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Memory B cells and long-lived plasma cells are key elements of adaptive humoral immu-
nity. Regardless of the immunoglobulin class produced, these cells can ensure long- 
lasting protection but also long-lasting immunopathology, thus requiring tight regulation 
of their generation and survival. Among all antibody classes, this is especially true for 
IgE, which stands as the most potent, and can trigger dramatic inflammatory reactions 
even when present in minute amounts. IgE responses and memory crucially protect 
against parasites and toxic components of venoms, conferring selective advantages and 
explaining their conservation in all mammalian species despite a parallel broad spectrum 
of IgE-mediated immunopathology. Long-term memory of sensitization and anaphylactic 
responses to allergens constitute the dark side of IgE responses, which can trigger mul-
tiple acute or chronic pathologic manifestations, some punctuated with life-threatening 
events. This Janus face of the IgE response and memory, both necessary and potentially 
dangerous, thus obviously deserves the most elaborated self-control schemes.
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iNTRODUCTiON

B cells are specialized in immunoglobulin (Ig) selection and production, the development of which 
implies several phases. The first is antigen (Ag) independent, with V(D)J assembly creating functional 
B cell receptor (BCR) genes. In a second phase after cells have reached the periphery, Ag activation 
can induce expression of activation-induced deaminase (AID) (1, 2), then allowing a second round of 
Ig gene diversification by somatic hypermutation (SHM) and/or class switch recombination (CSR), 
which strongly influences their fate (3). In parallel, activated lymphocytes can further differentiate 
into memory B cells or into plasma cells (PCs) secreting antibodies. PCs can themselves be split 
into either short- or long-lived cells, the latter surviving and secreting Ig for years in human. CSR 
switches Ig production from IgM (+/−IgD) to IgG, IgA, and IgE. IgE was the last discovered Ig class 
(4, 5), notably due to its low amount in body fluids and the scarcity of IgE+ cells in vivo.

Both IgE and IgG emerged in proto-mammals from the ancestral reptilian IgY molecule and 
further diverged (6). IgG and IgE now stand as the predominant vs. less abundant Ig class in 
mammals. IgE structure (i.e., constant domains, positions of disulfide bonds, and a CH3 domain 
N-glycosylation site) is well conserved, with homology culminating at the Fc receptor high-affinity 
(FcεRI) binding site (7), in agreement with its major functional role. Tiny production is another 
IgE conserved feature, indicative of a stringently controlled process, consistent with IgE potentially 
hazardous properties during anaphylactic reactions (8).
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FigURe 1 | IgE class switch recombination, secreted, and membrane IgE (mIgE) transcripts. Top: mouse WT IgH locus is represented after VDJ recombination (not 
to scale). The recombined VDJ gene and constant (C) genes are represented as outlined boxes. I exons (I) and switch (S) regions preceding each constant gene 
(excepted Cδ) are represented as boxes and ovals, respectively. Black diamonds portray important regulatory elements: the intronic enhancer μ (Eμ), and the 
super-enhancer 3′ regulatory region (3′RR). Upper-middle: after B-cell activation, activation-induced deaminase (AID) is expressed and exerts its mutagenic activity 
on the VDJ gene, allowing production of antibodies with increased affinity for the Ag. AID is also targeted to S regions to initiate DNA double strand breaks, thereby 
inducing class switch recombination (CSR) between two S regions, here Sμ and Sγ1, or Sμ and Sε. This process allows the production of high-affinity IgG1 
antibodies, or low-affinity IgE. Lower-middle: cells can undergo more rounds of cell cycle or re-express AID after re-exposure to antigen and undergo a sequential 
CSR event, from γ1 to ε here, to produce high-affinity IgE antibodies. Bottom: IgE class-switched cells produce two main transcripts: mIgE transcripts including the 
four constant exons (CH1 to CH4), the two membrane (M1 and M2) anchor domains and unconventional polyadenylation (polyA) signals and/or secreted IgE 
transcripts, containing the constant genes and two conventional polyA signals. Alternate IgE transcripts have been described and could contribute to IgE response 
regulation.
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IgE antibodies are notably active against helminths, in 
responses featuring high total and specific IgE levels, hyper-
eosinophilia and Th2 polarization (9). IgE have crucial FcεRI-
dependent anti-venom properties (10, 11). They also show an 
adjuvant effect for IgG responses, dependent on the low-affinity 
FcεRII receptor (CD23) (12–14), which could participate in Ag 
endocytosis and presentation to T cells. IgE can finally act against 
tumors by recruiting eosinophils, mastocytes, macrophages, and 
CD8 T-cells, in a FcεRI-dependent manner (15–17).

Unfortunately, these benefits come with multiple deleteri-
ous effects in allergies, and even also autoimmunity (18, 19). 
Accordingly, the immune system evolved with multiple regula-
tions tempering IgE responses. IgE CSR is stimulated by Th2 
cytokines IL4 and IL13, and by IL9 producing T-cells and mast 
cells [for review (20, 21)], whereas other cytokines (IFNγ, TGFβ, 
IL10, etc.), TREG cells, and dendritic cells dampen IgE responses 
(22, 23). These extrinsic controls are consolidated by B  cell 
intrinsic brakes ensuring tight regulation of IgE CSR, mostly 

short-lived IgE PC differentiation and an extremely short-lived 
fate of lymphocytes expressing membrane IgE (mIgE). We review 
recent findings documenting how IgE production is intrinsically 
self-controlled in B cells.

ige CSR RegULATiON

Class switch recombination occurs between switch (S) donor 
and acceptor regions (Figure  1). S regions are preceded with 
non-translatable I exons and I promoters, regulated both by the 
cytokine and cellular environment and in a B cell intrinsic man-
ner. The IgH super-enhancer 3′ regulatory region (3′RR), a hub 
for multiple factors important for B-cell identity and/or activation 
is a major regulator of CSR (24, 25). Following B cell activation, 
germinal transcription of I-S regions is induced, recruiting AID, 
which initiates DNA double strand breaks under the control of 
the 3′RR [for review (26)]. Synapsis between broken S regions is 
also 3′RR dependent (27).
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I promoters are crucial CSR regulators for each isotype by 
carrying sites for specific transcription factors. The Iε promoter 
binds E2A, AP1, C/EBP, STAT6, PU.1, Pax5, and NF-κB (28, 
29). Classically, Iε-Sε transcription before IgE CSR is induced by 
phosphorylation and dimerization of STAT6, which is stabilized 
by SWAP-70 (30). While IL4 induces STAT6 and NFIL3/E4BP4, 
CD40 ligation synergistically activates NF-κB (31). In contrast, 
several negative regulators inhibit Sε transcription and CSR. Bcl6, 
strongly expressed in GC, competes with STAT6 for the same 
binding sites, then restricting IgE CSR. Id2 sequesters E2A and 
Pax5 and inhibits Iε transcription (32) [for review (33)]. TGF-β, 
IFNγ, and IL10 likely contribute to these negative regulations, 
and in human by concomitant binding of HoxC4 and Oct-1 to 
the Iε promoter (34).

Sε structure itself contributes to IgE CSR regulation, as the 
shortest and least repetitive S region in both mouse and human 
(2  kb only, whereas Sγ1 is around 10  kb) (35). Consistently, 
either Sε replacement by Sμ or insertion of Cε downstream of 
Sγ1 enhances IgE production (36, 37). Epigenetic changes also 
affect Sε: H3 acetylation and K4 tri-methylation (38) and IL4-
dependent demethylation (39). Immature B cells, with potentially 
different epigenetic marks, thus preferentially switch to IgE rather 
than IgG1 (40).

IgE CSR can be direct (Sμ to Sε) or sequential (Sμ to Sγ1 first 
and then to Sε) with an IgG1 intermediate (41) (Figure 1). Direct 
CSR produces low-affinity IgE that competes with high-affinity IgE 
generated by sequential CSR (42). A probabilistic model suggests 
that low activation induces IgE CSR while high level favors IgG1 
CSR with eventual secondary CSR to IgE (43). This could impact 
in vivo IgE responses which can be either inside or outside the GC, 
respectively, providing stronger or weaker co-receptor signaling. 
Human IgE+ cells are also produced by either direct or sequential 
CSR (44). Taken together, these features limit Sε accessibility dur-
ing GC reactions, ensuring a first control for IgE production in 
cells rather biased toward preferential IgG1 CSR (45).

MULTiPLe ige MeMBRANe AND 
SeCReTeD ige TRANSCRiPTS

After IgE CSR, B-lymphocytes express mIgE heavy chain tran-
scripts, containing four constant (CH) and two membrane exons 
(M1 and M2), while PCs produce secreted transcripts lacking 
membrane exons (Figure  1). Alternatively spliced human IgE 
transcripts are found both for secreted and membrane forms, and 
can notably include a supplemental sequence of 156 nucleotides 
using an acceptor splicing site upstream of the M1 exon (46–50). 
Human mIgE BCR variants thus feature short mSIgE and long 
mLIgE, expressed after B cell activation (51). Alternately spliced 
IgE transcripts were also found in the mouse (52).

Noticeably and contrary to other Ig genes, membrane-type IgE 
transcripts lack a canonical AATAAA polyadenylation (polyA) 
site downstream of membrane exons. Maturation of these mRNAs 
then relies on suboptimal variant polyA sites likely lowers mIgE 
expression. The resulting ratio of secreted-type/membrane-type 
ε mRNA is indeed higher than for IgG in stimulated B  cells, 
but partially normalized upon insertion of a classical polyA site 
downstream the IgE membrane exons in vitro (53). However, the 

insertion of a classical polyA sequence downstream the IgE gene 
does not really increase IgE level in  vivo (54). Unconventional 
polyA sites are found in many sequenced organisms, notably 26 
primate and 12 non-primate species (55).

Altogether, this alternative and non-canonical maturation of 
IgE transcripts could dampen IgE production, notably with low 
mIgE expression conferring specific properties to mIgE+ cells. In 
other models, low BCR expression was shown to boost tonic BCR 
signaling and plasma cell differentiation (56, 57).

ige+ LYMPHOCYTeS ARe PRONe TO 
DiFFeReNTiATiON iNTO SHORT-LiveD 
PCs

Following Ag activation, some cells differentiate into memory 
B cells (58), while others evolve into short- or long-lived PCs, then 
ensuring short-or long-term infusion of specific Ig in body fluids.

Studying IgE+ cell fate in vivo in WT mice suggested that these 
cells transiently appeared outside GCs and then rapidly yielded 
PCs (59). This differentiation was also observed in a transgenic 
model, where IgE+ cells become GFP+, with IgE+ cells overexpress-
ing Blimp-1 and prompt to become short-lived PCs (60). This 
effect is also observed in vitro, using feeder cells and cytokines for 
B cell stimulation, exclusively generating IgM+ and IgG1

+ B cells, 
while IgE+ cells again rapidly become PCs (61). Other in  vitro 
B  cell stimulation protocols also suggest PC predisposition for 
IgE+ cells expressing a WT or an exogenous mIgE (62, 63).

We also found exacerbated PC differentiation in vivo within 
the LATY136F mouse model, with a ratio of IgE+ plasmablasts vs. 
B-lymphocytes 10- to 100-fold higher than for IgM and IgG1 (64). 
Transfer experiments into immunodeficient mice showed a rapid 
collapse of these IgE+ cells, both lymphocytes, and PCs, arguing 
for a short-lived fate.

Normal B  cell differentiation and activation are known to 
involve mobility, notably into GC. In vitro migration assays, by 
contrast, revealed that cells expressing mIgE poorly migrate 
toward chemokines (64). This likely compromises their entry into 
optimal zones of long-term survival as memory B cells or even as 
long-lived PCs in physiological conditions.

That IgE plasmablasts have an intrinsic lower chance to 
migrate to long-lived PC niches was indeed demonstrated in vivo, 
using chimeric BCR IgE/IgG1 [Cγ1 membrane exons knock-in 
(KI) into Cε, Figure 2] (65). However, long-term allergy obvi-
ously involves the continuous infusion of specific IgE into the 
blood by long-lived PCs, which may then constitute the only cell 
compartment surviving after IgE CSR. Such PCs can indeed be 
demonstrated in vivo in spleen and bone marrow (66). Also in 
a model of forced IgE CSR, mIgE-expressing cells disappeared 
within a few days following induction, while IgE secretion per-
sisted for months (64). In human, bone marrow transplantation 
can induce the transfer of allergen-specific IgE production, likely 
by transferring long-lived PCs (67). Of note, IgE serum half-life 
is less than 2 days, ensuring their rapid disappearance if secretion 
ceases. Although this half-life is higher for cell-bound IgE carried 
by FcεRI-expressing cells (68), only the permanent production 
of IgE by persisting long-lived IgE PCs can account for lifelong 
allergic conditions. Beside immediate allergy related to persistent 
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FigURe 2 | IgH mouse models to study IgE responses in vivo. Top: mouse WT IgH locus is represented after VDJ recombination (not to scale). IgM (green), IgG1 
(blue), and IgE (red) loci including their switch regions (S), constant exons (CH), membrane genes (M), and membrane polyadenylation sites (pA) are shown. Middle: 
knock-out and knock-in alleles are represented, using the color code (IgM elements in green, IgG1 in blue and IgE in red) for modifications of switch regions, exons 
and polyadenylation sites. Bottom: the three last models feature insertion of fluorescent reporter genes (yellow boxes) and exogenous sequences (black). Name and 
references of each mouse model are specified on sides.
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IgE secretion but with some delay after an antigenic boost, IgG 
memory B cells, can also generate new IgE-secreting cells after 
sequential CSR.

It thus appears that the actors of long-term IgE responses are 
mostly PCs. Despite their scarcity, their persistent production of a 
highly pro-inflammatory Ig class endows them with a major role 
in both physiology and pathology. Since IgE CSR is very efficient 
in vitro and since many reports showed that IgE-switched cells 
more efficiently differentiate into PCs than into persisting IgE+ 
lymphocytes, it remains to be understood why IgE PCs are so rare 
in vivo and IgE production so low (about 1,000-fold below that 
of specific IgG). Convergent data now show that the rate-limiting 
step of IgE PC generation is a specifically fragile and short-lived 
status of mIgE+ lymphocytes. Poorly moving and briefly surviv-
ing, these mandatory precursors (69) constitute a bottleneck in 
IgE PC generation.

mige eXPReSSiON STRONgLY iMPACTS 
LYMPHOCYTe CeLL FATe

In physiological conditions, mIgE+ lymphocytes are barely 
detectable in  vivo either in mouse or human. They are, how-
ever, mandatory for building IgE responses, knock-out (KO) 

of membrane exons (Figures 2 and 3) decreasing total serum 
IgE by 95%, and preventing the production of specific IgE after 
immunization (69). Replacement of the IgE intracellular tail 
with a KVK tail (similar to IgM BCR) (Figures 2 and 3) also 
decreased IgE production, showing that this intracellular tail 
positively contributed to IgE secretion (69). That antibody tar-
geting the mIgE extracellular portion decrease IgE production 
in vitro as well as in vivo, further underlines the importance of 
mIgE+ cells as IgE PC precursors. A first study showed in vitro 
induction of apoptosis of mIgE+ cells and inhibition of specific 
IgE responses in allergic mice, using an anti-EMPD (extracel-
lular membrane-proximal domain) monoclonal antibody 
(MAb) (70). Anti-human extra-membrane proximal domain 
(EMPD) antibodies proved efficient in vivo, targeting human-
ized mouse (Figure 2), or human PBMC, by promoting apop-
tosis, decreasing IgE PC number, and lowering IgE production 
in models of asthma induction and helminth infection (71). 
Soluble IgE neutralization and decrease of IgE+ cells was also 
obtained using a single-chain antibody against total IgE (72). 
Another antibody targeting total IgE and including a FcγRIIb 
binding Fc region is 40-fold more efficient than the classical 
omalizumab MAb anti-IgE in HuSCID mice, diminishing PCs 
and IgE production, likely due to co-engagement of mIgE and 
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FigURe 3 | WT and variant IgE B cell receptor (BCR) expressed in mouse models. Mouse WT IgE BCR structure is schematized in the center. Heavy and light chain 
variable (VH and VL) domains form the antigen-binding site, constant domains (CH), transmembrane (TM), and intracellular domains (IC) are shown, and anchored in 
the lipid membrane. IgE BCR includes an extra-membrane proximal domain (EMPD). Co-signaling molecules Igα and Igβ are represented in gray. Variant and 
chimeric IgE BCR resulting from the different knock-in and knock-out alleles (described in Figure 2) are represented, and reporter fluorescent proteins are illustrated.
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the inhibitory receptor FcγRIIb at the lymphocyte surface 
(73). It remains to be explored whether the IgE BCR is only 
expressed on B-lymphocytes, as for IgG, or also on some bone 
marrow long-lived PCs, as for some IgA and IgM-PCs (74, 75). 

Altogether, mIgE+ cells are a mandatory step of IgE responses, 
but since they poorly show up in vivo, their study is challenging 
and has needed specific biochemical and cellular in vitro and 
in vivo strategies.
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Phage display helped identify two mIgE intra-cytosolic  
binding proteins: HPK1 binds mIgE and other isotype tails 
(76) while HAX1 only binds IgE (77). IgE production, however, 
remained unaffected in corresponding KO models (78–80).

As for transfected IgE BCRs expressed in  vitro in cell lines, 
both human mIgE forms expressed into the immature WEHI 
cell line, associated with mouse signaling co-receptors Igα/Igβ, 
and inhibited cell growth after mSIgE BCR cross-linking (51). 
Chimeric receptors (missing CH1 to CH3 exons) expressed 
in A20 mature B  cell line induce caspase-dependent apoptosis 
upon cross-linking when lacking the EMPD domain (81). Short 
chimeric constructions expressed into Ramos human mature 
cells showed Grb2 adaptor recruitment to intra-cytoplasmic 
mIgG or mIgE tails, enhancing BCR signals and proliferation 
(82). Membrane IgE expression alone induced some apoptosis of 
the mature Daudi cell line, which was increased by mIgE cross-
linking and reversed by caspase inhibitors (71).

Primary cell studies need tricky sensitive protocols to specifi-
cally identify true mIgE+ cells and not passive IgE binding to Fcε 
receptors. Several protocols limit false positivity: cells can be intra-
cellularly stained after trypsin treatment, to remove CD23-bound 
IgE (40), or after saturation of surface IgE with non-fluorescent 
antibodies (60). An acidic wash can also efficiently remove CD23-
bound IgE and then allow for direct mIgE staining (59).

In vitro, IL21 induces apoptosis of IgE+-stimulated B cells, but 
not IgG1

+ (83). High concentration of IgE+ cells also promotes 
caspase-dependent apoptosis (84). Using a more sophisticated 
in vitro system, “GC like” structures can be created with IgM/IgD 
and IgG, but not IgE, “memory” B cells, suggesting that mIgE+ 
cells die (61).

We observed spontaneous apoptosis induced by the human 
mIgE expression, both in heterologous (mouse mature B  cell 
line) and homologous (human mature B  cell line) transfect-
ants. Consistently, we observed increased apoptosis of mIgE+ 
lymphocytes among primary B cells stimulated in vitro toward 
CSR and deprived of cytokines. This apoptosis implicated the 
mitochondrial and caspase pathways and was partially reversed 
using cyclosporine A, caspase inhibitors, or bcl2 overexpres-
sion. In these cells, survival was affected by multiple means: 
mobility was drastically reduced while the actin cytoskeleton 
was reorganized and cells took circular shapes, HAX1 was 
delocalized from mitochondria, IgE BCR was spontaneously 
incorporated into lipid rafts and endocytosed, transcriptional 
program controlling cell death, metabolism, signaling, and 
mobility was affected (64). Another study confirmed spontane-
ous apoptosis in vitro, upon expression of an exogenous BCR 
into stimulated primary B  cells, and confirmed that the IgE 
BCR induces cell death actively, and not due to a signaling 
defect (63).

All these data are informative about the B-cell intrinsic 
impact of mIgE expression but do not integrate the in  vivo 
complexity of IgE responses. Beyond these intrinsic aspects, 
extracellular factors such as cell–cell interactions, Ag presen-
tation by B-cells to T-cells and various soluble factors could 
strongly influence IgE+ B cell fate. Methods and mouse models 
have been developed by different labs and help further under-
stand IgE responses.

wT AND TRANSgeNiC MOUSe MODeLS 
TO iNveSTigATe ige ReSPONSeS  
IN VIVO

One first model involved a transgene encoding secreted IgE, thus 
increasing serum IgE level, but without providing any clue about 
mIgE+ cells (85). KI insertion of Cε into the Cγ1 locus (Figures 2 
and 3) also increased IgE production without generating mIgE+ 
B  cells in  vivo, whereas these cells appeared in  vitro (37). IgG1 
membrane exons (M1–M2) KI downstream of Cε (Figures  2  
and 3) also increased IgE basal levels and secondary IgE responses, 
suggesting that the transmembrane (TM) and intracellular IgE 
tail contribute to IgE homeostasis in vivo (65). De Lafaille and 
colleagues developed a hyper-IgE model revealing several aspects 
of IgE responses: these mice carry a transgenic anti-OVA TCR 
and a KI anti-HA BCR, inducing strong IgE response after 
immunization with OVA-HA peptide and revealing the role of 
TREGS in controlling IgE production (22). In this model and in 
helminth (Nippostrongylus brasiliensis)-infected WT mice, IgE+ 
PCs were localized outside GC, whereas IgE CSR occurred in GC 
IgG1

+ cells, i.e., through sequential CSR (Figure 1). Intracellularly 
stained IgE+ cells have specific characteristics: they are large, 
express PC genes but not CXCR5, which is implicated into GC 
localization (59). Ig affinity was studied after OVA-PEP1 immu-
nization (a variant of OVA-HA), and showed rapid specific IgG1 
but delayed specific IgE production, suggesting sequential CSR 
from IgM to IgG1 and then to IgE, where SHM occurs in parallel 
to IgG1 CSR (59). Consistently, IgG1-deficient mice show a defect 
in specific IgE production, whereas total IgE level is unaffected. 
This suggests that sequential IgE CSR generates high-affinity 
(potentially pathogenic) IgE, whereas direct IgE CSR generates 
low-affinity IgE (rather dampening allergy by saturating FcεRI 
receptors) (42). We can note that a “natural” IgE production 
by B2 cells, independently of MHCII, could eventually provide 
some of the protective low-affinity IgE antibodies (86), as well 
as IgE produced by immature B  cells (40). The specific role of 
IgG1 memory cells into IgE memory has been confirmed using 
a high-throughput sequencing approach and adoptive transfer, 
suggesting the absence of mIgE+ memory B-lymphocytes (87).

Three fluorescent reporter mouse models have been gener-
ated to study the rare IgE+ cells in vivo. The first one (M1’ GFP) 
includes a human EMPD IgE domain knocked into the mouse 
Cε (Figure 2) and an IRES-GFP cassette downstream of mem-
brane exons. Upon N. brasiliensis infection, IgE+ cells were then 
detected into GCs, but without strong PC differentiation (54). 
These conclusions could be biased by this chimeric BCR, the use 
of a classical polyA for membrane exons, and the fact that this 
IRES does not tag the IgE protein but IgE transcripts (with some 
GFP+ cells expressing functional IgG1

+ on one hand and germline 
Cε transcripts on the other). A second model used the peptide 2A 
system to really tag IgE+ cells, coupling translation of mIgE and 
the fluorescent protein “Venus” (Figure 2), so that IgE+ cells are 
also Venus+. This model showed IgE+ cells into GC and confirmed 
their PC bias. These PCs were mostly short-lived but their num-
ber can be enhanced by Bcl2 overexpression, they express mIgE, 
opposite to IgG PCs (60). Another IRES-GFP cassette has been 
inserted into Cε, conserving the natural architecture of mIgE 
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and the unconventional polyA sites (Figure 2). This showed that 
along N. brasiliensis infection, IgE+ cells generated into GC were 
less mobile than IgG1 and restricted to the dark zone, limiting 
their contribution to memory. This also showed more in  vivo 
apoptosis of IgE+ than IgG1

+ lymphocytes (88).
All these models converge toward the conclusion that the IgE 

response highly differs from other isotypes, by generating few 
class-switched lymphocytes, which are short-lived and might 
then face the cell fate decision of differentiating into PCs or dying 
through apoptosis. Since there are good indications that mIgE by 
itself elicits signals that cut B-cell mobility, shorten survival, and/
or induce apoptosis (64), the issue of BCR expression in long-lived 
PCs downstream of the B-lymphocyte stage is of interest. For 
IgM+ and IgA+ PCs expressing a functional BCR, cross-linking 
this receptor with high doses of anti-BCR antibodies decreases 
PC survival (74). Regarding the mIgE which by itself shortens 
the half-life of B-lymphocytes (somehow mimicking high-dose 
cross-linking of other BCR classes), whether it can also be detri-
mental to PC survival remains an open issue.

Two mouse models uncoupled mIgE expression to normal 
CSR and microenvironment signals. Cε was inserted into Sμ (εKI, 
Figure 2) to force mIgE BCR expression in place of mIgM, as pre-
viously done successfully with mIgA (89). A strong blockade of 
early B cell development hereby occurred, suggesting a defect in 
ε − pre-BCR signaling or a pro-apoptotic signal. Another model 
followed the same strategy, but now including a floxed human 
Cμ upstream of Cε (μεKI, Figure 2), human IgM expression then 
initially supporting B  cell development (90). Upon tamoxifen-
inducible cre-deletion, these mice secreted IgE and transiently 
showed IgE+ B-lymphocytes. IgE levels peaked around 1  week 
after induction and while IgE+ B-lymphocytes rapidly vanished 
from lymphoid tissues after a few days independently of any BCR 
cross-linking, secreted IgE levels persisted for months, indicating 
that long-lived IgE+ PCs survived (64). Another model replaces 
Cγ1 with human Cε but conserving Sγ1 and its polyA site 
(Figure 2). Human IgE level was then higher than mouse IgE, but 
much lower than IgG1. Very infrequent IgE+ hybridomas could 
be obtained after immunization, suggesting again an underrep-
resentation of mIgE+ cells (91).

While expression of human IgE in a mouse context could 
participate to this phenotype, this was consistent with the 
observation of increased apoptosis in IgE class-switched primary 
B-cells. A recent study also confirmed spontaneous apoptosis 
of IgE+ lymphocytes, induced by mIgE expression in a BLNK-
dependent manner, while the same cells were also simultaneously 
induced to leave the B-cell stage and readily become PCs, with a 
PC bias attributed to the CD19 and BLNK signaling pathways. 
This was dependent from mIgE extracellular domains (63). 
FAS-dependent apoptosis (92) might also dampen IgE responses 
since FAS inactivation yields expanded IgE PCs, and IgG and IgE 
autoantibodies (18).

Finally, a recent study showed that expression of mIgE pro-
motes PC differentiation rather than survival of mIgE+ lympho-
cytes even in the absence of Ag, due to constitutive activation 
of Syk, CD19, BLNK, Btk, and IRF4 signaling pathways. This 
model did not demonstrate apoptosis but a proliferative defect 
and showed an exaggerated GC response for IgE+ B  cells after 

disruption of BCR signaling. IgE+ B cells also poorly presented 
Ag in vivo, which could explain poor participation to immune 
responses (62).

Altogether, IgE+ B  cells are very scarce in  vivo, they can be 
generated for a short-term window but quickly vanish, apparently 
only surviving as PCs.

DiSCUSSiON

ige and Their Receptors
IgE responses are also controlled by IgE receptors, several 
of which exist under soluble as well as membrane-anchored 
isoforms. Surface FcεRI expression in mast cells is stabilized by 
soluble IgE (93) and participates to the clearance of soluble IgE by 
dendritic cells and monocytes (94). Membrane FcεRI, expressed 
by a basophilic leukemia cell line, also bound mIgE expressed by 
lymphocytes (95). The soluble form of FcεRII/CD23 also binds 
mIgE (96), and interestingly, FcεRII KO increases IgE responses 
(97). FcγRIV can bind IgE-Ag immune complexes and activate 
macrophages in mouse (98). Other receptors like soluble galectin 
3 and 9 also bind IgE, respectively, with low [for review (99)] or 
high affinity (100), and might also bind mIgE. We can speculate 
that this hub of IgE receptors, expressed and secreted by different 
cell populations or by mIgE+ lymphocytes themselves, and IgE/
Ag immune complexes could cross-link mIgE, re-enforcing the 
intrinsic control mIgE+ lymphocyte homeostasis.

ige Memory
After primary immunization in the mouse, multiple layers of 
memory B  cells are generated, including IgM+ and IgG+. This 
ensures secondary responses with rapid PC differentiation of IgG+ 
memory cells and re-entry into GC center of IgM+ memory cells 
(101). Long-lived PCs establish soluble Ig memory for long term. 
Class-switched BCRs strongly influence B cell fate, globally induc-
ing PC differentiation (56, 89, 102) and modulating the memory 
B cell pool. As discussed above, there are contradictory data about 
IgE memory. Some studies suggested that mIgE+ memory B cells 
persisted after IgE responses (54), but convergent reports rather 
documented that these cells end into short-lived PC and undergo 
multiple counter-selection processes including apoptosis (36, 37, 
60, 64, 87, 88, 91). These contradictory conclusions might result 
from technical pitfalls, like false mIgE staining, use of leaky IRES, 
disruption of IgE BCR natural architecture, an introduction of 
exogenous sequences, heterologous systems, genetic background, 
etc. Kinetic and spatial issues are also crucial as IgE responses 
are transient and restricted to specific compartments, which is 
difficult to investigate in  vivo. Differences between mouse and 
human are also possible.

Numerous indirect pieces of evidence strongly suggest the 
absence of mIgE+ cells in the memory lymphocyte compart-
ment; thanks to sequential CSR to IgE after an antigenic boost, 
some IgE memory could in fact indirectly be created through de 
novo CSR of classical IgG1

+ memory lymphocytes then ending 
with the production of high-affinity IgE. This mechanism could 
ensure that high-affinity IgE antibodies are not generated as a 
first defense layer but only in a second stage when Ag reappears 
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in an appropriate cytokine context and that these responses are 
essentially transient.

Membrane IgE expression strongly affects lymphocyte pheno-
type and we suggest that evolution selected multiple mechanisms 
to restrict IgE responses. IgE tail itself perturbs BCR signaling, 
eventually by sequestrating anti-apoptotic protein (HAX1), 
recruiting adaptor or signaling proteins (Grb2, Syk), or through 
still unknown interactions. TM and extra-membrane domains 
notably contribute to specific interactions with Ig-α, CD19 and 
probably other molecules. IgE is highly flexible (103, 104) and 
could spontaneously adopt a closed conformation, even when 
expressed as a BCR, and be spontaneously cross-linked; this 
effect could be enhanced by interactions with IgE receptors. Cε 
domains seem to be implicated in multiple signaling pathways 
and functions, ensuring both efficient PC differentiation and a 
selective disadvantage for mIgE+ cells, with reduced proliferation, 
Ag presentation, and mobility, also affected with constitutive 
BCR clustering into lipid rafts and endocytosis lowering surface 
expression, globally promoting poor survival. These effects are 
now well documented in lymphocytes and might also impact 
mIgE+ PCs (Figure 4).

Note Added in Proof
A new mouse model has been generated to force membrane IgE 
expression from early B cell development (105), similarly to εKI 
mice (Figure 2), but using a different strategy and a mouse Cε 
gene. These animals have also a strong blockade at the pro-B cell 
stage, again showing that Cε gene cannot support B cell devel-
opment. Interestingly, the authors demonstrate that the strong 
(secreted vs. membrane) ratio of IgE accounts for this phenotype, 
which could be partially rescued by inserting an mIgE. Finally, 
they show that increasing BCR signaling by PTEN deletion 
increases mIgE cell number and IgE responses.

CONCLUSiON

IgE production is tightly regulated, from CSR to PC differentiation, 
including IgE half-life and survival of mIgE+ memory B cells. It is 
interesting to note that upon all different KI strategies deployed to 
investigate IgE+ cells in vivo (Figure 2), these cells are generated 
at a very low frequency, only during short intervals, and do not 
yield mIgE+ memory B cells. IgE CSR is initially controlled by the 
cytokine microenvironment, the anomalies of which can boost IgE 

FigURe 4 | Self-controlled IgE production model. Left part: immature cells differentiate into naïve B cells and could undergo direct class switch recombination (CSR) 
to IgE or enter into the GC. During the GC reaction, cells can switch directly to IgG1 or IgE, or eventually undergo a sequential switching with an IgG1 intermediate 
and an extra-follicular CSR to IgE. IgM+ and IgG1+ lymphocytes generate classical humoral memories, with memory B cells and long-lived plasma cells (PCs). These 
memory B cells can undergo more rounds of GC reaction to increase their antigen (Ag) affinity and to switch to IgG1 or IgE. Direct or sequential CSR produces 
membrane IgE+ lymphocytes with different Ag affinity, and IgE B cell receptor (BCR) seems to induce a common, short-lived fate. Right part: IgE+ lymphocytes have 
a bias in short-lived PC differentiation. These short-lived PCs strongly express IgE BCR and undergo massive apoptosis. Membrane IgE+ lymphocytes are also 
counter-selected by various mechanisms including poor mobility, low membrane IgE expression, and spontaneous apoptosis. Long-lived PCs are very elusive but 
produce IgE antibodies for a long term, potentially including pathological IgE. A better characterization of these cells and their targeting to eliminate them could lead 
to new treatments to re-initialize IgE memory and deplete pathological IgE production.
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