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One of the key issues in our under-

standing of life is the study of the essential

set of genes and proteins that make up a

living cell and a living organism. Genome-

wide studies have identified between 270

and 650 essential genes in bacteria and

about 900 essential genes in yeast [1].

Once the essential gene set is known,

questions are raised as to why these genes

are essential and which important func-

tions the encoded proteins fulfil. The issue

is complicated by the fact that essential

functions may be carried out by pairs of

homologous genes that functionally re-

place each other and by convergent

metabolic functions of non-homologous

proteins [2,3].

Comparative analyses of the essential

gene sets of different bacteria have re-

vealed a significant set of genes that is

essential in all bacteria studied so far.

These genes can be referred to as

obligatory essential genes. In contrast,

facultative essential genes are essential in

one organism but may be non-essential or

even absent in other organisms, related or

unrelated. It is obvious that the obligatory

essential genes encode proteins that fulfil

the most important housekeeping func-

tions, such as the processing of the genetic

information. Indeed, many proteins in-

volved in DNA replication, transcription

and translation are conserved and essential

in all bacteria.

Essential RNases

Several RNases are essential in many

bacteria. Most prominently, RNase E, the

paradigm of a key enzyme for bacterial

RNA degradation, is essential in Escherichia

coli. RNase E organizes a protein complex,

the RNA degradosome, but none of the

other degradosome components nor the

corresponding scaffold region of RNase E

are essential. The reason for the essential-

ity of this protein has remained enigmatic

[4]. In Bacillus subtilis, five RNases are

essential. Two of them, RNase P and

RNase Z, are required for the maturation

of tRNA [5]. For the remaining essential

RNases, III, J1 and Y, the reason for the

essentiality is not so obvious. RNase Y was

first identified as a potential interaction

partner of the essential glycolytic enzymes

enolase and phosphofructokinase. Recent-

ly, this RNase was proposed to be the

functional equivalent of E. coli RNase E

[6,7]. Recent transcriptome studies failed

to provide a clear explanation for the

essential nature of the endoribonuclease Y

and the exoribonuclease J1; however,

several essential genes, among them those

encoding aminoacyl-tRNA synthetases,

enzymes of cytochrome c biogenesis, and

the essential subunit of pyruvate dehydro-

genase, are less expressed if RNase Y is

limiting [8–11].

A Protective Function for RNase
III in B. subtilis

Interestingly, RNases III and Y are

essential in B. subtilis, whereas they are

non-essential in other related Gram-posi-

tive bacteria such as Staphylococcus aureus

and Streptococcus pyogenes [11–14]. As dis-

cussed above, this facultative essentiality

suggests that these RNases are required for

the protection of the cell against toxic

molecules or for other specific functions in

the context of the B. subtilis cell. For RNase

III, the existence of suppressor mutations

allowing the deletion of the rnc gene was

reported, suggesting that RNase III has a

protective function [15]. In this issue of

PLOS Genetics, Durand et al. [16] identify

this essential function of RNase III. In

their previous transcriptome analysis, the

authors observed that depletion of RNase

III resulted in the accumulation of toxin-

encoding mRNAs [10]. Based on this

observation, they have now performed a

series of elegant genetic experiments to

demonstrate that RNase III is indeed

required for the degradation of the

mRNAs of two toxin genes, txpA and yonT.

These toxin genes are parts of a cryptic

prophage, the skin element, and of the

prophage SPb, respectively. Once the txpA

and yonT toxin genes are expressed, they

can harm their own cell since the two

mRNAs have the strongest ribosomal

binding sites found in B. subtilis, suggesting

that they are very efficiently translated to

toxin protein [17]. The expression of these

type I toxin/antitoxin systems is controlled

by base-pairing with the specific antisense

RNAs ratA and anti-yonT that form hybrids

with the txpA and yonT toxin mRNAs,

respectively. Biochemical experiments pre-

sented by Durand et al. [16] show that

these base-paired RNA hybrids are subject

to degradation by the activity of the

double strand–specific endonuclease RN-

ase III.

In the case of txpA, which has been

studied down to the molecular details by

Durand et al. [16], there is a 15-fold excess

of the ratA RNA as compared to the txpA

mRNA. This strong excess ensures that

the txpA mRNA is always bound by the

ratA RNA and thus targeted for degrada-

tion. Indeed, the absence of the ratA RNA

results in a substantial stabilization of the

txpA mRNA. This accumulation of txpA

mRNA can only be tolerated if the mRNA

cannot be translated due to a mutation of

the start codon. The double-stranded txpA

mRNA–ratA RNA hybrid molecule is

cleaved in vitro by RNase III at multiple

sites, resulting in the inactivation of the

txpA message (see Figure 1). In addition,

RNase Y was found to have a major

cleavage site at a single-stranded region of

the ratA RNA that is immediately adjacent
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to the double-stranded part of the ratA

RNA. In consequence, cleavage of the ratA

RNA by RNase Y results in a trimming of

the end of the double-stranded RNA

molecule, and in a destabilization of the

ratA RNA, both in vivo and in vitro. It is

tempting to speculate that the trimming of

the txpA mRNA–ratA RNA hybrid mole-

cule facilitates recognition of and/or

access to the complex by RNase III (see

Figure 1). Indeed, the absence of RNase Y

results in a duplication of the txpA mRNA

half-life from 1.1 to 2.4 minutes. It should,

however, be noted that the depletion of

RNase III increases the half-life of the txpA

mRNA to more than 20 minutes. Thus,

the major role of RNase Y might be the

fine-tuning of the ratA–txpA RNA ratio.

Similar to the txpA/ratA system, RNase III

cleaves the hybrids between yonT/as-yonT

and bsrG/as-bsrG, resulting in the degra-

dation of the toxin mRNAs [16,18].

Interestingly, the bsrG/as-bsrG duplex is

cleaved by RNase III downstream of the

toxin open reading frame, leaving the

question of how RNase III might affect the

control of toxin synthesis [18].

The current study by Durand et al. [16]

explains why RNase III is essential in B.

subtilis, whereas it is dispensable in most

other bacteria. It is tempting to speculate

that this facultative essentiality of RNase

III (as well as of other RNases such as

RNase Y) is directly coupled to the

presence of toxin systems in the genomes

where the RNases are essential. However,

due to the experimental investigation of

only few laboratory strains and the

genomic variability of bacteria with non-

essential RNases III and Y (especially with

respect to the presence of prophages), no

clear statement about such a correlation is

possible at the moment. From an evolu-

tionary point of view, a next interesting

question would address the reason for the

persistence of several prophages and

sequences derived from prophage in the

B. subtilis genome even though these

sequences do not provide any obvious

selective advantage to the cell.
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Figure 1. Degradation of a phage-encoded toxin mRNA in B. subtilis. The toxin-encoding
mRNA txpA is degraded by the combined action of the antisense RNA ratA and the double
strand–specific endonuclease RNase III. The txpA–ratA RNA hybrid may be destabilized due to
prior processing by the essential RNase Y.
doi:10.1371/journal.pgen.1003199.g001
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