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In the past years, high entropy alloys (HEAs) witnessed great interest because of their superior 
properties. Phase prediction using machine learning (ML) methods was one of the main research 
themes in HEAs in the past three years. Although various ML-based phase prediction works 
exhibited high accuracy, only a few studied the variables that drive the phase formation in 
HEAs. Those (the previously mentioned work) did that by incorporating domain knowledge 
in the feature engineering part of the ML framework. In this work, we tackle this problem 
from a different direction by predicting the phase of HEAs, based only on the concentration 
of the alloy constituent elements. Then, pruned tree models and linear correlation are used to 
develop simple primitive prediction rules that are used with self-organizing maps (SOMs) and 
constructed Euclidean spaces to formulate the problem of discovering the phase formation drivers 
as an optimization problem. In addition, genetic algorithm (GA) optimization results reveal 
that the phase formation is affected by the electron affinity, molar volume, and resistivity of 
the constituent elements. Moreover, one of the primitive prediction rules reveals that the FCC 
phase formation in the AlCoCrFeNiTiCu family of high entropy alloys can be predicted with 87% 
accuracy by only knowing the concentration of Al and Cu.

1. Introduction

High entropy alloys (HEAs) are multi-component alloys that are characterized by having high configurational entropy [1,2].

Furthermore, these alloys reveal superior and interesting properties such as their thermal conductivity behavior versus temperature 
[3], high wear resistance [4], high yield strength and plasticity [5], corrosion resistance [6], superior elevated-temperature strength 
[7], and high hardness [8]. However, designing and manufacturing HEAs may be time- and cost-consuming because of their vast 
design space [9]. The constituent phase is one of the critical considerations for designing HEAs as it significantly impacts the alloy’s 
mechanical properties. Different methods have been implemented for HEAs phase prediction such as empirical rules [10], calculation 
of phase diagram (CALPHAD) [11,12], and density functional theory [13]. However, those methods are suffering from low accuracy 
[10], absence of complete datasets and thermodynamic models [9], and high computational cost [14], respectively. On the contrary, 
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Table 1

A snippet of the training dataset.

Al Co Fe Ni Ti Cu Cr FCC BCC IM

0.0963 0.3073 0.3045 0.2919 0 0 0 1 0 0

0.1742 0.2749 0.2781 0.2728 0 0 0 1 1 0

0.2287 0.2585 0.2613 0.2515 0 0 0 1 1 0

0.2842 0.2392 0.2438 0.2328 0 0 0 1 0 0

machine learning (ML) models showed excellent accuracy in phase prediction while being computationally inexpensive [15–17]. 
Similar to the CALPHAD method, ML models require the availability of a dataset. Fortunately, the availability of HEA phase data 
based on the experimental study has been growing because of the increasing research interest in HEA. Thus, ML seems to be the way 
to go for HEAs phase prediction yet they tend to lack full physical interpretability when complex models are used. In addition to 
that, normalizing the data is very common in ML practice, which further reduces or even eliminates the model’s physical meaning. 
Previous researchers succeeded in capturing some quantitative rules/guides of which factors affect phase formation in HEAs using 
physical quantities (features) that influence phase formation in ordinary alloys. Those quantities were used as predictor variables 
in the ML framework. In addition, they were able to reveal the feature’s relative importance by using feature selection/ranking 
algorithms. For example, the authors in [18] used valence electron concentration (VEC), the difference in the Pauling negativities 𝛿𝜒 , 
the atomic size difference 𝛿, the mixing enthalpy 𝛿𝐻𝑚𝑖𝑥, and the mixing entropy 𝛿𝑆𝑚𝑖𝑥 to predict the phase formation in HEAs. They

concluded that the valence electron concentration played the most dominant role in determining the ensuing phases. In addition 
to the previous features, the authors in [15] added five more features, such as the mean melting temperature and the mean bulk 
modulus. In [17], the authors considered nine thermodynamic properties. The results indicated that elastic energy and atom-size 
difference contributed significantly to the formation of different phases. Meanwhile, a new set of features was used and introduced 
in [19]. These features were based on analyzing binary phase diagrams to predict HEA phases. According to the authors, “The 
hypothesis is that the HEA structural stability is encoded within the binary phase diagram”. While the previous work [15,17–19]

used thermodynamic properties, the work in [16] used the constituent elements’ physical and chemical properties in the form of a 
concentration-weighted sum. The Results in [16] indicated that molar volume, bulk modulus, and melting temperature are the most 
influential features in HEAs’ phase formation. A common theme of the previous work is the direction of the workflow. The problem 
starts with defining the descriptor variables, then training the model, and performing some form of feature ranking. Although this 
has yielded high prediction accuracy, approaching the problem from another direction might give another perspective or at least 
enforce the previous findings. Thus, this was pursued in this work using the chemical concentration -instead of physical variables-

to infer which variables influence the phase formation via a novel algorithm. First, a phase prediction model that uses chemical 
concentration as input was trained, which is used to increase the size of the dataset by generating hypothetical samples. Then, from 
the extended dataset, simple/primitive prediction rules were developed using the Pearson correlation coefficient and pruned tree 
models. Finally, the variables/properties that satisfy the developed rules were searched using self-organizing maps (SOMs) along 
with genetic algorithm (GA) optimization. We believe that these variables affect HEAs’ phase formation the most. The analysis was 
performed on AlCoCrFeNiTiCu family of HEAs for two reasons. First, the availability of phase experimental data on this system. 
Second, these elements are frequently used in engineering alloys.

2. Data generation

2.1. Phase prediction model

2.1.1. Dataset

The phase dataset contained a total of 225 experimental HEA samples with seven features. Those features were the weight 
percentage of each of the seven constituent chemical elements. The dataset was collected by referring to the individual experimental 
studies on HEAs’ phase formation. Herein, the phase -target variable- was represented by a Boolean vector with three entries 
corresponding to {𝐹𝐶𝐶, 𝐵𝐶𝐶, 𝐼𝑀} phases, as shown in Table 1. The logical values in the target variable represent the set of phases 
present in the corresponding HEA sample. For example, [1, 1, 0] translates to {𝐹𝐶𝐶, 𝐵𝐶𝐶}, whereas [0, 1, 0] translates to {𝐵𝐶𝐶}. 
Figs. 1 and 2 show the anatomy of the phase dataset.

2.1.2. Prediction model

A feedforward artificial neural network (FFANN) was used for phase prediction as a result of the previous work of [15,18,20], 
which showed the superiority of FFANN over other machine learning models in phase prediction. The FFANN was implemented 
using MATLAB and MATLAB Deep Learning Toolbox. The network had 25, 5, and 3 neurons in the first, second, and third hidden 
layers, respectively. The network architecture was not optimum, however, it yielded satisfactory results. Neurons used the hyperbolic 
tangent activation function in the first and second hidden layers, whereas the logistic sigmoid activation function was used in the 
last hidden layer. The logistic sigmoid function was used in the last layer because its output may be interpreted as the probability 
of the existence of the corresponding phase. Levenberg-Marquardt backpropagation optimization algorithm and the mean squared 
error (MSE) cost function were used for training. Furthermore, four-folds cross-validation was used to obtain a better estimation of 
2

the performance of the network. The network prediction results are shown in Table 2.
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Fig. 1. Histogram of the chemical elements occurrence in the phase dataset.

Fig. 2. Histogram of the phase occurrence in the phase dataset.

2.2. Chemical composition generation

Algorithm 1 was used to generate 8,000 hypothetical HEAs. In Algorithms 1 and 2 ‘distribution’ is a function that generates 
a probability distribution of type ‘distribution_type’ for a given sample space. In addition, ‘sample’ is a function that draws 
‘num_of_samples’ samples from a given distribution. In the samples generated by Algorithm 1, the number of chemical elements 
is constrained to be equal to or greater than four. Moreover, each chemical element concentration is at least 10%. Thus, these two 
rules preserve the definition of high entropy alloys.

Algorithm 1: 𝐻𝐸𝐴_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐻𝐸𝐴_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑙).
Input : The number of samples, 𝑙
Output : An 𝑙 by seven matrix representing the chemical composition of an 𝑙 HEAs, HEA_samples

1 HEA_samples=zeroes(l,7)

2 for 𝑗 = 1 → 𝑙 do

3 𝑛_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛=𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛({4, 5, 6, 7},′ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑡𝑦𝑝𝑒′ , 𝑢𝑛𝑖𝑓𝑜𝑟𝑚)
4 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑛_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,′ 𝑛𝑢𝑚_𝑜𝑓 _𝑠𝑎𝑚𝑝𝑙𝑒𝑠′, 1)
5 𝑖_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛({𝐴𝑙, 𝐶𝑜, 𝐹𝑒, 𝑁𝑖, 𝑇 𝑖, 𝐶𝑢, 𝐶𝑟},′ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑡𝑦𝑝𝑒′ , 𝑢𝑛𝑖𝑓𝑜𝑟𝑚)
6 i = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑖_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,′ 𝑛𝑢𝑚_𝑜𝑓 _𝑠𝑎𝑚𝑝𝑙𝑒𝑠′, 𝑛)
7 𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝 = 𝑔𝑒𝑛_𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝(0.1, 0.05, 𝑛) Check Algorithm 2

8 𝐻𝐸𝐴_𝑠𝑎𝑚𝑝𝑙𝑒𝑠[𝑗, i] = 𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝

9 end

2.3. Phase data generation

The phase data was generated by passing the generated chemical composition through the trained neural network model 
3

developed in the previous section.
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Table 2

A comparison of the performance measures between our model and other 
models from the literature. The datasets used in each work are different in 
terms of the input features and the number of samples (refer to the references).

Performance Measure FCC BCC IM Model

This work

Accuracy - - - 92.74

Recall% 97.17 94. 03 83.59 -

Precision% 97.72 97.37 84.67 -

F1 score 97.44 95.62 83.82 -

Bakr et al. [21]

Accuracy% - - - 93.42

Recall% 95.24 94.9 84.98 -

Precision% 96.30 96.03 86.41 -

𝐹1 score 95.76 95.41 85.54 -

Alshibany et al. [20]

Accuracy% - - - 90

𝐹1 score 89 96 82𝑎 -

Lee et al. [15]

Accuracy% - - - 93

Pei et al. [16]

Accuracy% - - - 93.17

Zhang et al. [17]

Accuracy% - - - 97.43

Dai et al. [22]

Accuracy% - - - 89

Klimenko et al. [23]

Accuracy% - - - 91

Han et al. [24]

Accuracy% - - - 85

Algorithm 2: 𝑔𝑒𝑛_𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝(𝐶𝑚𝑖𝑛, 𝛿, 𝑛).
Input : Minimum element concentration 𝑪

𝒎𝒊𝒏
, concentration resolution 𝜹, number of elements 𝒏

Output : High entropy alloy random sample composition 𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝

1 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1
2 for 𝑖 = 1 → 𝑛 do

3 𝑢𝑝_𝑙𝑖𝑚 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑_𝑐𝑜𝑚𝑝 − (𝑛 − 𝑖) ∗ 𝐶𝑚𝑖𝑛
4 𝑠_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛({𝐶𝑚𝑖𝑛 ∶ 𝛿 ∶ 𝑢𝑝_𝑙𝑖𝑚},′ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑡𝑦𝑝𝑒′ , 𝑢𝑛𝑖𝑓𝑜𝑟𝑚)
5 𝑠 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑠_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,′ 𝑛𝑢𝑚_𝑜𝑓 _𝑠𝑎𝑚𝑝𝑙𝑒𝑠′ , 1)
6 if 𝑖 == 𝑛 then

7 𝑠 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

8 end

9 𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝{𝑖} = 𝑠
10 end

11 𝑟𝑒𝑡𝑢𝑟𝑛𝑟𝑎𝑛𝑑_𝑐𝑜𝑚𝑝

Table 3

The performance of a Neural Network model trained on the generated 
data. The model was evaluated on the original experimental set.

Performance Measure FCC BCC IM Model

Accuracy % - - - 94.55

Recall 97.79 95.90 82.95 -

Precision 98.14 97.40 93.19 -

F1 score 97.96 96.64 89.62 -

2.4. Validating the generated data

The generated samples’ validity was ensured by using them to train a new neural network model and then evaluating the model 
accuracy on the original experimental dataset (225 samples). The data generation and validation process is illustrated in Fig. 3 and 
4

the results shown in Table 3 were obtained:
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Fig. 3. Illustration showing the steps of the hypothetical data generation and validation.

3. Developing primitive prediction rules

3.1. Methods

The chemical composition effect on each phase has been studied using the generated dataset to develop relations/rules governing 
the phase formation in {𝐴𝑙, 𝐶𝑜, 𝐹𝑒, 𝑁𝑖, 𝑇 𝑖, 𝐶𝑢, 𝐶𝑟} family of HEAs. For that the Pearson correlation coefficient and classification tree 
models were used. Tree models have the advantage of interpretability and can capture the nonlinear relations between features and 
target values missed by using the Pearson correlation coefficient. The maximum number of splits was limited to 20 to maintain the 
interpretability of the tree models. Meanwhile, in Section 3.2, the original experimental phase dataset (225 samples) was used to 
evaluate the accuracy of the developed rules.

3.2. Developed primitive rules

The obtained Pearson correlation coefficient is shown in Table 4. Results revealed that FCC formation in AlCoCrFeNiTiCu is 
primarily affected by the concentration of Al and Cu. In addition, the Pearson correlation coefficient showed that Al has a strong 
negative correlation and Cu has a strong positive correlation with the formation of the FCC phase. Tree models also yielded the same 
conclusion. The highest accuracy was associated with using a tree model with only three splits, as shown in Fig. 4. Subsequently, the 
presence of a particular phase is indicated by a logical value of 1 and vice versa.

For 𝐵𝐶𝐶 , the Pearson correlation coefficient revealed a high positive correlation between 𝐴𝑙, 𝐶𝑟, 𝐹𝑒, and 𝐵𝐶𝐶 formation. A high 
5

negative correlation also existed between 𝐶𝑢, 𝑁𝑖, and 𝐵𝐶𝐶 formation. On the one hand, for the 𝐼𝑀 phase, 𝑇 𝑖, and 𝐹𝑒 exhibited 
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Table 4

Pearson coefficient of correlation between the chemical elements and {𝐹𝐶𝐶, 𝐵𝐶𝐶, 𝐼𝑀} phases.

FCC Element 𝐴𝑙 𝑇 𝑖 𝐶𝑟 𝐹𝑒 𝐶𝑜 𝑁𝑖 𝐶𝑢

Correlation -0.4361 -0.1829 -0.0547 0.0909 0.1059 0.1263 0.3487

BCC Element 𝐶𝑢 𝑁𝑖 𝐶𝑜 𝑇 𝑖 𝐹𝑒 𝐶𝑟 𝐴𝑙

Correlation -0.3941 -0.3725 -0.1984 -0.0394 0.2851 0.3052 0.3926

FCC Element 𝐶𝑢 𝐶𝑜 𝐶𝑟 𝐴𝑙 𝑁𝑖 𝐹𝑒 𝑇 𝑖

Correlation -0.2328 -0.2116 -0.1675 0.0115 0.0759 0.2497 0.2666

Fig. 4. Left: Accuracy of the FCC tree model VS the number of the tree splits. Right: FCC tree model structure.

Fig. 5. Tree prediction model of BCC formation (Left) and tree prediction model of IM formation (Right).

Table 5

Elements classification into Stabilizing and Destabilizing 
groups for each phase.

Phase Stabilizing set (𝑆) Destabilizing set (𝐷)

FCC 𝐶𝑢 𝐴𝑙

BCC 𝐴𝑙,𝐶𝑟,𝐹 𝑒 𝐶𝑢,𝑁𝑖

IM 𝑇 𝑖,𝐹 𝑒 𝐶𝑢,𝐶𝑜

a high positive correlation, while Cu and Co had a negative correlation. The trained tree models confirmed the previous results, as 
shown in Fig. 5.

4. Discovering the phase formation drivers

4.1. Problem reformulation

From the results, the chemical elements {𝐴𝑙𝐶𝑜𝐶𝑟𝐹𝑒𝑁𝑖𝑇 𝑖𝐶𝑢} can be grouped into a set containing elements stabilizing the 
6

formation of a specific phase (𝑆), and a set of elements destabilizing the formation of that phase (𝐷), as depicted in Table 5.
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This categorization is based on the Pearson correlation coefficient and the division learned by the tree models. Then, the question 
transforms from “what affects the phase formation in a certain alloy?” to “what are the elemental properties that differentiate the 
given elements into their perspective groups -stabilizing/destabilizing- for each phase?”.

4.2. Elements grouping

4.2.1. Self organizing map

A self-organizing map (SOM) is a type of neural network that uses unsupervised competitive learning and can reveal topological 
structure within the data. The presence of a topological entity gives rise to the notion of distance. Thus, the answer to our question 
could be obtained by finding the set of elemental properties 𝑒𝑜𝑝𝑡 that maximizes the distance between elements from different groups, 
that is (𝑆 −𝐷), and simultaneously minimizes the distance between elements from the same group (𝑆 −𝑆) OR (𝐷−𝐷) for all phases 
in a SOM. Let (𝑆) contain 𝑛 elements, let (𝐷) contain 𝑚 elements, let 𝜒 be a 2D self-organizing map, and let 𝑑𝜆 be the position of the 
𝜆𝑡ℎ element in 𝜒 . Herein, we define the average distance between the elements in (𝑆) and the elements in (𝐷), 𝛼 to be:

𝛼 = 1
𝑛 ∗𝑚

𝑛∑
𝑖=1

𝑚∑
𝑗=1

||𝑑𝑖 − 𝑑𝑗 || (1)

Also, we define the average distance between the elements in (𝑆) 𝛽𝑆 , and the average distance between the elements in (𝐷) 𝛽𝐷 to be 
-respectively-:

𝛽𝑆 = 1
𝐶(𝑛 ∗ 2)

𝑛∑
𝑖=1

𝑛∑
𝑗=1|𝑗≠𝑖 ||𝑑𝑖 − 𝑑𝑗 || (2)

𝛽𝐷 = 1
𝐶(𝑚 ∗ 2)

𝑚∑
𝑖=1

𝑚∑
𝑗=1|𝑗≠𝑖 ||𝑑𝑖 − 𝑑𝑗 || (3)

Where 𝐶(𝑥, 2) is the number of possible combinations of a set of 𝑥 elements taken two at a time and defined as:

𝐶(𝑥,𝑘) = 𝑥!
𝑘!(𝑥− 𝑘)!

(4)

Now the question can be formulated as an optimization problem to find the solution 𝑒𝑜𝑝𝑡 such that

𝑒𝑜𝑝𝑡 =𝑚𝑖𝑛𝑒(𝐶𝑜𝑠𝑡𝑡𝑜𝑡 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) (5)

where {
𝐶𝑜𝑠𝑡𝑡𝑜𝑡 = 𝐶𝑜𝑠𝑡𝐹𝐶𝐶 +𝐶𝑜𝑠𝑡𝐵𝐶𝐶 +𝐶𝑜𝑠𝑡𝐼𝑀 (a)

𝐶𝑜𝑠𝑡𝑝ℎ𝑎𝑠𝑒−𝑖 = (𝛽𝑆 + 𝛽𝐷 − 𝛼) ; 𝑝ℎ𝑎𝑠𝑒− 𝑖 ∈ {𝐹𝐶𝐶,𝐵𝐶𝐶,𝐼𝑀} (b)
(6)

And 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is a term that was added to prevent the optimization algorithm from using correlated variables by increasing the cost 
as the number of properties (𝑛𝑢𝑚_ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) used in the solution is increased

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =𝑤 ∗ 𝑛𝑢𝑚_ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 (7)

Based on our methods and reasoning, 𝑒𝑜𝑝𝑡 is the set of elemental properties that affect the phase formation in {𝐴𝑙𝐶𝑜𝐶𝑟𝐹𝑒𝑁𝑖𝑇 𝑖𝐶𝑢}
based HEAs.

4.2.2. Euclidean distance

Instead of using SOMs, we can construct a Euclidean space where the space coordinates are the set of the elemental properties. 
Then we look for the Euclidean space in which the correct chemical elements grouping -Table 5- occurs. This space is constructed by 
𝑒𝑜𝑝𝑡 Equation (5), which is the set of properties that minimizes the cost described by Equation (6). Note that to find 𝑒𝑜𝑝𝑡 we use the 
same method described earlier (Equations (1)-(6)). The only difference is that the distances now are measured in a Euclidean space 
instead of a Self Organizing Map. This means 𝑑 from Equations (1), (2), (3) is an 𝑙 dimensional vector -instead of 2 dimensional 
vector- that describes the position of a certain chemical element in the Euclidean space, where 𝑙 represents the space dimension.

4.3. Elemental properties

An element is characterized by its properties. For example, 𝐴𝑙 is an element with an atomic number equal to 13, FCC crystal 
structure, melting point = 660.3 ◦C, and so on. This work included a total of 23 properties, i.e. the size(𝑒) = [1×23]. However, the 
proposed framework can be used with more and properties. The data were obtained from [25] and are provided in the supplementary 
material.

4.4. Genetic algorithm optimization

Genetic Algorithm (GA) is an evolutionary algorithm based on the concept of natural selection. In GA, a heuristic is reached by 
7

the iterative process of elimination -based on an individual’s fitness-, crossover and procreation, and mutation. At each step, the 
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Fig. 6. Illustrative figure showing how the proposed framework works. In the figure, the GA optimizer keeps searching for the set of elemental properties that results 
in the chemical elements grouping -Table 5- developed in Section 3. Note that only five properties are used in the figures because of the space, the actual number of 
properties is 23. Also, the figure shows the grouping associated with one phase. The solution in the figure was arbitrarily chosen to clarify the framework. The actual 
solution is given in Section 4.6.

algorithm evaluates a population of solutions rather than a single one. Each solution (individual) is represented by a chromosome 
containing 𝑘 genes. Consequently, the form of the chromosome is problem-dependent. In our case, the chromosome should encode 
the identity of the elemental properties present in the sets of elemental properties. This was done using a [1×23] binary vector, 
where 1 indicates the presence of the corresponding property. For example, if the [𝑉 𝐸𝐶, 𝑇𝑚, 𝛿, 𝐻𝑉 ] are the elemental properties, 
then the set {𝑉 𝐸𝐶, 𝛿} is represented by 𝑒 = [1, 0, 1, 0].

4.5. All together

The workflow illustrated in Fig. 6 started with the GA initializing a random population of sets of elemental properties 
(individuals/chromosomes). Each individual represented a possible solution. Then, for each individual, a SOM was trained (through 
unsupervised learning) to group the elements based on the properties encoded in the individual’s genome. Afterwards, the fitness 
of a given individual was evaluated using Equation (6). A crossover was performed between the fittest - lowest cost - population 
members to produce the next generation, and the process was repeated until the optimum solution was reached. Occasionally, a 
mutation occurred in the offspring generation with a probability of 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛. Fig. 6 shows how the proposed framework components 
interact with each other. The same applies when using Euclidean distances except in that case the SOM step will be replaced by 
building a Euclidean space, as shown in Fig. 7.

4.6. Results and discussion

The results obtained from the GA that implemented SOMs in the cost function showed that electrical resistivity, molar volume, 
and electron affinity are the properties responsible for the phase formation in {𝐴𝑙𝐶𝑜𝐶𝑟𝐹𝑒𝑁𝑖𝑇 𝑖𝐶𝑢} based HEAs. This result was 
8

consistent on average, in the sense that different repetitions of running the optimization -with different SOM initial weights- yielded 
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Fig. 7. A Euclidean space constructed by {𝑉 𝐸𝐶, 𝛿, 𝑇𝑚}. The color indicates the elements grouping.

Fig. 8. The cost function value during the progress of the optimization algorithm.

this solution the most when the GA optimization reached a cost 𝑐𝑜𝑠𝑡𝑡𝑜𝑡 such that 𝑐𝑜𝑠𝑡𝑡𝑜𝑡 ∈ [0, −1]. The progress of the optimization 
using SOMs is shown in Fig. 8. Meanwhile, when the Euclidean space method was used, the results showed that density, specific 
heat, and electron affinity are the properties that drive the phase formation. Both methods report the electron affinity. In addition, 
both molar volume and density are related as they both indicate the space that the material occupies. Moreover, the results obtained 
by the Euclidean space method were consistent.

Pei et al. [16] found that molar volume, bulk modulus, and melting temperature are the factors that affect phase formation in 
HEAs. It is seen that molar volume is a common property between the two findings. It should be mentioned that bulk modulus and 
melting temperature were part of the solution in a few runs when SOMs were used with a smaller weight factor (𝑤) (Equation (7)). 
The properties encoded by the solution are believed to be a proxy to a more fundamental properties on the atomic level.

5. Conclusion

In this work, a neural network (NN) was trained on 225 experimental samples to predict the phase of {𝐴𝑙𝐶𝑜𝐶𝑟𝐹𝑒𝑁𝑖𝑇 𝑖𝐶𝑢} HEAs. 
The NN showed an 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of 97.4% and 95.6% for FCC and BCC phase prediction, respectively. On the contrary, IM phase 
prediction had a lower 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of 83.8%. Then, the model was used to generate a total of 8,000 hypothetical samples. Herein, the 
generated data were used to train another NN model. The model resulted in high accuracy when tested on the experimental dataset, 
thus suggesting the validity of the generated samples. Pearson correlation coefficient along with pruned tree models applied to the 
generated samples was used to develop simple rules governing the phase formation in {𝐴𝑙𝐶𝑜𝐶𝑟𝐹𝑒𝑁𝑖𝑇 𝑖𝐶𝑢} system of HEAs. For FCC 
9

phase formation, the result revealed that the phase could be predicted – with 87% accuracy- by only knowing the concentration of 
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both 𝐴𝑙 and 𝐶𝑢. Similar -and less accurate- rules were also developed for BCC and IM phase formation. Furthermore, for any phase, 
the chemical elements could be grouped into a class that supports that phase formation and a class that discourages it. Based on 
that, elemental properties responsible for the stabilizing/destabilizing categorization are also responsible for the phase formation. 
Therefore, an optimization problem based on that assumption was formulated such that it searches for the set of elemental properties 
that maximizes the distance between the chemical elements from different groups and minimizes it for elements belonging to the same 
group. SOMs and Euclidean spaces were used to introduce that notion of distance/topology to the problem, and GA optimization was 
used to search for the optimum solution. The solution suggests that resistivity, molar volume, and electron affinity are the properties 
responsible for the phase formation in {𝐴𝑙𝐶𝑜𝐶𝑟𝐹𝑒𝑁𝑖𝑇 𝑖𝐶𝑢} based HEAs.
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