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levels: A multicenter
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Objective: The aim of this study was to develop a predictive model to improve

the accuracy of prostate cancer (PCa) detection in patients with prostate

specific antigen (PSA) levels ≤20 ng/mL at the initial puncture biopsy.

Methods: A total of 146 patients (46 with Pca, 31.5%) with PSA ≤20 ng/mL who

had undergone transrectal ultrasound-guided 12+X prostate puncture biopsy

with clear pathological results at the First Affiliated Hospital of Guangxi Medical

University (November 2015 to December 2021) were retrospectively evaluated.

The validation group was 116 patients drawn from Changhai Hospital(52 with

Pca, 44.8%). Age, body mass index (BMI), serum PSA, PSA-derived indices,

several peripheral blood biomarkers, and ultrasound findings were considered

as predictive factors and were analyzed by logistic regression. Significant

predictors (P < 0.05) were included in five machine learning algorithm

models. The performance of the models was evaluated by receiver operating

characteristic curves. Decision curve analysis (DCA) was performed to estimate

the clinical utility of the models. Ten-fold cross-validation was applied in the

training process.

Results: Prostate-specific antigen density, alanine transaminase-to-aspartate

transaminase ratio, BMI, and urine red blood cell levels were identified as

independent predictors for the differential diagnosis of PCa according to

multivariate logistic regression analysis. The RandomForest model exhibited

the best predictive performance and had the highest net benefit when

compared with the other algorithms, with an area under the curve of 0.871.

In addition, DCA had the highest net benefit across the whole range of cut-off

points examined.
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Conclusion: The RandomForest-based model generated showed good

prediction ability for the risk of PCa. Thus, this model could help urologists in

the treatment decision-making process.
KEYWORDS

prostate cancer, prostate-specific antigen, diagnosis, machine learning, predictive model,
real-world study
Introduction

Prostate cancer (PCa) remains the most common malignancy

in men. According to the latest cancer statistics published in 2022,

PCa accounts for 27% of newly diagnosed malignancies in males,

and is also the second leading cause of death among men with

cancer (1). Serum total prostate-specific antigen (tPSA) is a

specific tumor biomarker of PCa in the clinical setting. It has

high tissue specificity, but is also associated with missed diagnoses

and misdiagnoses (2, 3). A variety of benign diseases of the

prostate, including benign prostatic hyperplasia and prostatitis,

can lead to elevated serum tPSA levels (4, 5). In particular, tPSA

levels in the range of 4 to 20 ng/mL are associated with a PCa

incidence of less than 25%. In addition, patients with serum tPSA

levels ≤4 ng/mL still carry the risk of PCa, and the detection rate in

these patients may reach up to 20% (6, 7). Prostate puncture

biopsy is currently the standard modality for diagnosing PCa, but

as an invasive procedure, it carries a risk of infection. Moreover,

the PCa detection rates on initial prostate puncture biopsies range

from 23% to 42%. These limitations have greatly restricted its

clinical use (8–11).

Given the limitations of the currently used diagnostic methods,

a large number of studies are currently devoted to identifying new

predictors of PCa. For example, PSA-derived indices, such as free-

to-total PSA (F/T) values and prostate-specific antigen density

(PSAD), have been found to exhibit greater diagnostic accuracy

than PSA alone (12–14). In addition, several inflammatory and

neurotrophic markers, including neutrophil-to-lymphocyte ratio,

platelet-to-lymphocyte ratio, monocyte-to-lymphocyte ratio (15,

16), gamma-glutamyl transpeptidase-to-lymphocyte count ratio

(17, 18), red cell distribution width-to-platelet ratio (19, 20), and

alanine transaminase-to-aspartate transaminase ratio (21, 22), have

previously been shown to have predictive value not only as

inflammatory markers but also as indicators for the diagnosis and

prognosis of malignancies. To date, studies focusing on the role of

these composite indicators in the differential diagnosis of PCa

are limited.

Machine learning (ML), as an important branch of artificial

intelligence, can continuously optimize the performance of

predictive or diagnostic models by learning and analyzing
02
data, and can handle non-linear relationships better than

traditional statistical scores. As a result, ML-based models

have great potential for the diagnosis and prognosis of diseases

(23–25). Therefore, our goal was to develop a new decision-

support ML model based on real-world data for diagnosing PCa

in patients with PSA levels ≤20 ng/mL.
Materials and methods

Ethics statement

This study was approved by the institutional review board of

the First Affiliated Hospital of Guangxi Medical University.

Written informed consent was obtained from all patients for

the storage of their information for the purpose of research. All

the research procedures were conducted in accordance with the

Declaration of Helsinki.
Data collection

Data from patients with PCa or benign prostatic hyperplasia

who underwent systematic prostate puncture biopsy at our

hospital between November 2015 and December 2021 were

collected and retrospectively analyzed. We included adult

patients with tPSA levels ≤20 ng/ml who underwent

transrectal ultrasound (TRUS)-guided prostate puncture

biopsy for at least systemic 12 cores with clear pathological

results. The exclusion criteria were (1) a history of prostate

cancer, prostate surgery, or 5-alpha-reductase inhibitor/drug for

the treatment of endocrine dyscrasia in prostate cancer; (2) a

diagnosis of prostatitis; (3) digital rectal examination (DRE),

transrectal ultrasonography, or cystoscopy within two weeks

before PSA detection (as these examinations may affect serum

PSA levels); and (4) missing hematological data prior to

puncture biopsy. Serum PSA concentrations (tPSA and fPSA)

were measured before DRE and TRUS by enzyme-linked

immunoassay. Prostate volume (PV) was calculated using the

following formula:
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PV = 0.52 × anterior/posterior diameter (cm) × left/right

diameter (cm) × upper/lower diameter (cm)

TRUS was performed by experienced ultrasonologists.
Statistical analysis

Continuous variables were converted into categorical

variables. The optimum cutoff values obtained from ROC

curve analysis were determined by maximizing the Youden

index. Logistic regression analysis was applied to calculate the

odds ratio (OR) with 95% confidence interval (CI). P < 0.05 was

considered to indicate statistical significance. We used five

different ML algorithms to analyze our data: logistic regression

(LR), XGBoost (XGB), RandomForest (RF), multilayer

perceptron (MLP), and k-nearest neighbor (kNN). After

training, the model with the highest average AUC was chosen

as the best algorithm. Furthermore, the ML-based model was

tuned to avoid overfitting, and the accuracy of the algorithm was

tested using the ten-fold cross-validation method. All variables

were tested for Spearman correlations, and the results are

presented as a heat map.
Results

Demographic features

A total of 146 eligible patients were included in this study.

The optimal cut-off value of tPSA was 8.47 ng/mL, and the

optimal cut-off value of BMI was 23.6 kg/m2. The detailed

clinical characteristics of all the patients are presented in

Table 1. Among the evaluated clinical characteristics, PSA, F/

T, BMI, alanine transaminase-to-aspartate transaminase ratio

(LSR), red cell volume distribution width (RDW), alkaline

phosphatase (ALP), and urine RBC level were correlated with

the risk of PCa. Based on the correlation heat map (Figure 1),

eight highly correlated features were chosen as predictors.

Weight is inextricably linked to BMI and, to a lesser degree,

height. Therefore, we used BMI instead of height or weight,

since it is a better indicator of obesity. The external validation

cohort was screened based on inclusion and exclusion criteria

consistent with the training cohort. Most of the externally

validated variables did not differ statistically from the

training cohort.
Univariate and multivariate logistic
regression analyses

According to univariate logistic regression analysis

(Table 2), tPSA, PSAD, F/T, BMI, LSR, RDW, and blood

glucose level were significant predictors of the occurrence of
Frontiers in Oncology 03
PCa in the overall population (P > 0.05). PSA and PSAD are

significantly correlated, and the univariate analysis indicated

that PSAD was more statistically significant as a predictor

than PSA. Therefore, we only included PSAD in the

multivariate analysis. The significant characteristics

identified from the univariate analysis above were included

in multivariate logistic regression analysis (Table 3). The odds

ratios (ORs) calculated indicated the relative risk of PCa. The

results showed that PSAD (OR = 11.539, 95% CI = 4.388–

33.993), LSR (OR = 0.189, 95% CI = 0.059–0.561), BMI (OR =

2.638, 95% CI = 1.067–6.871), and urine RBC level (OR =

0.136, 95% CI = 0.018–0.620) were independent predictors of

PCa. In addition, ALP (OR = 6.00, 95% CI = 1.052–34.212)

was also identified as a significant independent predictor (P =

0.044) in univariate logistic regression analysis, but it was not

included in further analysis as there were too many missing

values (n = 31), Supplementary Tables 2, 3.
Performance of ML algorithms

To compare the predictive performance of the six ML

algorithm models, ten-fold cross validation and decision curve

analysis was applied (Figure 2). As shown in the figure, the RF

model exhibited the best performance in the differential diagnosis

of PCa, with an average AUC of 0.871 (95% CI = 0.808–0.933).

The ML algorithm-based models outperformed PSA and its

derivatives F/T and PSAD individually by a significant margin

(AUC of PSA = 0.589, AUC of F/T = 0.599, AUC of PSAD =

0.737). Therefore, the RF model was finally regarded as the

preferred prediction model. In the external validation group

(Figure 3), RF (AUC = 0.780, 95% CI = 0.691–0.869), LR (AUC

= 0.781, 95%CI = 0.692–0.871) and XGB (AUC = 0.780; 95% CI =

0.692–0.868) showed good AUC values of 0.780. Based on the

findings for the training cohort and the external validation cohort

together, we finally choose the RF algorithm model as the best

model and used it for further analysis.
Relative importance of the
analyzed variables

The importance of the included features based on the RF

algorithm differed from each other, and PSAD was identified as

the most important variable. They were arranged as follows in

descending order of importance: PSAD, LSR, urine RBC level,

and BMI (Figure 4).
Discussion

One of the main topics of research on urological prostate

cancer is the improvement of prediction accuracy before
frontiersin.org
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TABLE 1 Clinical characteristics of patients in the training cohort.

Variables, n (%) Level Total BPH PCa P-value

PSA;ng/mL <8.47 59 (40.411) 46 (46.000) 13 (28.261) 0.042

≥8.47 87 (59.589) 54 (54.000) 33 (71.739)

fPSA;ng/mL <1.89 98 (67.123) 63 (63.000) 35 (76.087) 0.118

≥1.89 48 (32.877) 37 (37.000) 11 (23.913)

F/T <0.103 31 (21.233) 15 (15.000) 16 (34.783) 0.007

≥0.103 115 (78.767) 85 (85.000) 30 (65.217)

PV;mL <38.1 52 (35.616) 20 (20.000) 32 (69.565) <0.001

≥38.1 94 (64.384) 80 (80.000) 14 (30.435)

PSAD <0.24 95 (65.068) 80 (80.000) 15 (32.609) <0.001

≥0.24 51 (34.932) 20 (20.000) 31 (67.391)

Age;years <73 118 (80.822) 85 (85.000) 33 (71.739) 0.059

≥73 28 (19.178) 15 (15.000) 13 (28.261)

BMI;kg/m² <23.62 75 (51.370) 57 (57.000) 18 (39.130) 0.045

≥23.624 71 (48.630) 43 (43.000) 28 (60.870)

NLR <1.46 29 (19.863) 16 (16.000) 13 (28.261) 0.085

≥1.46 117 (80.137) 84 (84.000) 33 (71.739)

PLR <131.01 87 (59.589) 62 (62.000) 25 (54.348) 0.381

≥131.01 59 (40.411) 38 (38.000) 21 (45.652)

MLR <0.336 84 (57.534) 55 (55.000) 29 (63.043) 0.361

≥0.336 62 (42.466) 45 (45.000) 17 (36.957)

GLR <13.21 60 (41.096) 37 (37.000) 23 (50.000) 0.138

≥13.21 86 (58.904) 63 (63.000) 23 (50.000)

LSR <0.684 32 (21.918) 16 (16.000) 16 (34.783) 0.011

≥0.684 114 (78.082) 84 (84.000) 30 (65.217)

RPR <0.00063 66 (45.205) 40 (40.000) 26 (56.522) 0.062

≥0.00063 80 (54.795) 60 (60.000) 20 (43.478)

WBC;*10⁹
/L

<4.89 25 (17.123) 13 (13.000) 12 (26.087) 0.051

≥4.89 121 (82.877) 87 (87.000) 34 (73.913)

Hb;g/dl <146.2 120 (82.192) 78 (78.000) 42 (91.304) 0.051

≥146.2 26 (17.808) 22 (22.000) 4 (8.696)

RDW; % <0.15 125 (85.616) 81 (81.000) 44 (95.652) 0.019

≥0.15 21 (14.384) 19 (19.000) 2 (4.348)

Plt;*10⁹
/L

<207 71 (48.630) 52 (52.000) 19 (41.304) 0.23

≥207 75 (51.370) 48 (48.000) 27 (58.696)

Neutrophil count;*10⁹
/L

<4.14 84 (57.534) 54 (54.000) 30 (65.217) 0.203

≥4.14 62 (42.466) 46 (46.000) 16 (34.783)

Lymphocyte count;*10⁹
/L

<1.5 38 (26.027) 23 (23.000) 15 (32.609) 0.219

≥1.5 108 (73.973) 77 (77.000) 31 (67.391)

Monocyte count;*10⁹
/L

<0.44 32 (21.918) 19 (19.000) 13 (28.261) 0.209

≥0.44 114 (78.082) 81 (81.000) 33 (71.739)

Eosinophil count;*10⁹
/L

<0.17 69 (47.260) 42 (42.000) 27 (58.696) 0.061

≥0.17 77 (52.740) 58 (58.000) 19 (41.304)

Blood glucose;mmol/L <5 62 (42.466) 37 (37.000) 25 (54.348) 0.049

≥5 84 (57.534) 63 (63.000) 21 (45.652)

(Continued
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prostate puncture biopsy in order to reduce unnecessary patient

pain without compromising on early intervention in patients

with a confirmed diagnosis. The study variables included in this

study were non-invasive, and data on these variables were

readily available prior to biopsy. Therefore, obtaining the data

for these variables did not involve any unduly demanding

conditions or excessive medical overhead. Previous studies

have mostly been limited to PSA and its derivatives, and there

are not enough studies on the differential value of other

inflammatory markers (26–28). Further, the currently used
Frontiers in Oncology frontiersin.org05
prediction nomogram based on the conventional algorithm also

has room for further improvement.

The clinical application of ML algorithms may facilitate a

paradigm shift in the medical field, as these algorithms are

efficient, objective, and reproducible when it comes to large

amounts of nonlinear data (24, 29–32). They also have the

potential to improve the quality of early diagnosis, identify

disease progression, and increase the likelihood of predicting

patient-specific outcomes (25, 33, 34). These advantages can

facilitate the sharing of information for decision-making
TABLE 1 Continued

Variables, n (%) Level Total BPH PCa P-value

g-glutamyl transpeptidase;U <33.2 98 (67.123) 72 (72.000) 26 (56.522) 0.064

≥33.2 48 (32.877) 28 (28.000) 20 (43.478)

Creatinine;mmol/L <88 86 (58.904) 62 (62.000) 24 (52.174) 0.262

≥88 60 (41.096) 38 (38.000) 22 (47.826)

ALP;U <90 21 (67.742) 18 (78.261) 3 (37.500) 0.034

≥90 10 (32.258) 5 (21.739) 5 (62.500)

Urine WBC Negative 116 (79.452) 75 (75.000) 41 (89.130) 0.05

Positive 30 (20.548) 25 (25.000) 5 (10.870)

Urine RBC Negative 121 (82.877) 77 (77.000) 44 (95.652) 0.005

Positive 25 (17.123) 23 (23.000) 2 (4.348)

Ultrasound hypoechoic nodules Negative 46 (31.507) 30 (30.000) 16 (34.783) 0.563

Positive 100 (68.493) 70 (70.000) 30 (65.217)

Prostatic calculi Negative 66 (45.205) 45 (45.000) 21 (45.652) 0.941

Positive 80 (54.795) 55 (55.000) 25 (54.348)
FIGURE 1

Heat map depicting the correlations between the examined variables.
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TABLE 2 Univariate logistic regression in the differential diagnosis of prostate cancer in the whole data cohort.

Variables OR 95%CI P-value

PSA;ng/mL

<8.47 1
(reference)

≥8.47 2.162 [1.019,4.590] 0.045

fPSA;ng/mL

<1.89 1
(reference)

≥1.89 0.535 [0.243,1.179] 0.121

F/T

<0.103 1
(reference)

≥0.103 0.331 [0.146,0.750] 0.008

PV;mL

<38.1 1
(reference)

≥38.1 0.109 [0.049,0.243] <0.001

PSAD

<0.24 1
(reference)

≥0.24 8.267 [3.761,18.169] <0.001

Age;years

<73 1
(reference)

≥73 2.232 [0.959,5.194] 0.062

BMI;kg/m²

<23.62 1
(reference)

≥23.62 2.062 [1.011,4.204] 0.046

NLR

<1.46 1
(reference)

≥1.46 0.484 [0.210,1.115] 0.088

PLR

<131.01 1
(reference)

≥131.01 1.371 [0.676,2.779] 0.382

MLR

<0.336 1
(reference)

≥0.336 0.716 [0.350,1.467] 0.362

GLR

<13.21 1
(reference)

≥13.21 0.587 [0.290,1.190] 0.14

LSR

<0.684 1
(reference)

≥0.684 0.357 [0.159,0.802] 0.013

RPR

<0.00063 1
(reference)

(Continued)
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TABLE 2 Continued

Variables OR 95%CI P-value

≥0.00063 0.513 [0.253,1.040] 0.064

WBC;*10⁹
/L

<4.89 1
(reference)

≥4.89 0.423 [0.176,1.020] 0.055

Hb;g/dl

<146.2 1
(reference)

≥146.2 0.338 [0.109,1.045] 0.06

RDW; %

<0.15 1
(reference)

≥0.15 0.194 [0.043,0.871] 0.032

Plt;*10⁹
/L

<207 1
(reference)

≥207 1.539 [0.760,3.119] 0.231

Neutrophil count;*10⁹
/L

<4.14 1
(reference)

≥4.14 0.626 [0.304,1.290] 0.204

Lymphocyte count;*10⁹
/L

<1.5 1
(reference)

≥1.5 0.617 [0.285,1.337] 0.221

Monocyte count;*10⁹
/L

<0.44 1
(reference)

≥0.44 0.595 [0.264,1.343] 0.212

Eosinophil count;*10⁹
/L

<0.17 1
(reference)

≥0.17 0.51 [0.251,1.035] 0.062

Blood glucose;mmol/L

<5 1
(reference)

≥5 0.493 [0.243,1.002] 0.05

g-glutamyl transpeptidase;U

<33.2 1
(reference)

≥33.2 1.978 [0.955,4.097] 0.066

Creatinine;mmol/L

<88 1
(reference)

≥88 1.496 [0.739,3.028] 0.263

ALP;U

(Continued)
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between clinicians and patients and promote efficient planning

and visualization of the use of healthcare services. In addition,

the model can be actively retrained over time to continuously

improve its own predictive accuracy.
Frontiers in Oncology 08
The AUC value of our RF algorithm was 0.871 in the

training cohort, and this value is significantly higher than the

individual AUC values of PSA (AUC = 0.589), F/T PSA

(AUC = 0.599), and PSAD (AUC = 0.737). The RF-based
TABLE 2 Continued

Variables OR 95%CI P-value

<90 1
(reference)

≥90 6 [1.052,34.212] 0.044

Urine WBC

Negative 1
(reference)

Positive 0.366 [0.130,1.028] 0.056

Urine RBC

Negative 1
(reference)

Positive 0.152 [0.034,0.676] 0.013

Ultrasound hypoechoic nodules

Negative 1
(reference)

Positive 0.804 [0.382,1.688] 0.564

Prostatic calculi

Negative 1
(reference)

Positive 0.974 [0.483,1.964] 0.941
fron
TABLE 3 Multivariate logistic regression in the differential diagnosis of prostate cancer in the whole data cohort.

Variables OR 95%CI P-value

PSAD

<0.24 1(reference)

≥0.24 11.539 (4.388,33.993) <0.001

F/T

<0.103 1(reference)

≥0.103 0.848 (0.294,2.515) 0.762

LSR

<0.684 1(reference)

≥0.684 0.189 (0.059,0.561) 0.004

BMI;kg/m²

<23.62 1(reference)

≥23.62 2.638 (1.067,6.871) 0.04

RDW; %

<0.15 1(reference)

≥0.15 0.259 (0.036,1.156) 0.111

Blood glucose;mmol/L

<5 1(reference)

≥5 0.501 (0.192,1.269) 0.148

Urine_RBC

Negative 1(reference)

Positive 0.136 (0.018,0.62) 0.022
t
iersin.org
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model performed well in the external validation cohort, with an

AUC value of 0.78, a sensitivity of 0.712, and a specificity of

0.85. Decision curve analysis was used to validate the efficacy

and potential benefits of our novel model. This ML-based

model can be used as a screening tool for prostate biopsy

and has the potential to avoid missed diagnosis of PCa. Four
Frontiers in Oncology 09
independent predictors for PCa diagnosis were identified in

our analysis: PSAD, BMI, LSR, and urine RBC level. Previous

studies have suggested that obese patients have a higher risk of

developing prostate cancer. This is probably because

periprostatic fat is biologically active and can secrete factors

that promote cancer growth. However, it is unclear whether
A B D

E F G

C

FIGURE 2

ROC and decision curve analyses of the five ML algorithms. (A–F) ROC curve analysis of a ten-fold cross-validation of five machine learning
algorithms for predicting the risk of PCa in the training cohort. (G) Decision curve analysis demonstrating the net benefit associated with the use
of the models for the prediction of upstaging.
FIGURE 3

ROC curve analysis of five machine learning algorithms for predicting the risk of PCa in the external cohort.
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reversing obesity can mitigate the progression of prostate

cancer (35–38). The presence of a visible hematuria is a

common sign of prostatic disease. We believe that urine RBC

level emerged as a predictive factor in this study because there

was a high percentage of patients with benign lesions, and

prostatic hyperplasia is associated with a lower incidence of

urinary tract symptoms. Difficulty in urination can cause

damage to the microvasculature of the urinary system, and

this can manifest as urine occult blood. In contrast, PCa in its

early clinical stage is often insidious, and most patients only

seek treatment when elevated PSA is detected during routine

physical examination. In previous studies, LSR has been

applied in the evaluation of gestational diabetes (21),

diagnosis of cirrhosis (22), and prognosis of different cancers

(39, 40). The levels of alanine aminotransferase and aspartate

aminotransferase may be affected by obesity (41, 42), and

fluctuations in these two indicators may influence the

diagnosis of PCa in a similar way that BMI influences PCa.

Although ALP was not further analyzed in the current study

due to missing data, ALP may still be a promising indicator for

the diagnosis of prostate cancer. Further, it has been suggested

that prostate cancer may exhibit overexpression of tumor-

derived ALP, but this needs to be validated in further

studies (43)

Our study has several limitations. First, the small sample size

may affect the conclusions of the statistical analysis. Second, our

study was a single-center retrospective analysis, so there is a

possibility of a selection bias that may have affected the accuracy

of our model. Future external validation is needed to assess the

clinical application of our ML model by using data from other

institutions. Finally, some meaningful indicators may not have been

included in our analysis because of the absence of some

hematological data, and this may have affected the efficacy of the

model. Therefore, these findings need to be confirmed in future

investigations on larger patient samples.
Frontiers in Oncology 10
Conclusion

We established an efficient ML model for the differential

diagnosis of PCa. Our model exhibited excellent predictive

accuracy and practical clinical utility, and may help guide the

decision-making process of the urologist, avoid unnecessary

prostate puncture biopsy, and increase the detection rate

of PCa.
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