764.00 <.001 -38.72 -35.83
S2 -3.31 0.74 764.00 <.001 -4.76 -1.86

S2 S3 -6.73 0.74 764.00 <.001 -8.17 -5.28
S1-3 -36.05 0.74 764.00 <.001 -37.50 -34.60
S1 -33.97 0.74 764.00 <.001 -35.42 -32.52
S2-3 3.31 0.74 764.00 <.001 1.86 4.76

Blue S3 S1-3 -5.44 0.65 764.00 <.001 -6.71 -4.16
S1 -4.04 0.65 764.00 <.001 -5.31 -2.76
S2-3 12.63 0.65 764.00 <.001 11.35 13.90
S2 7.66 0.65 764.00 <.001 6.38 8.93

S1-3 S3 5.44 0.65 764.00 <.001 4.16 6.71
S1 1.40 0.65 764.00 .03 0.13 2.68
S2-3 18.07 0.65 764.00 <.001 16.79 19.34
S2 13.09 0.65 764.00 <.001 11.82 14.37

S1 S3 4.04 0.65 764.00 <.001 2.76 5.31
S1-3 -1.40 0.65 764.00 .03 -2.68 -0.13
S2-3 16.66 0.65 764.00 <.001 15.39 17.94
S2 11.69 0.65 764.00 <.001 10.42 12.96

S2-3 S3 -12.63 0.65 764.00 <.001 -13.90 -11.35
S1-3 -18.07 0.65 764.00 <.001 -19.34 -16.79
S1 -16.66 0.65 764.00 <.001 -17.94 -15.39
S2 -4.97 0.65 764.00 <.001 -6.25 -3.70

S2 S3 -7.66 0.65 764.00 <.001 -8.93 -6.38
S1-3 -13.09 0.65 764.00 <.001 -14.37 -11.82
S1 -11.69 0.65 764.00 <.001 -12.96 -10.42
S2-3 4.97 0.65 764.00 <.001 3.70 6.25

Hematoxylin S3 S1-3 -0.03 0.01 764.00 <.001 -0.05 -0.02
S1 -0.02 0.01 764.00 .01 -0.03 0.00
S2-3 -0.17 0.01 764.00 <.001 -0.18 -0.16
S2 0.01 0.01 764.00 .36 -0.01 0.02

S1-3 S3 0.03 0.01 764.00 <.001 0.02 0.05
S1 0.02 0.01 764.00 .01 0.00 0.03
S2-3 -0.14 0.01 764.00 <.001 -0.15 -0.13
S2 0.04 0.01 764.00 <.001 0.03 0.05

S1 S3 0.02 0.01 764.00 .01 0.00 0.03
S1-3 -0.02 0.01 764.00 .01 -0.03 0.00
S2-3 -0.15 0.01 764.00 <.001 -0.17 -0.14
S2 0.02 0.01 764.00 <.001 0.01 0.04

S2-3 S3 0.17 0.01 764.00 <.001 0.16 0.18
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Table 2 (continued)

Feature Scanner Mean difference Std. error df P-value 95% confidence interval

Lower bound Upper bound

S1-3 0.14 0.01 764.00 <.001 0.13 0.15
S1 0.15 0.01 764.00 <.001 0.14 0.17
S2 0.18 0.01 764.00 <.001 0.16 0.19

S2 S3 -0.01 0.01 764.00 .36 -0.02 0.01
S1-3 -0.04 0.01 764.00 <.001 -0.05 -0.03
S1 -0.02 0.01 764.00 <.001 -0.04 -0.01
S2-3 -0.18 0.01 764.00 <.001 -0.19 -0.16

Eosin S3 S1-3 0.02 0.01 764.00 <.001 0.01 0.03
S1 0.03 0.01 764.00 <.001 0.02 0.04
S2-3 -0.12 0.01 764.00 <.001 -0.13 -0.11
S2 0.07 0.01 764.00 <.001 0.06 0.08

S1-3 S3 -0.02 0.01 764.00 <.001 -0.03 -0.01
S1 0.01 0.01 764.00 .14 0.00 0.02
S2-3 -0.14 0.01 764.00 <.001 -0.15 -0.13
S2 0.05 0.01 764.00 <.001 0.03 0.06

S1 S3 -0.03 0.01 764.00 <.001 -0.04 -0.02
S1-3 -0.01 0.01 764.00 .14 -0.02 0.00
S2-3 -0.15 0.01 764.00 <.001 -0.16 -0.14
S2 0.04 0.01 764.00 <.001 0.03 0.05

S2-3 S3 0.12 0.01 764.00 <.001 0.11 0.13
S1-3 0.14 0.01 764.00 <.001 0.13 0.15
S1 0.15 0.01 764.00 <.001 0.14 0.16
S2 0.19 0.01 764.00 <.001 0.18 0.20

S2 S3 -0.07 0.01 764.00 <.001 -0.08 -0.06
S1-3 -0.05 0.01 764.00 <.001 -0.06 -0.03
S1 -0.04 0.01 764.00 <.001 -0.05 -0.03
S2-3 -0.19 0.01 764.00 <.001 -0.20 -0.18

Residual S3 S1-3 0.04 0.01 764.00 <.001 0.02 0.05
S1 0.05 0.01 764.00 <.001 0.04 0.07
S2-3 -0.18 0.01 764.00 <.001 -0.19 -0.16
S2 0.09 0.01 764.00 <.001 0.07 0.11

S1-3 S3 -0.04 0.01 764.00 <.001 -0.05 -0.02
S1 0.02 0.01 764.00 .06 0.00 0.03
S2-3 -0.21 0.01 764.00 <.001 -0.23 -0.20
S2 0.05 0.01 764.00 <.001 0.04 0.07

S1 S3 -0.05 0.01 764.00 <.001 -0.07 -0.04
S1-3 -0.02 0.01 764.00 .06 -0.03 0.00
S2-3 -0.23 0.01 764.00 <.001 -0.25 -0.21
S2 0.04 0.01 764.00 <.001 0.02 0.05

S2-3 S3 0.18 0.01 764.00 <.001 0.16 0.19
S1-3 0.21 0.01 764.00 <.001 0.20 0.23
S1 0.23 0.01 764.00 <.001 0.21 0.25
S2 0.27 0.01 764.00 <.001 0.25 0.28

S2 S3 -0.09 0.01 764.00 <.001 -0.11 -0.07
S1-3 -0.05 0.01 764.00 <.001 -0.07 -0.04
S1 -0.04 0.01 764.00 <.001 -0.05 -0.02
S2-3 -0.27 0.01 764.00 <.001 -0.28 -0.25
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most S1-3 comparisons (S2 P=.02, all others P<.001), as well as S1 v S3
(P<.001) and S2 v S2-3 (P=.01). Mean epithelium area was significantly
different in all comparisons except for S1 v S3 and S1-3 v S2-3 (all
P<.001); however, all epithelium area skewness measurements were com-
parable except for S2 comparisons (P<.05). Finally, all cell fraction mea-
surements saw concordance except for all skewness in S2 comparisons
besides S2 v S1-3.

Discussion

Digital pathology is used by pathologists almost universally across dif-
ferent organs and disease states.7,25–27 Digital pathology has been effi-
ciently integrated into the clinical workflow and has aided in patient
diagnosis,28 collaboration,29 new image analyses including those using ar-
tificial intelligence and machine learning.30–33 Additionally, whole slide
imaging has been beneficial to researchers as it allows for storage andman-
agement of slides that allows for constant access and ease of observation.
While there are notable benefits to digital pathology, resolution of slide
scanners or artifacts in the resulting images may hinder qualitative assess-
ment of tumor extent. Low-resolution images or those with blurs over
7

cancerous regions may detract from cancer severity when looking at the
glandular level. Additionally, machine- and deep learning models that use
information from the images themselves to discriminate against regions
of cancer and non-cancerous on digital pathology may have poor accuracy
or generalizability because of improper training data.

In this study, we compared the downstream effect of differences across
3 digital slide scanners using prostate cancer histology slides digitized using
each slide scanner. Specifically, we first examined individual RGB color
channels, a color deconvolved version of the slide, and first- and second-
order pathomic features calculated across each whole slide image. Using
a linear mixed model, we compared the mean, variance, skewness, and
kurtosis of each feature across 3 unique slide scanners, as well as a
histogram-matched version of the S1 or S2 slide to the higher resolution
S3 slide. Our results suggest that while the most basic properties of RGB
color significantly differ across slide scanners, downstream calculations
on a per-gland basis are less impacted by optical properties of slide scan-
ners. While this is the case, statistically, we believe that feature calcula-
tion on higher resolution images more accurately represent quantitative
histological features. This is especially highlighted in Figs 3 and 4, where
epithelium is segmented poorly on the low-resolution S1 slides. These



Fig. 5. RGB and HER distributions: RGB (top) and color deconvoluted (bottom)mean intensity distributions with pairwise comparisons across the S1 (blue), S2 (red), and S3
(yellow) scanners. ** P<.01, *** P<.001.

Fig. 6. First-order features distributions: First-order feature distributions across the non-histogram matched slide scanners including mean lumen, stroma, epithelium, and
epithelial cell densities. * P<.05, ** P<.01, *** P<.001.
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poor segmentations may hinder the results of a study and misinform of
the assessed relationship between features and tested measurement, for
example, if a quantified feature is associated with patient outcomes.

Visual assessment of the individual RGB channels highlights the
diversity in these simple image properties, where significant color intensity
differences are seen in all 3 color channels. This discrepancy in color inten-
sity across slide scanners is semi-mitigated when applying the color
deconvolution, showing better visual harmonization between hematoxylin
and eosin color channels, though not statistically significantly so. While
color intensity differences may not directly impact the pathological review,
provided that stain intensities are still observable, such as digital image
8

resolution would, this property continued to affect quantitative feature
analysis. The first-order density features having significantly different dis-
tributions was surprising across the lumen densities, as these were the eas-
iest features to segment simply due to their contrast across the rest of the
tissue. The epithelial and stromal densities being significantly different is
intuitively reasonable as the resolution of the initial images impacts the
final segmentation, especially being able to isolate small glands from
other groups. Finally, the second-order features, having the greatest num-
ber of comparisons that were not significantly different, highlight the gen-
eral success of our pathomic feature calculator, which was trained using all
3 slide scanner images. These results emphasize the need to generalize



Table 3
First-order feature results from linear mixed models using mean values as input for each of the tested features. Abbrev., S1=Nikon, S2=Olympus, Huron=S3, S1-3=Nikon-
Huron histogram match, S2-3=Olympus-Huron histogram match.

Feature Scanner Mean difference Std. error df P-value 95% confidence interval

Lower bound Upper bound

Lumen density S3 S1-3 3.19 0.57 764.00 <.001 2.07 4.30
S1 1.13 0.57 764.00 .05 0.02 2.24
S2-3 -1.66 0.57 764.00 <.001 -2.77 -0.55
S2 -2.87 0.57 764.00 <.001 -3.98 -1.76

S1-3 S3 -3.19 0.57 764.00 <.001 -4.30 -2.07
S1 -2.06 0.57 764.00 <.001 -3.17 -0.95
S2-3 -4.84 0.57 764.00 <.001 -5.95 -3.73
S2 -6.05 0.57 764.00 <.001 -7.16 -4.94

S1 S3 -1.13 0.57 764.00 .05 -2.24 -0.02
S1-3 2.06 0.57 764.00 <.001 0.95 3.17
S2-3 -2.79 0.57 764.00 <.001 -3.90 -1.68
S2 -4.00 0.57 764.00 <.001 -5.11 -2.89

S2-3 S3 1.66 0.57 764.00 <.001 0.55 2.77
S1-3 4.84 0.57 764.00 <.001 3.73 5.95
S1 2.79 0.57 764.00 <.001 1.68 3.90
S2 -1.21 0.57 764.00 .03 -2.32 -0.10

S2 S3 2.87 0.57 764.00 <.001 1.76 3.98
S1-3 6.05 0.57 764.00 <.001 4.94 7.16
S1 4.00 0.57 764.00 <.001 2.89 5.11
S2-3 1.21 0.57 764.00 .03 0.10 2.32

Epithelium density S3 S1-3 12.17 3.00 764.00 <.001 6.28 18.06
S1 19.82 3.00 764.00 <.001 13.93 25.71
S2-3 -6.80 3.00 764.00 .02 -12.69 -0.91
S2 -38.07 3.00 764.00 <.001 -43.96 -32.17

S1-3 S3 -12.17 3.00 764.00 <.001 -18.06 -6.28
S1 7.65 3.00 764.00 .01 1.76 13.55
S2-3 -18.97 3.00 764.00 <.001 -24.86 -13.07
S2 -50.23 3.00 764.00 <.001 -56.13 -44.34

S1 S3 -19.82 3.00 764.00 <.001 -25.71 -13.93
S1-3 -7.65 3.00 764.00 .01 -13.55 -1.76
S2-3 -26.62 3.00 764.00 <.001 -32.51 -20.73
S2 -57.89 3.00 764.00 <.001 -63.78 -51.99

S2-3 S3 6.80 3.00 764.00 .02 0.91 12.69
S1-3 18.97 3.00 764.00 <.001 13.07 24.86
S1 26.62 3.00 764.00 <.001 20.73 32.51
S2 -31.27 3.00 764.00 <.001 -37.16 -25.37

S2 S3 38.07 3.00 764.00 <.001 32.17 43.96
S1-3 50.23 3.00 764.00 <.001 44.34 56.13
S1 57.89 3.00 764.00 <.001 51.99 63.78
S2-3 31.27 3.00 764.00 <.001 25.37 37.16

Stromal density S3 S1-3 16.77 2.34 764.00 <.001 12.18 21.36
S1 2.00 2.34 764.00 .39 -2.59 6.59
S2-3 9.12 2.34 764.00 <.001 4.53 13.71
S2 15.02 2.34 764.00 <.001 10.43 19.61

S1-3 S3 -16.77 2.34 764.00 <.001 -21.36 -12.18
S1 -14.77 2.34 764.00 <.001 -19.36 -10.18
S2-3 -7.65 2.34 764.00 <.001 -12.24 -3.06
S2 -1.75 2.34 764.00 .45 -6.34 2.84

S1 S3 -2.00 2.34 764.00 .39 -6.59 2.59
S1-3 14.77 2.34 764.00 <.001 10.18 19.36
S2-3 7.12 2.34 764.00 <.001 2.53 11.71
S2 13.02 2.34 764.00 <.001 8.43 17.61

S2-3 S3 -9.12 2.34 764.00 <.001 -13.71 -4.53
S1-3 7.65 2.34 764.00 <.001 3.06 12.24
S1 -7.12 2.34 764.00 <.001 -11.71 -2.53
S2 5.90 2.34 764.00 .01 1.31 10.49

S2 S3 -15.02 2.34 764.00 <.001 -19.61 -10.43
S1-3 1.75 2.34 764.00 .45 -2.84 6.34
S1 -13.02 2.34 764.00 <.001 -17.61 -8.43
S2-3 -5.90 2.34 764.00 .01 -10.49 -1.31

Epithelial cell density S3 S1-3 -1.26 4.90 764.00 .8 -10.87 8.36
S1 -18.18 4.90 764.00 <.001 -27.79 -8.56
S2-3 6.42 4.90 764.00 .19 -3.20 16.03
S2 3.30 4.90 764.00 .5 -6.31 12.92

S1-3 S3 1.26 4.90 764.00 .8 -8.36 10.87
S1 -16.92 4.90 764.00 <.001 -26.53 -7.31
S2-3 7.68 4.90 764.00 .12 -1.94 17.29
S2 4.56 4.90 764.00 .35 -5.05 14.18

S1 S3 18.18 4.90 764.00 <.001 8.56 27.79
S1-3 16.92 4.90 764.00 <.001 7.31 26.53
S2-3 24.60 4.90 764.00 <.001 14.98 34.21
S2 21.48 4.90 764.00 <.001 11.87 31.09

(continued on next page)
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Table 3 (continued)

Feature Scanner Mean difference Std. error df P-value 95% confidence interval

Lower bound Upper bound

S2-3 S3 -6.42 4.90 764.00 .19 -16.03 3.20
S1-3 -7.68 4.90 764.00 .12 -17.29 1.94
S1 -24.60 4.90 764.00 <.001 -34.21 -14.98
S2 -3.11 4.90 764.00 .53 -12.73 6.50

S2 S3 -3.30 4.90 764.00 .5 -12.92 6.31
S1-3 -4.56 4.90 764.00 .35 -14.18 5.05
S1 -21.48 4.90 764.00 <.001 -31.09 -11.87
S2-3 3.11 4.90 764.00 .53 -6.50 12.73

Fig. 7. Second-order features distributions: Mean second-order feature distributions across the S1, S2, and S3 slide scanners. * P<.05, ** P<.01, *** P<.001.
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image processing techniques across all used slide scanners, if multiple were
used in the generation of a dataset, as even the simplest measurements of
image properties can differ between scanned images.

Previous studies have used digital whole slide images for a multitude of
image analyses including area-based34 and/or cell-based35 measurement or
measurements regarding other tissue objects aside from single cells.29,36,37

These analyses are well known to be restricted by slide quality.38 Cell-based
measurements are often limited by the resolution of the image (i.e., low-res-
olution imagesmay not yield accurate cell counts). Area-basedmeasures as-
sess tissue properties based on color or color intensity of a stain. The results
of this study indicate that while color properties of the images may differ
across slide scanners, these quantitative features should be minimally im-
pacted. Provided image analysis methods account for color variations. Ad-
ditionally, deep learning architectures have recently been a popular option
for image analysis. These models take images as input and learn textural
features to use for quantification, such as automated Gleason pattern anal-
ysis in prostate WSI.39 Low resolution and/or limited color differences on
digitizes images may hinder model training as these textural features may
not be easily captured.

In a recent study byMutter et al,40 3 slide scanners were assessed based
on scanner dropout, or the area of tissue on a glass slide that is omitted in
the WSI but replaced with background, on 212 surgical pathology speci-
mens. These slides were digitally scanned a total of 631 times and totaled
70.5% dropout free scans. Additionally, they found that the most frequent
dropout type is “shards” (22.2%) followed by edge misses (6.2%). Notably,
the frequency of dropout types varied greatly across the 3 scanners, ranging
from 13.7% to 40.4%. While the current study did not assess dropouts
across our 3 slide scanners, these results further highlight the difference
in digital image quality and how it may impact image analyses.
10
While this study investigated the downstream effect of resolution and
color differences on calculated features of histopathology, impact of these
features on the diagnosis of prostate cancer and Gleason grading was not.
A previous study found that interobserver variability between 5 patholo-
gists annotating Gleason patterns on 33 slides from 28 unique patients
ranged from low to acceptable agreement.41 Individual radiopathomic
maps of epithelium densitywere generated for each pathologist per patient,
and predicted epithelium values statistically differed. While these results
demonstrate how inter-rater differences of Gleason pattern annotation
can impact quantitative analyses, clinical relevance was not assessed.
Intra-observer effect of annotations on slide scanners of differing resolution
were also not measured in this nor the current study as assessing the same
slide multiple times may alter how a pathologist annotates the slide
each time.

Limitations

Onemajor limitation of this study is the small patient cohort providing a
small number of slides scanned across all 3 scanners. Future studies should
look at larger patient cohorts with a greater number of scanned slides to de-
termine if these comparisons remain stable. Additionally, only 3 slide scan-
ners from 3 different manufacturers were compared in this study, and all
slides were scanned at 40× magnification. Future studies should look at
not only additional manufacturing companies, but also intra-company
and intra-model comparisons to determine how optical properties differ
across these devices. While the difference in resolution between the 3
slide scanners was the primary motivation in this analysis, the image qual-
ity may impact the results. We designed our pathomic feature calculator
using all 3 scanners to help mitigate this issue, however, it remains a



Table 4
Second-order feature results from linearmixedmodels usingmean values as input for each of the tested features. Abbrev., S1=Nikon, S2=Olympus, Huron=S3, S1-3=Nikon-
Huron histogram match, S2-3=Olympus-Huron histogram match.

Feature Scanner Mean difference Std. error df P-value 95% confidence interval

Lower bound Upper bound

Lumen roundness S3 S1-3 13.50 8.39 899.25 .11 -2.97 29.96
S1 13.31 8.22 898.25 .11 -2.83 29.45
S2-3 13.38 8.26 898.93 .11 -2.83 29.59
S2 13.25 8.22 898.25 .11 -2.89 29.39

S1-3 S3 -13.50 8.39 899.25 .11 -29.96 2.97
S1 -0.18 8.39 899.25 .98 -16.65 16.28
S2-3 -0.12 8.42 898.71 .99 -16.64 16.41
S2 -0.25 8.39 899.25 .98 -16.71 16.22

S1 S3 -13.31 8.22 898.25 .11 -29.45 2.83
S1-3 0.18 8.39 899.25 .98 -16.28 16.65
S2-3 0.06 8.26 898.93 .99 -16.14 16.27
S2 -0.06 8.22 898.25 .99 -16.20 16.08

S2-3 S3 -13.38 8.26 898.93 .11 -29.59 2.83
S1-3 0.12 8.42 898.71 .99 -16.41 16.64
S1 -0.06 8.26 898.93 .99 -16.27 16.14
S2 -0.13 8.26 898.93 .99 -16.34 16.08

S2 S3 -13.25 8.22 898.25 .11 -29.39 2.89
S1-3 0.25 8.39 899.25 .98 -16.22 16.71
S1 0.06 8.22 898.25 .99 -16.08 16.20
S2-3 0.13 8.26 898.93 .99 -16.08 16.34

Lumen area S3 S1-3 0.00E+00 1.51E-04 914.19 .24 -1.19E-04 4.74E-04
S1 -1.00E-03 1.51E-04 914.19 <.001 -1.53E-03 -9.41E-04
S2-3 4.49E-05 1.51E-04 914.19 .77 -2.52E-04 3.41E-04
S2 0.00E+00 1.51E-04 914.19 .002 -7.63E-04 -1.70E-04

S1-3 S3 0.00E+00 1.51E-04 914.19 .24 -4.74E-04 1.19E-04
S1 -1.00E-03 1.51E-04 914.19 <.001 -1.71E-03 -1.12E-03
S2-3 0.00E+00 1.51E-04 914.19 .38 -4.29E-04 1.64E-04
S2 -1.00E-03 1.51E-04 914.19 <.001 -9.41E-04 -3.48E-04

S1 S3 1.00E-03 1.51E-04 914.19 <.001 9.41E-04 1.53E-03
S1-3 1.00E-03 1.51E-04 914.19 <.001 1.12E-03 1.71E-03
S2-3 1.00E-03 1.51E-04 914.19 <.001 9.86E-04 1.58E-03
S2 1.00E-03 1.51E-04 914.19 <.001 4.75E-04 1.07E-03

S2-3 S3 -4.49E-05 1.51E-04 914.19 .77 -3.41E-04 2.52E-04
S1-3 0.00E+00 1.51E-04 914.19 .38 -1.64E-04 4.29E-04
S1 -1.00E-03 1.51E-04 914.19 <.001 -1.58E-03 -9.86E-04
S2 -1.00E-03 1.51E-04 914.19 <.001 -8.08E-04 -2.15E-04

S2 S3 0.00E+00 1.51E-04 914.19 .002 1.70E-04 7.63E-04
S1-3 1.00E-03 1.51E-04 914.19 <.001 3.48E-04 9.41E-04
S1 -1.00E-03 1.51E-04 914.19 <.001 -1.07E-03 -4.75E-04
S2-3 1.00E-03 1.51E-04 914.19 <.001 2.15E-04 8.08E-04

Epithelium roundness S3 S1-3 1.02 0.63 914.97 .10 -0.21 2.25
S1 1.02 0.63 914.97 .10 -0.21 2.25
S2-3 1.02 0.63 914.97 .10 -0.21 2.25
S2 1.02 0.63 914.97 .10 -0.21 2.25

S1-3 S3 -1.02 0.63 914.97 .10 -2.25 0.21
S1 0.00 0.63 914.97 1.00 -1.23 1.23
S2-3 0.00 0.63 914.97 1.00 -1.23 1.23
S2 0.00 0.63 914.97 1.00 -1.23 1.23

S1 S3 -1.02 0.63 914.97 .10 -2.25 0.21
S1-3 0.00 0.63 914.97 1.00 -1.23 1.23
S2-3 0.00 0.63 914.97 1.00 -1.23 1.23
S2 0.00 0.63 914.97 1.00 -1.23 1.23

S2-3 S3 -1.02 0.63 914.97 .10 -2.25 0.21
S1-3 0.00 0.63 914.97 1.00 -1.23 1.23
S1 0.00 0.63 914.97 1.00 -1.23 1.23
S2 0.00 0.63 914.97 1.00 -1.23 1.23

S2 S3 -1.02 0.63 914.97 .10 -2.25 0.21
S1-3 0.00 0.63 914.97 1.00 -1.23 1.23
S1 0.00 0.63 914.97 1.00 -1.23 1.23
S2-3 0.00 0.63 914.97 1.00 -1.23 1.23

Epithelium thickness S3 S1-3 8.00E-03 4.62E-03 914.84 .09 -1.32E-03 1.68E-02
S1 5.00E-03 4.62E-03 914.84 .25 -3.72E-03 1.44E-02
S2-3 8.00E-03 4.62E-03 914.84 .09 -1.28E-03 1.69E-02
S2 7.00E-03 4.62E-03 914.84 .14 -2.28E-03 1.59E-02

S1-3 S3 -8.00E-03 4.62E-03 914.84 .09 -1.68E-02 1.32E-03
S1 -2.00E-03 4.62E-03 914.84 .60 -1.15E-02 6.67E-03
S2-3 3.34E-05 4.62E-03 914.84 .99 -9.03E-03 9.10E-03
S2 -1.00E-03 4.62E-03 914.84 .84 -1.00E-02 8.11E-03

S1 S3 -5.00E-03 4.62E-03 914.84 .25 -1.44E-02 3.72E-03
S1-3 2.00E-03 4.62E-03 914.84 .60 -6.67E-03 1.15E-02
S2-3 2.00E-03 4.62E-03 914.84 .60 -6.64E-03 1.15E-02
S2 1.00E-03 4.62E-03 914.84 .76 -7.63E-03 1.05E-02

(continued on next page)
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Table 4 (continued)

Feature Scanner Mean difference Std. error df P-value 95% confidence interval

Lower bound Upper bound

S2-3 S3 -8.00E-03 4.62E-03 914.84 .09 -1.69E-02 1.28E-03
S1-3 -3.34E-05 4.62E-03 914.84 .99 -9.10E-03 9.03E-03
S1 -2.00E-03 4.62E-03 914.84 .60 -1.15E-02 6.64E-03
S2 -1.00E-03 4.62E-03 914.84 .83 -1.01E-02 8.07E-03

S2 S3 -7.00E-03 4.62E-03 914.84 .14 -1.59E-02 2.28E-03
S1-3 1.00E-03 4.62E-03 914.84 .84 -8.11E-03 1.00E-02
S1 -1.00E-03 4.62E-03 914.84 .76 -1.05E-02 7.63E-03
S2-3 1.00E-03 4.62E-03 914.84 .83 -8.07E-03 1.01E-02

Cell fraction S3 S1-3 0.14 0.11 914.40 .19 -0.07 0.36
S1 0.14 0.11 914.40 .2 -0.07 0.35
S2-3 0.15 0.11 914.40 .17 -0.06 0.36
S2 0.15 0.11 914.40 .17 -0.06 0.36

S1-3 S3 -0.14 0.11 914.40 .19 -0.36 0.07
S1 0.00 0.11 914.40 .98 -0.22 0.21
S2-3 0.01 0.11 914.40 .96 -0.21 0.22
S2 0.01 0.11 914.40 .94 -0.20 0.22

S1 S3 -0.14 0.11 914.40 .2 -0.35 0.07
S1-3 0.00 0.11 914.40 .98 -0.21 0.22
S2-3 0.01 0.11 914.40 .94 -0.20 0.22
S2 0.01 0.11 914.40 .93 -0.20 0.22

S2-3 S3 -0.15 0.11 914.40 .17 -0.36 0.06
S1-3 -0.01 0.11 914.40 .96 -0.22 0.21
S1 -0.01 0.11 914.40 .94 -0.22 0.20
S2 0.00 0.11 914.40 .99 -0.21 0.21

S2 S3 -0.15 0.11 914.40 .17 -0.36 0.06
S1-3 -0.01 0.11 914.40 .94 -0.22 0.20
S1 -0.01 0.11 914.40 .93 -0.22 0.20
S2-3 0.00 0.11 914.40 .99 -0.21 0.21

Epithelium area S3 S1-3 0.14 0.02 764.00 <.001 0.09 0.19
S1 -0.04 0.02 764.00 .11 -0.09 0.01
S2-3 0.14 0.02 764.00 <.001 0.09 0.18
S2 -0.19 0.02 764.00 <.001 -0.23 -0.14

S1-3 S3 -0.14 0.02 764.00 <.001 -0.19 -0.09
S1 -0.18 0.02 764.00 <.001 -0.23 -0.13
S2-3 -0.01 0.02 764.00 .76 -0.06 0.04
S2 -0.33 0.02 764.00 <.001 -0.38 -0.28

S1 S3 0.04 0.02 764.00 .11 -0.01 0.09
S1-3 0.18 0.02 764.00 <.001 0.13 0.23
S2-3 0.17 0.02 764.00 <.001 0.13 0.22
S2 -0.15 0.02 764.00 <.001 -0.20 -0.10

S2-3 S3 -0.14 0.02 764.00 <.001 -0.18 -0.09
S1-3 0.01 0.02 764.00 .76 -0.04 0.06
S1 -0.17 0.02 764.00 <.001 -0.22 -0.13
S2 -0.32 0.02 764.00 <.001 -0.37 -0.27

S2 S3 0.19 0.02 764.00 <.001 0.14 0.23
S1-3 0.33 0.02 764.00 <.001 0.28 0.38
S1 0.15 0.02 764.00 <.001 0.10 0.20
S2-3 0.32 0.02 764.00 <.001 0.27 0.37
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confounding factor in this analysis. Additionally, future work should assess
the impact of rips, tears, and blurs in digitized slides, aswell as slide scanner
properties including light source, and focus and adjustment methods. Fur-
thermore, downsampling the digitized slides for pathomic feature calcula-
tion may be an additional confounding factor as it does reduce resolution,
however, these raw images had file sizes beyond the capabilities of process-
ing in Matlab, thus a reduction in size was necessary. Future studies should
evaluate image processing methods that would not require compromising
the raw data.

Histogrammatching RGB color channels across the S1 and S2 images to
the S3 may not best harmonize image color. This process created images
that visually appeared closer in color to S3 than previously, however, arti-
facts were observed upon quality assessment, especially in original images
with banding. Amore accurate color-matching approach, such as that of the
FFEI’s Sierra slide or NIST traceable color transmission calibration slide,
may better harmonize images. These tools need to be used with the slide
scanner itself, so may not be beneficial to previously scanned images, none-
theless, future studies should assess how calibration tools could benefit
image analyses.
12
Conclusion

This study demonstrates in a set of 192 digitized slides from a cohort of
30 prostate cancer patients that both optical and computed properties of
digitized histological samples are impacted by slide scanner differences.
Scanner resolution may have the biggest impact on the resulting images,
qualitatively as well as quantitatively. A pathological assessment of low-
resolution imagesmay be hindered by the inability to view glandular differ-
ences; similarly, quantitative feature segmentation is limited by distinction
in glands from each other. Color properties of images may not greatly
impact the pathological assessment of digitized slides, however, image seg-
mentation that relies on these color channels may be affected by differences
across multiple slides RGB color. Future research is warranted to better un-
derstand which scanner properties influence the tissue segmentation and
feature calculation process. Additionally, future studies should determine
if optical properties differ when looking at additional stains besides H&E.
Creating a harmonization metric between slide scanners is pivotal to the
creation of models that generalize across digitized slides from multiple
slide scanners.
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