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ABSTRACT

Dexamethasone (DEX) was the first drug shown to save lives of critically ill coronavirus 
disease 2019 (COVID-19) patients suffering from respiratory distress. A hyperactivated 
state of neutrophils was found in COVID-19 patients compared to non-COVID pneumonia 
cases. Given the beneficial effects of DEX in COVID-19 patients, we investigated the effects 
of DEX and of other immunomodulatory drugs vitamin D3 (VD3) and retinoic acid (RA) on 
neutrophil function. DEX, but not VD3 or RA, significantly inhibited all tested aspects of 
neutrophil function, e.g., degranulation, intracellular ROS production, CXCL8 release and 
NETosis. Interestingly, RA displayed the opposite effect by significantly increasing both 
CXCL8 and NET release by neutrophils. Taken together, these data suggest that the lower 
COVID-19 mortality in DEX-treated patients may in part be due to the dampening effect of 
DEX on the inflammatory neutrophil response, which could prevent neutrophil plugs with 
NETS in the lungs and other inflamed organs of patients.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) was officially declared a global pandemic in March 2020 by 
the World Health Organization (1), with currently over 353 million confirmed cases and 5.6 
million associated deaths (2). While the majority of COVID-19 patients is asymptomatic 
or shows mild symptoms, one-fifth of patients will develop severe illness, symptoms 
including acute respiratory distress syndrome, sepsis and multiorgan failure (3). An 
elevated neutrophil-to-lymphocyte ratio (NLR) has been identified as an early risk factor 
for severe COVID-19 (4). Severe COVID-19 is characterized by a cytokine storm, to which 
pro-inflammatory monocytes and neutrophils contribute (5). Neutrophils in the lungs are 
both enriched and in a hyperactivated state, with upregulated IL-1β and CXCL8 expression, 
in COVID-19 patients compared to non-COVID pneumonia cases (5). Neutrophil plugs 
with NETs were notably present in the lungs and other inflamed organs such as the heart, 
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kidney and brain of deceased COVID-19 patients, affirming an elevated activation status of 
neutrophils (6,7). Therefore, targeting the excessive neutrophil inflammatory response could 
be a crucial step in lowering the probability of progression to severe respiratory distress and 
eventually organ failure in COVID-19 patients.

Dexamethasone (DEX), an inexpensive and commonly applied corticosteroid, was the first 
drug shown to save lives of people suffering from severe COVID-19 in a large randomized, 
controlled trial (8,9). The effect of DEX was most pronounced in patients on ventilators 
amongst whom deaths were reduced by one-third (10). In contrast, no effect was observed 
in people without respiratory distress. Therefore, treatment guidelines recommend 
administration of DEX only in hospitalized patients who require supplemental oxygen. 
DEX is regarded as a potent general immunosuppressive drug (8), which reduces CXCL8 
and TNF expression in neutrophils (11,12). How DEX affects other aspects of neutrophil 
function is less well-known. In addition to DEX, vitamin D3 (VD3) supplementation has 
been proposed as a beneficial strategy to reduce the impact of COVID (13). Furthermore, 
it has been suggested that retinoic acid (RA) metabolism is defective during the COVID-19 
cytokine storm, which causes excessive cytokine release (14,15). Hence, RA supplementation 
could also be considered for treatment. However, little is known about the effects of these 
immunosuppressive drugs on neutrophil function.

Therefore, we investigated the effects of DEX, VD3 and RA on function of human neutrophils by 
determining degranulation, CXCL8 release and intracellular ROS production upon stimulation 
with TLR7/8 ligand Resiquimod (R848) (16) and TNF. Furthermore, we assessed the effects of 
these drugs on PMA-induced NETosis. We found that DEX dampens all aspects of neutrophil 
function assessed in this study. In contrast, VD3 did not affect function. Interestingly, RA did 
not alter degranulation and ROS production, but increased CXCL8 release and NETosis. Taken 
together, these data support a potential neutrophil dampening role for DEX, thereby providing 
a rationale for the use of DEX in treatment of critically ill COVID-19 patients.

MATERIALS AND METHODS

Neutrophil isolation
Blood was collected from healthy volunteer donors after informed consent. The blood 
collection protocol was approved by the institutional review board of the Amsterdam Medical 
Centre (METC 2015_074). Neutrophils were isolated using a density gradient followed 
by erythrocyte lysis, as previously described (17). Neutrophils were then resuspended in 
IMDM (Gibco; Thermo Fisher Scientific Inc., Waltham, MA, USA) supplemented with 10% 
heat inactivated (HI) fetal bovine serum (FBS; Hyclone; Thermo sFisher Scientific Inc.) 
and gentamycin (86 µg/ml; Duchefa Biochemie B.V., Haarlem, The Netherlands) and used 
immediately. Neutrophil purity was analyzed by flow cytometry and was always >97%.

Neutrophil culture, stimulation and flow cytometric analysis
Neutrophils were seeded at a density of 0.5×106 cells/ml in 200 µl in a flat bottom 96-well 
plate (Costar, Corning Inc. Corning, NY) in IMDM medium containing 10% HI-FBS and 
gentamycin. Subsequently, neutrophils were pretreated for 30 minutes with DEX (40 nM; 
#D2915 from Merck), VD3 (2.5 µM; #17936 from Sigma-Aldrich), RA (10 µM; #R2625 from 
Sigma-Aldrich), or controls medium, ethanol or DMSO, respectively. Then R848 (1 µg/
ml; Invivogen, San Diego, CA, USA) and TNF (1 ng/ml; Miltenyi Biotec GmBH, Bergisch 
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Gladbach, Germany) were added and neutrophils were cultured for 2 hours (degranulation), 
or 24 hours at 37°C. 24-hour culture supernatants were collected for the analysis of neutrophil 
CXCL8 release, by ELISA (Invitrogen Life Technologies, Breda, The Netherlands), as 
described previously (17). For assessment of ROS production, neutrophils were stimulated 
for 1 hour with R848 (500 ng/ml) and TNF (250 pg/ml) in the presence of 250 nM 
123-dihydrorhodamine (123-DHR; Marker Gene Technologies, OR, USA), after 15 minutes 
pretreatment with drugs or controls. For flow cytometric analysis of CD16, CD63, and CD66b 
cells were washed after stimulation, stained and analyzed as previously described (17).

NETosis assay
NETosis was analyzed using an Incucyte S3 Live-Cell Analysis System (Essen BioScience, 
Newark, UK) and a previously described IncuCyte® NETosis assay (18). Briefly, neutrophils 
were seeded at a density of 1.0×105 cells/ml in 200 µl in a 96-well IncuCyte® Imagelock 
plate (Essen BioScience) in IMDM medium containing 10% HI-FBS and gentamycin, and 
incubated for 15 minutes in the presence of DEX (40 nM), VD3 (2.5 µM) or RA (10 µM) or 
controls medium, ethanol or DMSO, respectively. 1.5 ng/ml PMA was added after 15 minutes 
and neutrophils were incubated for 12 hours in presence of the cell impermeant nucleic 
acid binding dye YOYO™-3 Iodide (Invitrogen). Neutrophils were imaged every 15 minutes 
using phase contrast and red fluorescent exposure channels, using a 20× dry objective lens. 
Data were analyzed using the IncuCyte Basic Software (Essen BioScience), with the same 
parameters as previously described (17).

Statistical analysis
Data are expressed as mean ± SD or as mean. Statistical analysis was done in GraphPad Prism 
version 9.1.0 for Windows by using statistical tests, depending on the experimental data. The 
Shapiro-Wilk test was performed to test normality of data. For multiple comparisons, p-values 
were calculated on selected pairs (drug versus vehicle control) using a one-way ANOVA with 
Holm-Sidak’s post hoc correction on raw data. For single comparisons, p-values were calculated 
using two-tailed paired t-tests. P-values < 0.05 were considered statistically significant.

RESULTS AND DISCUSSION

Neutrophil degranulation is dampened by DEX, but not VD3 or RA
A hyperinflammatory response of neutrophils is associated with severe COVID-19 (19). 
Since drugs that dampen neutrophil activation may be useful in fighting SARS-CoV-2 
infection, we studied whether DEX, VD3 or RA affect neutrophil degranulation by analyzing 
CD16 (FCγRIII), CD63 and CD66b membrane expression. Fusion of azurophilic granules 
with the plasma membrane increases CD63 expression, while CD66b indicates specific 
and gelatinase granules (20,21), and CD16 is cleaved from the surface upon the release of 
secretory vesicles (20-23). Neutrophils were stimulated with R848 and TNF, a mimic for 
viral activation, in the presence of DEX, VD3, RA or relevant controls (medium, ethanol 
or DMSO, respectively) and we titrated the drugs to determine the used concentration in 
all experiments (Supplementary Fig. 1). Data were obtained by flow cytometry and were 
analyzed with the gating strategy shown in Fig. 1A. Exposure of stimulated neutrophils to 
DEX, resulted in significant inhibition of CD16 cleavage from the membrane, while this 
was not affected by VD3 and RA compared to vehicle controls (Fig. 1B). Furthermore, DEX 
significantly decreased CD63 expression (Fig. 1C), while none of the immunomodulatory 
drugs affected CD66b membrane expression (Fig. 1D). Ethanol alone reduced CD16 cleavage 
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Figure 1. Neutrophil degranulation is dampened by DEX, but not VD3 or RA. Neutrophils were pretreated with DEX, VD3, RA or their respective controls medium, 
ethanol or DMSO (all controls abbreviated as C in figures), and cultured for 2 hours in the presence of R848 and TNF. (A) Flow cytometry plot demonstrating 
gating strategy to determine neutrophil degranulation. Neutrophils were gated on forward scatter (FSC-A) and side scatter (SSC-A), followed by a single cell and 
live gate from which the expression of CD16, CD63 and CD66b was assessed (B) Secretory vesicle degranulation as measured by percentage of CD16- neutrophils 
is depicted. (C) Azurophilic degranulation as measured by percentage of CD63+ neutrophils is shown. (D) Degranulation of specific and gelatinase granules is 
depicted as mean fluorescence intensity of CD66b. Data are representative of 7 independent experiments and are presented as mean ± SD. 
**p<0.01.
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and CD63 expression (Supplementary Fig. 1, Fig. 1B and C). These data indicate that DEX 
predominantly dampens degranulation of azurophilic granules (CD63) and secretory vesicles 
(CD16), rather than specific and gelatinase granules. Taken together, our study is the first 
to demonstrate that neutrophil degranulation is restricted by DEX, while VD3 an RA have 
no effect on degranulation. Administration of DEX to hospitalized COVID-19 patients may 
reduce hyperinflammatory neutrophil degranulation.

CXCL8 release is dampened by DEX and strengthened by RA
During infection neutrophils release many different mediators, including CXCL8 which is 
an important chemoattractant for neutrophils (22,24,25). We analyzed the release of CXCL8 
after 24 hour-stimulation with R848 and TNF. In line with previous reports (11), CXCL8 
release by neutrophils in presence of DEX was decreased by approximately 50%, with an 
average of 1.02±0.52 ng/ml (mean ± SD) CXCL8 release by DEX-treated neutrophils versus 
2.24±1.14 ng/ml by medium control neutrophils (Fig. 2). Surprisingly, RA significantly 
increased CXCL8 release by stimulated neutrophils by 1.5-fold, whereas VD3 did not influence 
CXCL8 release (Fig. 2). This RA-induced effect on neutrophil function was not found for 
degranulation. CXCL8 is synthesized de novo upon activation and is thus regulated differently 
than degranulation, where granules are already pre-stored in the neutrophils and rapidly 
released within two hours. This could underlie the variable effects of RA on different aspects 
of neutrophil function. The opposite effects of RA and DEX on CXCL8 release by neutrophils 
could be due to opposite effects on NF-κB activity. NF-κB transcription factors are the main 
regulators of CXCL8 transcription (26,27). Corticosteroids, including DEX, inhibit CXCL8 
transcription via repression of NF-κB activity (27). Reduced expression of NF-κB transcription 
factors by DEX was confirmed in human neutrophils (28). Elevated CXCL8 secretion upon 
RA treatment is possibly due to increased NF-κB activity, which was shown in human 
keratinocytes (26). However, to our knowledge, increased CXCL8 release by RA was not 
previously shown in neutrophils. Collectively, our data show that similar to degranulation, 
CXCL8 release is dampened by DEX and VD3 had no effect. Interestingly, RA increased CXCL8 
secretion, whereas no effect of RA was observed on neutrophil degranulation.
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Figure 2. CXCL8 release by neutrophils is affected by DEX and RA. Neutrophils were stimulated by R848 and TNF 
and in the presence of DEX, VD3, RA or relevant controls. CXCL8 was measured in 24-hour culture supernatants 
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ROS production is reduced by DEX
In addition to degranulation and CXCL8 secretion, neutrophil ROS production is important 
in the clearance of unwanted pathogens (29). However, it has been suggested that excessive 
ROS production by neutrophils during COVID-19 exacerbates the host immunopathological 
response resulting in tissue damage (30). Intracellular ROS production was determined by 
flow cytometry using the ROS indicator 123-DHR in R848/TNF-stimulated neutrophils in the 
absence or presence of DEX, VD3 or RA (Fig. 3A). Similar to neutrophil degranulation and 
CXCL8 release, intracellular ROS production was significantly reduced in neutrophils exposed 
to DEX. Accordingly, neutrophils from human volunteers injected with DEX were shown to 
exhibit lower extracellular ROS generation (31). In contrast, neutrophils stimulated in the 
presence of RA or VD3 showed no difference in ROS production compared to neutrophils 
stimulated with relevant controls, neither when assessing the percentage of intracellular ROS+ 
cells or the mean fluorescence intensity of neutrophils (Fig. 3B and C). RA was previously 
shown to increase N-formyl-methionyl-leucyl-fenylalanine (fMLF)-stimulated production of 
intracellular ROS (32), but we did not find an effect on intracellular ROS production, which 
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Figure 3. ROS production in neutrophils is reduced by DEX, but not VD3 or RA. Neutrophils were incubated for 1 hour in the presence of 123-DHR and activated by 
R848 and TNF, in the presence of DEX, VD3, RA or relevant controls. ROS production was analyzed using flow cytometry. (A) Representative flow cytometry image 
of neutrophils incubated with DEX or relevant control. (B-C) Effects of DEX, VD3 and RA on ROS production (n=11). (B) Intracellular ROS generation is expressed 
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**p<0.01; ***p<0.005.
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could be stimulus-dependent. We used a double stimulus rather than a single stimulus for 
optimal neutrophil activation, which is more physiologically relevant than single stimuli 
given that cells encounter a plethora of pro-inflammatory cytokines and microbial or viral 
components (17). Our data indicate that DEX restricts ROS production in neutrophils, again 
demonstrating anti-inflammatory potential of DEX on neutrophil functions.

DEX reduces and RA increases NETosis
NETosis is a mechanism used by neutrophils to entrap and kill pathogens through the release 
of nuclear and granular content that forms a network (33). Although NETosis is important as an 
antimicrobial function, it requires tight regulation, since excessive NETosis can lead to severe 
tissue damage and exacerbation of inflammation (34,35). Neutrophil plugs with NETs were 
found in deceased COVID-19 patients and NET quantity correlates to disease severity (6,7,36). 
To examine whether DEX, VD3 or RA could dampen NETosis in neutrophils, neutrophils were 
incubated with 1.5 ng/ml PMA in the absence or presence of DEX, VD3 or RA. With time-
lapse immunofluorescence microscopy we analyzed NETosis (Fig. 4A). Maximal NETosis 
was observed after 4 hours of PMA-stimulation, which was significantly reduced by DEX. 
VD3 did not have any effect on NETosis, while NETosis was increased by RA (Fig. 4B and C). 
Reduced NET release in presence of DEX was reported upon stimulation of neutrophils with 
Staphylococcus aureus, but not with PMA (37). However, we used a 20-fold lower dose of PMA, 
possibly allowing DEX to interfere with NETosis. RA was previously shown to enhance both 
PMA- and fMLF-induced NETosis (32). Similar to CXCL8 release, we observed opposite effects 
of RA and DEX on NETosis. It has been shown that inhibition of the NF-κB pathway reduces 
NETosis (38). Hence, the differential effects of RA and DEX on NF-κB activity could underlie 
their observed effects on NETosis. Moreover, peptidyl arginine deiminase 4 (PAD4) plays a 
critical role in the formation of NETs (39) and it has been shown that corticosteroid treatment 
of rheumatoid arthritis patients decreases synovial expression of PAD4 (40), indicating that 
DEX may affect PAD4 expression in neutrophils. In contrast, treatment of acute promyelocytic 
leukemia cells with RA, to differentiate them into granulocytic cells, increases PAD4 expression 
(41). Taken together, distinct effects of DEX and RA on NF-κB and PAD4 activity could underlie 
the opposing effects of these drugs on NETosis.

In this study, we confirmed the well-established anti-inflammatory effect of DEX on CXCL8 
release (11,12) and importantly, we show that this dampening effect of DEX extends to other 
aspects of neutrophil function, including intracellular ROS production, degranulation and 
NETosis. We observed no effects of VD3 on neutrophil function when compared to the vehicle 
control (ethanol), while neutrophils do express mRNA of the VD3 receptor (42). The effects 
of VD3 on neutrophils are rarely studied and results are contradictory, e.g. elevated versus 
decreased CXCL8 release by VD3 treatment (43). A limitation of our study is that we did not use 
(pseudo)-SARS-CoV-2 as stimulus for neutrophils. Although neutrophils may not be infected 
by SARS-CoV-2 (44), its components, e.g. nucleocapsid, spike proteins or ssRNA, may activate 
neutrophils. Purified nucleocapsid and spike proteins from SARS-CoV-2 were shown to induce 
NETosis, while they did not increase intracellular ROS production (45). The effect of these 
proteins on the release of other neutrophil derived factors, e.g., granules and CXCL8, remains 
to be established. Here, we used R848 in combination with TNF to activate neutrophils. Our 
earlier work showed that two different stimuli are needed for optimal neutrophil activation (17). 
R848 is a synthetic ligand that activates TLR7 and TLR8, the latter expressed by neutrophils, 
which recognize ssRNA (46). TNF is an important modulator of immune responses, including 
the response to viruses. Therefore, neutrophil stimulation with R848 and TNF may represent an 
attractive model to study candidate drugs for dampening neutrophil activation in COVID-19.
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Taken together, our data support previous reports on a pro-inflammatory effect of RA on 
neutrophils and this may be of importance to treatment of neutrophil immunodeficiencies 
(47), while caution is warranted for potential use as a tolerogenic adjuvant in autoimmune 
disorders or other diseases associated with hyperactivation of neutrophils, such as COVID-19 
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(19,43,48). The anti-inflammatory effect of DEX on neutrophil function supports the use of 
DEX in hospitalized COVID-19 patients suffering from respiratory distress.
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SUPPLEMENTARY MATERIAL

Supplementary Figure 1
DEX dose-dependently inhibits neutrophil degranulation. Neutrophils were pretreated with 
DEX, VD3, RA or their respective controls medium, ethanol or DMSO and cultursed for 2 
hours in the presence of R848 and TNF. (A) Secretory vesicle degranulation as measured 
by percentage of CD16-neutrophils is depicted, normalized to controls, mean ± SD. In the 
middle panel, data is normalized to medium control (35.2±21.0% CD16- neutrophils), 
indicated by the line at 1 and each donor is represented by a different symbol. Grey bars 
indicate VD3, while respective ethanol dilutions are shown in white bars. (B) Azurophilic 
degranulation as measured by percentage of CD63+ neutrophils is shown, normalized 
to controls, mean ± SD, with medium control 27.0±14.3% CD63+ neutrophils). Three 
independent experiments were performed.

Click here to view
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