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Abstract: In this study, large yellow croaker (Pseudosciaena crocea) protein isolates/gellan
gum (PG) binary hydrogels with dense microstructure were used for embedding and
delivery curcumin (Cur). The colitis-relieving effects of PG-Cur were further investigated
using the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model.
Following PG-Cur treatment, weight loss, diarrhea, and shortening of the colon were
significantly alleviated. Compared with the free Cur group, weight loss and colon length in
the PG-Cur group increased about 1.05- and 1.12-fold. IL-1β, IL-6, TNF-α, and IL-10 levels
in PG-Cur group were not significantly different from those of the normal mice, and the
MPO and iNOS activities of the PG-Cur group were 29% and 20% lower than those in the
Cur group, respectively. Moreover, fecal microbiota analysis of mice revealed that PG-Cur
effectively restored gut dysbiosis in DSS-induced colitis, enriching beneficial bacteria while
reducing harmful ones. Overall, the PG hydrogels have the potential to serve as carriers for
oral curcumin formulations aimed at alleviating UC.

Keywords: large yellow croaker (Pseudosciaena crocea); roe; protein isolates; gellan gum;
curcumin; ulcerative colitis

1. Introduction
Inflammatory bowel disease (IBD), a prevalent chronic condition driven by immune

dysregulation, is chiefly characterized by ulcerative colitis (UC) and Crohn’s disease [1].
Recently, the prevalence of UC has sharply increased in Asia and economically underde-
veloped regions. Current therapeutic strategies for UC mainly involve medications such
as aminosalicylates, corticosteroids, immunosuppressants, and biologics, but these drugs
cause certain adverse reactions, including diarrhea and osteoporosis [2]. Therefore, there is
a growing interest in exploring natural and effective strategies for the alleviation of UC.

Curcumin (Cur), a natural polyphenolic compound, has shown significant potential
in alleviating colitis due to its antioxidant, anti-inflammatory, and free radical-scavenging
ability [3]. Curcumin alleviates inflammation by downregulating mediators like iNOS,
COX-2, and MCP-1, thereby limiting nitric oxide and prostaglandin synthesis and mod-
ulating various signaling pathways [4,5]. However, the clinical use of Cur is hindered
by its low solubility, fast metabolic rate, and limited bioavailability, which restrict its ef-
fectiveness in the colon when administered orally. To address these challenges, various
encapsulation systems, including nanoparticles, emulsions, liposomes, and hydrogels,
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have been developed to improve the delivery and stability of Cur [6,7]. Previous studies
have shown that Cur-loaded lactoferrin nanoparticles [8], Cur-loaded liposomes in pectin–
chitosan hydrogels [9], and Cur-loaded pea protein high internal phase emulsions [10]
demonstrated enhanced effectiveness in relieving UC symptoms relative to unencapsulated
Cur. Among different delivery systems, hydrogels also show particular promise in improv-
ing the bioavailability of bioactive materials due to their unique network. Hydrogels are
three-dimensional network materials with high water content and porous structures that
enable active substances to be efficiently loaded [11,12]. For example, previous studies
have prepared hydrogels for the encapsulation and delivery of active substances, including
casein/chitosan gels for quercetin [13] and bovine serum albumin/citrus peel pectin gels for
vitamin C [14]. Several hydrogel-based Cur-loaded systems were constructed, such as whey
protein isolate–chitosan [15] and propylene glycol alginate/zein hydrogels [16]. These
studies indicated that hydrogel systems could deliver more Cur to the colon, but these
studies were mainly evaluated using in vitro experiments. Studies investigating the use of
Cur-loaded hydrogels to exert active effects in the colon are limited. Yan et al. [17] found
that compared to free Cur, Cur encapsulated within scallop hydrolysates/κ-carrageenan
hydrogels exerted more pronounced effects in reinforcing the intestinal barrier, mitigating
oxidative stress, and modulating the gut microbiota in a UC mouse model. However, the
preventing effect on colitis of other Cur-loaded hydrogel system is still very limited.

The large yellow croaker (Pseudosciaena crocea) is an important aquaculture species
in China, valued for both its economic and nutritional qualities. During its processing,
roes are generated as byproducts and serve as a rich source of protein. Previous studies
have found that the protein isolates from P. crocea roes (pcRPIs) contain higher level of
essential amino acids than soy protein isolates, showing better oil holding capacity and
emulsifying abilities [18]. The pcRPIs exhibited binding effect with polyphenols, including
EGCG [19] and Cur [20]. The pcRPIs mainly bind with Cur by hydrogen bonds, van der
Waals interactions, and hydrophobic interactions, and the cold-set pcRPI gels showed
certain protective effects on Cur in the resistant gastrointestinal environment [20]. Further-
more, our previous research demonstrated that pcRPIs and gellan gum (GG) have a good
synergistic gelation effect, and the pcRPI/GG binary gels exhibited excellent encapsulation
and delivery capabilities for Cur. The composite hydrogels maintained their structure
during simulated gastrointestinal digestion and protected approximately 76.6% of Cur
from release, which allowed a significant portion of Cur to be delivered to the colon [21].
However, the previous study was mainly conducted using in vitro digestion models, and
more in-depth in vivo animal experiments have not yet been carried out. The effects of
Cur-loaded pcRPI/GG hydrogels on alleviating UC also have not been explored.

In this study, we prepared Cur-loaded pcRPI/GG hydrogels (PG-Cur) and evaluated
the microstructure properties of different hydrogels. Then, the effects of PG-Cur on DSS-
induced colitis in mice were also analyzed. Specifically, disease active index (DAI) variation;
colon variation; the expression level of myeloperoxidase (MPO), inducible nitric oxide
synthase (iNOS), and inflammatory factors; as well as gut microbiota composition were
evaluated.

2. Materials and Methods
2.1. Materials and Chemicals

P. crocea roes were provided by Qingdao Yujie Group Co. Ltd. (Qingdao, China).
Curcumin was obtained from Sigma-Aldrich (St. Louis, MO, USA), while dextran sulfate
sodium (DSS) was sourced from Yeasen Biotechnology Co., Ltd. (Shanghai, China). Gellan
gum (GG) and glucono-δ-lactone (GDL) were purchased from Macklin Biochemical Co.,
Ltd. (Shanghai, China). The bicinchoninic acid (BCA) protein assay kits were provided



Foods 2025, 14, 1921 3 of 16

by Beijing Solarbio Technology Co., Ltd. (Beijing, China). Assay kits for MPO and iNOS
were obtained from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). ELISA
kits for cytokines including TNF-α, IL-1β, IL-6, and IL-10 were acquired from Shanghai
Enzyme-linked Biotechnology Co., Ltd. (Shanghai, China). All reagents used in this study
were of analytical grade.

The P. crocea protein isolate was prepared according to our previous studies [18].
Briefly, 10 g of freeze-dried P. crocea roe powders were suspended in 200 mL of 0.6 M NaCl
solution and stirred continuously for 2 h at 300 rpm. The mixture was then centrifuged at
8000 rpm for 15 min. The supernatant was carefully collected, and the solid residue was
subjected to a second extraction using the same procedure. The combined supernatants
were dialyzed and lyophilized to obtain pcRPIs.

2.2. Preparation of Cur-Loaded PG Hydrogels

As presented by Du et al. [21] and Yan et al. [22], pcRPIs were initially dispersed in
deionized water at a final concentration of 31.1 mg/mL and fully hydrated at 4 ◦C for 12 h.
After hydration, the pH of the solution was carefully adjusted to 7.0 using 1 mol/L NaOH
under continuous stirring at 300 rpm for 3 h. The resulting mixture was then subjected
to thermal treatment at 80 ◦C for 1 h to induce protein denaturation, after which GG
powder was incorporated at a concentration of 2.2 mg/mL. Upon cooling, Cur was first
fully dissolved in absolute ethanol with the content of 160 mg/m. To ensure a daily Cur
intake of 80 mg/kg body weight for mice, the final concentration of Cur in the system was
adjusted to 16 mg/mL, and then 0.2% GDL was added into the mixture. The Cur loaded
PG gel (PG-Cur) was stored at 4 ◦C until further analyses. In addition, a 16 mg/mL Cur
suspension in deionized water and pcRPI/GG gels devoid of Cur (PG) served as controls.

2.3. Cryo-Scanning Electron Microscopy (Cryo-SEM)

Gel samples were characterized using Cryo-SEM on a Hitachi SU8010 instrument
(Hitachi Co., Ltd., Tokyo, Japan). Samples were first plunge-frozen in liquid nitrogen and
then transferred into a PP3010T cryo-preparation system (Quorum Technologies, Laughton,
UK) for freeze-fracture, sublimation, and platinum sputter coating. Imaging was conducted
at 10 kV accelerating voltage, with micrographs recorded at 2000× magnification.

2.4. Animals

Six-week-old male BALB/c mice (18–22 g, SPF grade) were procured from Liaoning
Changsheng Biotechnology Co., Ltd. (Benxi, China). Animals were maintained in the
SPF facility of the Animal Experiment Center at Dalian Polytechnic University (permit no.
SYKX2017-0005) under controlled conditions (25 ± 2 ◦C, 60 ± 5% relative humidity, 12 h
light/12 h dark cycle). The mice had ad libitum access to deionized water and standard
feed. All experimental procedures received approval from the Institutional Animal Care
and Use Committee of Dalian Polytechnic University (animal welfare and ethics approval
number: DLPU2022004) and complied with ethical regulations.

2.5. Dietary Intervention and DSS-Induced Ulcerative Colitis in Mice

Ulcerative colitis was induced using dextran sulfate sodium (DSS) following the
protocol of Cao et al. [23]. Animals were randomly assigned to experimental groups by the
experimenter using a simple randomization approach to ensure balanced group sizes. The
allocation was performed prior to the start of treatment, and all outcome assessments were
conducted without knowledge of the group assignments. Briefly, sixty mice were randomly
allocated into five experimental cohorts (n = 12 each): (1) Control group; (2) DSS-treated
model group (DSS); (3) PG intervention group (PG + DSS); (4) Free Cur intervention group
(Cur + DSS); and (5) PG-Cur intervention group (PG-Cur + DSS). As shown in Figure 1,
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mice were acclimatized for 7 days with standard feeding and free access to deionized
water. Starting on day 8, PG, free Cur, or PG-Cur were intragastrically administered with
continuing standard feeding and providing free access to deionized water. Mice in each
treatment cohort received a daily oral gavage of 100 µL of their designated sample; Control
and DSS-only groups were similarly administered 100 µL of deionized water. From day 22
to day 31 (9 days), the DSS model group, PG + DSS, Cur + DSS, and PG-Cur + DSS groups
were allowed to freely ingest DSS solution (3%, w/v), with the solution being replaced
every two days. The Control group continued to have free access to deionized water. At
the end of the experiment, mice were humanely euthanized. Blood was collected for serum
isolation; colon tissues and intestinal contents were collected and stored at −80 ◦C for
subsequent analyses. A separate segment of colon was fixed in 4% paraformaldehyde for
hematoxylin and eosin (H&E) histological assessment.

Figure 1. Schematic clarification of the experimental procedure.

2.6. Mouse DAI Assessment

The DAI was quantified following previous studies, based on scoring body weight
loss, stool consistency, and the presence of fecal blood [24]. Body weight loss was assessed
on a four-point scale. Specifically, reductions of <5%, 5–10%, 10–20%, and >20% were
assigned scores of 1, 2, 3, and 4, respectively. Stool form was evaluated as 0 for normal, 2
for loose stools, and 4 for diarrhea. Fecal bleeding was graded 0 for absent, 2 for occult or
minor bleeding, and 4 for overt hemorrhage.

2.7. Colonic Histopathological Analysis

Colon samples were subjected to standard histological processing, including dehy-
dration, clearing, and embedding in paraffin. Tissue blocks were sectioned and stained
with H&E. Histological examination was subsequently conducted using light microscopy
(Nikon Eclipse Ti-S, Tokyo, Japan) to assess pathological changes.

2.8. Enzymatic Activities of Myeloperoxidase (MPO) and Inducible Nitric Oxide Synthase (iNOS)

Colonic tissue samples were homogenized with physiological saline for 2 min to obtain
a 10% tissue homogenate. The enzyme activities of MPO and iNOS, as well as the protein
content, were determined according to the instructions provided with the MPO, iNOS, and
BCA assay kits.

2.9. TNF-α, IL-1β, IL-6, and IL-10 Levels

After euthanasia, blood samples were collected and left undisturbed for 2 h. After
centrifugation at 2500× g for 10 min at 4 ◦C, serum was harvested from the samples.
Concentrations of TNF-α, IL-1β, IL-6, and IL-10 were then quantified using ELISA kits in
accordance with the manufacturers’ protocols, and the results were calculated accordingly.
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2.10. Analysis of Gut Microbiota Composition
2.10.1. DNA Extraction and PCR Amplification

Microbial genomic DNA was isolated from colonic fecal samples using the E.Z.N.A.®

Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) following the supplier’s guidelines.
DNA integrity was verified by electrophoresis on a 1% agarose gel, and its concentration
and purity were subsequently determined. PCR amplification of the V3–V4 hypervariable
segment of the bacterial 16S rRNA gene was carried out using primers 338F (ACTCC-
TACGGGAGGCAGCAG) and 806R (GGACTACHVGGGTWTCTAAT).

2.10.2. Illumina MiSeq Sequencing

High-throughput sequencing was performed following previously described meth-
ods [23]. PCR amplicons were separated on a 2% agarose gel and subsequently purified
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA).
The purified products were then quantified using fluorescence-based methods. Library
construction was performed using the NEXTFLEX Rapid DNA-Seq Kit, followed by high-
throughput sequencing for downstream microbial community analysis.

2.11. Statistical Analysis

All data were examined at least in three times, and all results are presented as mean
± standard deviation. The data were analyzed based on one-way analysis of variance
(ANOVA) coupled with Tukey’s multiple comparison test by using SPSS software version
11.5, with differences considered significant at p < 0.05. Microbial community analysis,
including taxonomic abundance profiling, heatmap visualization, and LEfSe differential
analysis, were conducted using the online analysis platform provided by Majorbio Biomed-
ical Technology Co., Ltd. (Shanghai, China). (https://www.majorbio.com, accessed on 1
December 2022).

3. Results and Discussion
3.1. Visual Appearance and Microstructural Properties of PG and PG-Cur

Previous studies demonstrated that GG could significantly enhance the gelation char-
acteristics of pcRPI gels, facilitating the development of a novel dual-network hydrogel
composed of pcRPIs and GG. This composite hydrogel exhibited superior encapsulation
capacity and protective performance for Cur, effectively minimizing its release during
gastrointestinal transit. As a result, a greater proportion of Cur was preserved and pref-
erentially delivered to the colon, where it could exert its biological effects [21]. To this
point, an animal experimental model was further used to evaluate the effect of pG-Cur
on colitis. As shown in Figure 2, the PG-Cur gel exhibited a uniform bright tangerine
color, indicating efficient incorporation and uniform distribution of Cur within the gel. The
Cryo-SEM results showed that both PG and PG-Cur hydrogels feature densely packed
protein aggregates embedded within an interwoven network. These results were similar
to our previous studies [21], and Cur also improved the crosslinking between PG-Cur
gels. Therefore, PG-Cur hydrogels with a homogeneous network could serve as efficient
colon-targeted carriers for Cur, facilitating its localized release and therapeutic action.

https://www.majorbio.com
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Figure 2. Visual appearance and Cryo-SEM micrographs of PG and PG-Cur gels.

3.2. Effect of PG-Cur on Body Weight, DAI, and Colon Length in a DSS-Induced UC
Mouse Model

To assess the therapeutic effects of the PG-Cur gels in a DSS-induced UC mouse model,
the body weight changes and DAI scores of mice were further evaluated. As shown in
Figure 3A, after 9 days of DSS treatment, the Control group exhibited a 7% increase in
body weight, whereas the DSS group and PG group displayed significant 16% and 14%
reductions in body weight, respectively. Progressive weight gain in the control cohort is
likely attributable to normal physiological development, aligning with previous reports of
a 9% increase by Yan et al. [17] and a 7% rise observed by Luo et al. [2]. Many studies have
also shown that after DSS induction, mice show a trend toward significant weight loss [25].
In contrast, the PG-Cur group only experienced an 8% weight loss, which was significantly
lower than the 13% weight loss observed in the Cur group. These results indicated that
DSS induced colitis and resulted in weight loss in mice, which was effectively alleviated by
PG-Cur treatment. The DAI scores assess the severity of colitis based on clinical symptoms
such as diarrhea, stool, and other conditions. Figure 3B shows that the DAI scores in the
DSS-treated group rose markedly from day 3, reaching 6.5 by day 9. This result indicated
that DSS treatment could cause UC in mice. Moreover, in the PG-Cur group, DAI scores
remained significantly lower compared to the Cur and PG groups, with a final score of 3.3,
which was closest to the Control group. These results indicate that the mouse colitis model
induced by DSS was successful, which is comparable to the performance of the mouse
colitis models obtained using methods such as 3% DSS induction for 7–9 days [17,26,27],
4% DSS induction for 7 days [28], as well as 5% DSS induction for 7 days [29]. Yan et al. [17]
also showed that, compared to the free Cur group, the Cur-loaded scallop hydrolysates/κ-
carrageenan hydrogels group exhibited an approximately 1.04-fold greater body weight
loss, along with a 13% reduction in DAI scores. Zhang and Li [30] demonstrated that an
eight-day treatment with a Cur-loaded biopolymeric nanocomposite significantly reduced
DAI scores compared to the DSS-only group.

Figure 3. Cont.
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Figure 3. The changes in body weight (A), DAI scores, (B) colon length (C) and colon tissue appear-
ance (D) in different groups. The various letters (a–c) in (C) indicate significant differences (p < 0.05)
among each group.

Moreover, after DSS induction, significant alterations were observed in the colon
morphology of mice, including shortened colon length, thickened intestinal walls, conges-
tion, and swelling. As shown in Figure 3C,D, in the Control group, the colon length was
approximately 96.6 mm, with a smooth surface, while the DSS group exhibited a marked
reduction in colon length, which decreased to around 75.7 mm. However, following PG-Cur
treatment, the shortening of the colon was alleviated, with the final colon length reaching
89.0 mm. Although free Cur also showed some improvement in colon length, the degree
of alleviation was modest, with the colon measuring approximately 79.3 mm, which was
not significantly different from the model group. Overall, relative to the Cur group, the
PG-Cur group exhibited approximately 1.05-fold greater body weight loss and a 1.12-fold
increase in colon length. Furthermore, the PG group, lacking any active substances, did
not exhibit any notable therapeutic effects, with a final colon length of 78 mm. Zhang
et al. [31] prepared alginate/chitosan hydrogel (Cur@NMPs) for Cur delivery and also
found that with Cur and Cur@NMPs treatment, the colon shortening of mice was delayed
to varying degrees. In addition, the colon length of Cur@NMPs group mice most closely
approached the normal value. The poor efficacy of free Cur stems from its very low oral
bioavailability and rapid degradation in the gastrointestinal tract, which prevents sufficient
amounts from reaching the colon. By contrast, the PG hydrogel forms a cage-like network
that protects Cur in the stomach and small intestine but disassembles in the colon. Gellan
gum also has interesting characteristics of pH-dependent tunable behavior and resistance
to the activities of most human enzymes, which makes GG a promising prospect for the
development of encapsulation systems for delivering active substances to specific parts of
the gastrointestinal tract [32]. Furthermore, the interaction between GG and pcRPIs forms
a more compact, dense microstructure, which enhances the carrier’s resistance to digestive
enzymes and mechanical stresses [21]. Moreover, our previous studies investigated the
interaction of pcRPIs with Cur using molecular docking analysis and found that van der
Waals interactions, hydrophobic interactions, and hydrogen bonds were the main driving
forces in the binding of pcRPIs with Cur [20]. Previous studies have also shown that the
-OH functional groups in Cur can combine with GG through intermolecular interactions
such as hydrogen bonds [33,34]. The interactions among pcRPIs, GG, and Cur facilitate the
entrapment of Cur within the gel network, leading to delaying its release under gastroin-
testinal digestion conditions. Therefore, these results indicated that PG-Cur can effectively
deliver Cur to the colon, where it exerts its anti-inflammatory and antioxidant properties,
leading to significant alleviation of symptoms associated with UC.

3.3. Effect of PG-Cur on Colon Variations in the DSS-Stimulated UC Mouse Model

Hematoxylin and eosin staining of colon tissue sections was performed to evaluate
the histological effects of PG-Cur treatment on DSS-induced colitis. As shown in Figure 4,
in the Control group, the mucosal epithelium structure of the colon was clear and intact,
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with well-organized glandular arrangements and no infiltration of inflammatory cells. In
contrast, the model group induced by DSS exhibited significant pathological changes in the
colonic tissue, and the colonic mucosal epithelial cells were seriously damaged, including
partial glandular destruction, crypt distortion, incomplete mucosal integrity, loss of goblet
cells, as well as infiltration of inflammatory cells. Similar results were observed in colonic
tissues from other DSS-induced UC mice [24,35]. Following PG treatment alone, the colonic
tissue displayed structural changes resembling those of the DSS group, indicating that
PG did not offer significant protection. Moderate infiltration of inflammatory cells and a
reduced number of goblet cells were observed in the colonic tissues of mice treated with
Cur, with only slight alleviation of erosion and ulceration compared to the DSS group.
Notably, PG-Cur treatment resulted in the lowest levels of inflammatory cell infiltration in
both the mucosal and submucosal layers among all groups. The PG-Cur group exhibited
no apparent ulceration, with well-preserved glandular structures and intact epithelium.
These results indicate that PG-Cur effectively protected the colonic morphology of mice
with DSS-induced inflammation.

Figure 4. Histological images of colonic tissues from various treatment groups. DSS, dextran
sulfate sodium-treated model group; PG + DSS, P. crocea roe protein isolates/gellan gum hydrogels
intervention group; Cur + DSS, free curcumin intervention group; PG-Cur + DSS, curcumin loaded P.
crocea roe protein isolates/gellan gum hydrogels intervention group. a, goblet cells; b, muscle layer; c,
inflammatory cells.

3.4. Effect of PG-Cur on MPO and iNOS Activity in the DSS-Stimulated UC Mouse Model

MPO and iNOS are well-established markers of inflammation. MPO, an enzyme
predominantly found in neutrophils, is a crucial indicator of neutrophil infiltration and
the severity of inflammation, with increases in its activity and levels reflecting the extent
of inflammatory damage [36]. As shown in Figure 5, the MPO and iNOS activities of the
Control group were 0.31 U/g and 0.67 U/mgprot, respectively. These activities significantly
increased in the DSS group, reaching 1.17 U/g and 1.11 U/mgprot, respectively. Elevated
MPO and iNOS levels have been widely reported in DSS-induced colitis models and are
positively associated with inflammatory severity and mucosal injury [37,38]. Notably, both
Cur and PG-Cur effectively suppressed MPO and iNOS levels in the colons of mice, with
PG-Cur demonstrating a more pronounced inhibitory effect. In the PG-Cur group, MPO
and iNOS activities were reduced to 0.35 U/g and 0.68 U/mgprot, which were 29% and 20%
lower than those in the Cur group, respectively. Inflammation exacerbates oxidative stress
by stimulating reactive oxygen and nitrogen species (ROS/RNS) generation, a process in
which MPO and iNOS play pivotal roles. Previous studies also demonstrated that Cur
exerts inhibitory effects on the expression of MPO and iNOS in mice with colitis [39].
To this point, PG-Cur showed the ability to deliver Cur efficiently to the colon, and its
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anti-inflammatory action likely underpins its potent suppression of MPO and iNOS activity.
These findings align with the DAI and histological changes observed in the colons of mice.

 

Figure 5. Effects of PG-Cur on MPO (A) and iNOS (B) activity. The various letters (a–c) indicate
significant differences (p < 0.05) among each group.

3.5. Effect of PG-Cur on Protein Levels of IL-6, IL-1β, TNF-α, and IL-10 in the DSS-Stimulated
UC Mouse Model

As shown in Figure 6, the contents of IL-1β, IL-6, TNF-α, and IL-10 in the Control
group were 65.32 pg/mL, 69.66 pg/mL, 370.49 pg/mL, and 270.05 pg/mL, respectively.
Compared to the Control group, the DSS group exhibited a significant upregulation in
the levels of IL-1β, IL-6, and TNF-α, while IL-10 expression was notably downregulated.
However, after intervention with PG-Cur, inflammatory responses were alleviated, with
IL-1β, IL-6, and TNF-α levels reduced to 66.91 pg/mL, 72.26 pg/mL, and 374.23 pg/mL,
respectively, while IL-10 levels increased to 263.21 pg/mL. These cytokine levels were
statistically indistinguishable from those observed in the Control group (p > 0.05). The free
Cur intervention also showed a reduction in pro-inflammatory cytokines, but the effect was
significantly weaker than that of the PG-Cur group. Additionally, the PG group showed no
notable impact on the regulation of either pro-inflammatory or anti-inflammatory cytokines.
Hu et al. [40] also found that IL-6 and TNF-α levels decreased to levels similar to healthy
controls after oral gavage of Cur-loaded heterogeneous double-membrane microgels, and
the levels were also lower than those in the free Cur group.

The pathogenesis of UC is intricately linked to the overproduction of inflammatory
mediators, which significantly exacerbate the inflammatory response and contribute to the
progression of intestinal damage. Among these mediators, IL-6 plays a pivotal role as a
pro-inflammatory cytokine, significantly contributing to UC inflammation. IL-6 mediates
its activity by activating the STAT-3 signaling pathway and enhancing the expression of anti-
apoptotic proteins, thereby facilitating CD4+ T cell accumulation and suppressing apoptotic
processes [41]. Similarly, TNF-α is another central cytokine involved in the inflammatory
cascade. TNF-α signaling orchestrates various pro-inflammatory actions, including the
promotion of angiogenesis, necroptosis, and immune-mediated pathology. TNF-α also
activates myosin light chain kinase, contributing to the disruption of the epithelial barrier
and exacerbating immune pathology [42]. IL-10, a well-known anti-inflammatory cytokine,
plays a protective role in UC by modulating immune responses [43]. Furthermore, IL-1β
is another key mediator involved in the pathogenesis of UC, primarily acting through
the activation of innate lymphoid cells and promoting the recruitment of granulocytes
to the site of inflammation. IL-1β facilitates the early phase of innate immune responses,
leading to an exacerbation of the inflammatory process and the subsequent recruitment of
inflammatory cells to the affected tissues. These results suggest that Cur, when delivered
via gel loading, exerts a pronounced anti-inflammatory effect in the DSS-induced UC
mouse model.
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Figure 6. Effects of PG-Cur on the amount of inflammatory factors in mouse serum, including IL-1β
changes (A), IL-6 changes (B), IL-10 changes (C) and TNF-α changes (D). The various letters (a–d)
indicate significant differences (p < 0.05) among each group.

3.6. Effect of PG-Cur on Microbial Composition in the DSS-Stimulated UC Mouse Model
3.6.1. Microbial Composition Analysis

As shown in Figure 7A, the dominant phyla of the Control group were Firmicutes
(87.32%), Patescibacteria (4.83%), Bacteroidetes (3.51%), Desulfobacterota (1.84%), and Actinobac-
terteriota (1.32%). After DSS treatment, the gut microbiota underwent significant changes,
with a marked decrease in Firmicutes, Patescibacteria, and Actinobacterteriota abundance,
which dropped to 71.39%, 1.97%, and 0.97%, respectively. Conversely, the abundance of
Bacteroidetes and Desulfobacterota increased to 12.72% and 11.58%, respectively. Interven-
tion with PG or free Cur had minimal effects on the gut microbiota composition, with
values similar to those of the DSS group. However, after PG-Cur intervention, the abun-
dance of Firmicutes, Patescibacteria, and Actinobacterteriota increased to 83.64%, 22.23%, and
1.72%, respectively, while the abundance of Bacteroidetes and Desulfobacterota decreased
to 4.52% and 6.21%, respectively, mitigating the adverse effects of DSS on the gut micro-
biota. Additionally, the Firmicutes/Bacteroidetes (F/B) ratio is considered an indicator of gut
dysbiosis. The F/B ratio in the Control group was 24.88. After DSS treatment, this ratio
significantly decreased to 5.61. However, following PG-Cur intervention, the F/B ratio
partially recovered to 18.50. As reported, the intestinal microbiota of patients with colitis is
significantly disturbed compared with normal people, and the F/B ratio was significantly
reduced in colitis patients [44], which is similar to our studies. Previous studies by Li et al.
and Yang et al. [45] also reported a reduction in the F/B ratio following DSS induction,
which was reversed after intervention with either ginseng polysaccharides or Sporisorium
reilianum polysaccharides. Recognized for its anti-inflammatory activity, Actinobacteriota
contributes significantly to the regulation of gut inflammation. In this study, we observed
that Actinobacteriota abundance decreased after DSS induction, but was restored to nor-
mal levels following PG-Cur intervention. Li et al. [46] also demonstrated that arabinose
supplementation promoted the growth of Actinobacteriota in DSS-induced colitis models.
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Figure 7. Gut microbiota composition of mice in different groups: (A): Histogram of percent of
microbial abundance at the phylum level; (B): Microbial heatmap analysis at the phylum level.

In addition, Figure 7B shows a species richness heatmap of the mouse gut microbiota
at the phylum level, with color changes representing differences in relative abundance.
The results are consistent with those in Figure 7A. After DSS induction, the abundance
of Cyanobacteria, Acidobacteriota, Gemmatimonadota, Myxococcota, Deferribacterota, and Ver-
rucomicrobiota decreased, while Proteobacteria, Bacteroidota, Desulfobacterota, and Chloroflexi
increased. These changes indicated the development of colitis and microbial dysbiosis
induced by DSS. The individual PG and Cur treatments had limited effects on modulating
the gut microbiota. However, after PG-Cur intervention, the abundances of Cyanobacteria,
Acidobacteriota, Bacteroidota, and Desulfobacterota were restored to levels similar to those of
the Control group. Additionally, the abundance of Verrucomicrobiota increased and slightly
exceeded that of the Control group.

3.6.2. Heatmap Analysis

The LEfSe algorithm was applied to identify significant microbial community or
species differences among groups based on their linear discriminant analysis (LDA) scores.
As shown in Figure 8, the results were visualized through a bar chart and a phylogenetic
tree. The phylogenetic tree was used to illustrate the microbial community differences
between groups at various taxonomic levels. Each circle in the tree represents a taxonomic
level, with different colors indicating the presence of significantly different species between
groups. Yellow circles denote species with no significant differences across the groups.
Specifically, in the Control group, there was a significant enrichment in Firmicutes at the
phylum level, RF39 at the order level, and Lactobacillus intestinalis at the genus level.
However, following DSS-induced colitis, a marked shift in the microbial community was
observed. At the phylum level, Proteobacteria was significantly enriched, while at the class
level, Alphaproteobacteria predominated. Moreover, after PG intervention, the microbial
community in the mouse gut showed a significant enrichment of Erysipelatoclostridium at
the genus level and Rhodospirillales at the order level. Free Cur intervention led to a notable
enrichment of Desulfovibrionia at the class level, Desulfovibrionaceae at the family level,
and Desulfobacterota at the phylum level. The PG-Cur intervention showed a significant
increase in Eubacterium siraeum, Paenibacillus, Paenibacillales, and Paenibacillaceae at the genus,
order, and family levels, respectively. Lactobacillus intestinalis, a well-known beneficial
bacterium, was notably enriched in the gut microbiota of normal mice. This bacterium is
commonly regarded for its role in maintaining gut homeostasis and preventing pathogenic
overgrowth [47]. Proteobacteria, is a pro-inflammatory bacterium, and previous reports have
also demonstrated that after induction by DSS, the mouse gut is enriched with Proteobacteria,
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which drive pro-inflammatory changes in the gut and alter the gut microbiota [48,49].
Desulfobacterota, a pathogenic group that promotes the release of inflammatory cytokines
and worsens colitis [50], showed enrichment in the free Cur group. This results suggest
that free Cur might exert a relatively weaker effect in regulating gut microbiota, allowing
the persistence of harmful microflora. Furthermore, Paenibacillus, a beneficial genus found
in the rumen of animals, plays a key role in amino acid metabolism, reducing nitrosamine
toxicity and methane emissions, while also contributing to the reduction of intestinal
damage [51,52]. In this study, Paenibacillus was found to be enriched in the PG-Cur group.
This suggests that PG-Cur may facilitate the proliferation of beneficial microbial taxa,
including Eubacterium and Paenibacillus, which have been associated with positive impacts
on gut health and immunity. Therefore, PG-Cur intervention can restore the dysbiosis
induced by DSS, helping maintain a healthy gut microbiota balance and counteracting
inflammatory responses.

 

  

Figure 8. LEfSe species difference analysis of mice in different groups: (A): Multistage species
hierarchical tree map; (B): Linear discriminant analysis (LDA) results.
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4. Conclusions
DSS-induced colitis in mice led to notable symptoms such as diarrhea, shortened

colon, and increased DAI scores, with histological damage to the colon observed using
hematoxylin and eosin staining. Both free Cur and PG-Cur exhibited varying degrees of
colitis relief, with PG-Cur showing superior efficacy. PG-Cur significantly inhibited MPO
and iNOS levels, bringing them to levels comparable to the Control group. Additionally,
PG-Cur effectively modulated the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α,
while upregulating the anti-inflammatory cytokine IL-10. For microbial composition results,
DSS treatment led to an imbalance of gut microbiota and enrichment of harmful bacteria.
However, PG-Cur intervention restored the microbiota composition, enriching beneficial
bacteria and promoting gut homeostasis. These findings indicated that PG-Cur can serve
as effective functional agents for alleviating colitis and regulating intestinal inflammation
and dysbiosis.
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pcRPIs Pseudosciaena crocea roe protein isolates
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DSS dextran sulfate sodium
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