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Background
In the past decade, the concept of personalized medicine has been widely accepted with 
the advance of molecular medicine and genomics, seeking to underpin the association 
between individuals’ biological background and drugs response. Identification of molec-
ular biomarkers is now a common practice in clinical studies, especially in the field of 
cancer therapy. The availability of genomics data and therapeutic agents make cancer 
an ideal field for the study of precision medicine that aims to match patient’s molec-
ular background with the selection of drugs. In addition, understanding the interplay 
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between biology and drugs chemical properties is also a key to the practice of drug 
repositioning. Research in the field of cancer has gained deep insights into its molecu-
lar features [1–3]. While clinical studies of drug response is expensive, a comprehensive 
catalogue of stable cancer cell lines that captures patient’s molecular features has been 
used for large-scale in vitro screening of anticancer drugs [4–6]. Data from these studies 
provide rich sources for investigating the nature of drug–gene interaction, and can pro-
vide meaningful guidance to clinical practice.

Since large-scale screening datasets have become publicly available, the computational 
community has made great efforts in developing predictive models that link gene-level 
signatures directly with drug response [7]. A variety of machine learning techniques 
[8] have been evaluated, including elastic net, regularized matrix factorization, sparse-
linear/non-linear regressions, kernel methods, network-based methods, and ensemble 
models. Valuable insights were gained from these studies, such as the predictive power 
of different genomic data types, the performance of different algorithms and the ben-
efit of incorporating prior knowledge [9–14]. Chemical structures can also be used to 
predict drug activity in a comparable fashion [15]. Some studies have tried to integrate 
genomic and chemical signatures in a predictive model. Several previously published 
methods showed that combining chemical structural information and cell lines’ molecu-
lar profile could improve IC50 prediction accuracy [16–22].

We have developed a novel deep-learning predictive model, self-attention gene weight 
layer network (SWnet), that aims to leverage the current advancement of machine learn-
ing methods and integrate genomics and cheminformatics. Our method has unique 
characteristics compared to existing methods: (1) with the application of Graph Neural 
Network (GNN), we converted the 2D representations of chemicals into continuous vec-
tors in the latent space; (2) we used the gene weight layer to combine the information 
of gene mutation and gene expression, and then used the multi-task model to extract 
the interaction information of chemical structure and genetics to improve the predic-
tion accuracy; (3) we applied self-attention mechanism [23] to incorporate the structural 
similarity between compounds into model training.

SWnet was trained and validated using the Genomics of Drug Sensitivity in Cancer 
(GDSC) dataset [5] and Cancer Cell Line Encyclopedia (CCLE) dataset [24]. We com-
pared our result to a few recent studies that represent the most advanced methods in the 
field and showed that our predictive model outperformed other methods trained on the 
same dataset.

Methods
Training and testing data

Genomics of Drug Sensitivity in Cancer (GDSC) is the largest public resource of anti-
cancer drug sensitivity screening using over 1000 human cancer cell lines. Drugs in 
GDSC are comprised of approved drugs, experimental drugs in clinical trials, and tool 
compounds. The Cancer Cell Line Encyclopedia (CCLE) is another commonly used 
resource with genomic profiling of cancer cell lines, which allows predictive modelling 
of anticancer drug sensitivity [1, 24]. The structures of compounds in GDSC and CCLE 
were obtained from PubChem or ChEMBL [25, 26]. The Simplified Molecular Input Line 
Entry System (SMILES) was converted to Morgan fingerprints using RDKit [27] and the 
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similarity between compounds was determined by Tanimoto distance. The structures 
of compounds from GDSC belong to 209 Bemis-Murcko scaffold and can be further 
grouped into 56 clusters based on chemical fingerprints (with linkage type of UPGMA, 
and distance of 0.6 by Tanimoto distance), showing a high level of chemical diversity.

Sensitivity is measured by the natural log-transformed half maximal inhibitory con-
centration ( IC50 ). Cell lines have been extensively characterized at molecular level. We 
used gene expression and genetic mutation as biological features in our model train-
ing. The original expression matrix (RMA value from Array Express) was normalized 
to z-score per cell line. The binary mutation matrix was produced by collapsing all the 
somatic nonsynonymous mutations for each gene, regardless of the genomic location.

The high dimension of the genomic feature matrices is likely to cause overfitting. Sub-
sets of genes based on biological functions could be selected to reduce the dimension, 
as proposed by other studies [12, 28]. We selected genes based on the following criteria: 
(1) relevance to cancer based on the Catalogue of Somatic Mutations in Cancer (COS-
MIC) database [3]; (2) gene expression showing non-redundancy, which means that a 
subset of genes are selected to represent the whole expression profile of the transcrip-
tome. According to Broad L1000 project [6], this set of genes has been shown to be suffi-
cient to predict the transcriptome change upon drug treatment. We used the gene set to 
reduce the possibility of overfitting. Finally, we merged the two gene lists and obtained 
1478 genes across 1018 cell lines, whose expression and mutation represent the genomic 
features in model training.

Model architecture

Dual convergence model architecture

Our deep-learning model adopted a dual convergence architecture as shown in Fig. 1, 
which means the mutations and expression of genes and chemical structures of drugs 
information were modelled separately since they contained different types of informa-
tion. The two were later merged into one prediction model. Genomic signatures and 
molecular graphs were processed in parallel through GNN and Convolutional Neural 
Network (CNN) layers to extract independent features, which were then concatenated. 
The gene branch in SWnet used 3 convolutional layers and 1 fully connected layer to 
generate gene embeddings. Then the embeddings of molecule and gene were concat-
enated and input into a prediction subnetwork, which consists of convolutional layer, 
pooling layer and batch normalization layer, to extract high-level features. Finally, the 
high-level features were input to fully connected layer to predict IC50 . It is noted that we 
used 1D CNNs in gene branch and prediction subnetwork to decrease the number of 
trainable parameters, therefore reducing the complexity of our model to avoid the risk 
of overfitting and improve the model performance. Based on dual convergence archi-
tecture, we also integrated multi-task learning and self-attention mechanism to further 
improve the performance. We described the architecture in more details in the following 
sections.

Parsing of compound chemical structures using graph method

There are many representations of chemical structures in the field of machine learn-
ing, such as molecular fingerprints, text-based representations (SMILES/INCHI), 
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graph-based and 3D structure & surface. There are two main methods to encode mol-
ecules using continuous embedding vectors. One method is to use RNNs in variants 
autoencoder deep-learning network to generate continuous embedding vectors from 
SMILES [29, 30]. The other method is to learn features from graph-structured inputs 
[31–33].

In our study, we implemented an extended Graph Neural Network (GNN) [34] for 
molecular graphs. Normally, we represent a graph as G = (V ,E) , where V is the set 
of nodes and E is the set of edges. For a molecule, vi ∈ V  represents the ith atom and 
eij ∈ E represents the chemical bond between ith atom and jth atom. The GNN takes a 
graph G as input, then produces a graph-level representation hG ∈ Rd . In our extended 
GNN, we used r-radius subgraphs [9] to solve the issue that representation learning was 
ineffective due to the low model complexity. The r-radius subgraphs were induced by the 
neighboring nodes and edges within radius r from a node. Different from that in normal 
GNNs, in the extended GNN, we randomly initialized embedding for r-radius node and 
r-radius edge, and then updated the representation by backpropagation.

The process of GNN for molecular graphs can be described as a transition func-
tion and an output function. Figure  2 illustrates the general GNN architecture for 
molecular graphs. The transition function iteratively updates the node information by 

Fig. 1  The overview of model architecture. Chemical structure, gene expression and genetic mutation serve 
as input of the model. Graph neural network encoded the drugs and convolutional neural network extracted 
gene expression and genetic mutation features simultaneously. Through self-attention, we incorporated 
the chemical similarity into the input to train gene weight layer W ′ . Gene weight layer W ′ combined gene 
expression, genetic mutation and drug similarity. Then the model concatenated drug vector and genetic 
vector to predict the IC50
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combining its neighboring nodes and edges, and the output function maps the node-
level feature vectors to graph-level representation. The extended GNN has transition 
function for nodes and edges respectively, and updates the current node embedding 
through leveraging previous node and edge embeddings. For edge transition, we 
updated the edge embedding e(t+1)

ij  through both end node embeddings vt+1
i  and vt+1

j  
as follows:

where σ is the element-wise sigmoid function and f is a non-linear activation function 
like ReLU, we ∈ Rd×d and be ∈ Rd are the trainable parameters and bias vector respec-
tively, d is the dimension of edge embedding vector.

We used similar iterative procedure for node transition, and we update the ith node 
embedding vt+1

i ∈ Rd at time step t + 1 through the following transition function:

where wn ∈ Rd×2d and bn ∈ Rd are the trainable parameter matrix and bias vector 
respectively, and N(i) is the set of neighboring indices of i. The extended GNN computes 
the ith node embedding through combining the edge embedding and the neighboring 
node embedding iteratively, and the node gradually obtains global information on the 
graph.

The next operation takes the graph-level representation as input which is from the 
output function. Our output function is an arithmetic mean of all node embedding 
from transition function as follows:
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Fig. 2  The overview of GNN architecture. a The process of updating node embedding through neighboring 
nodes. b The process of updating embedding through side node embedding. c The final graph after the 
transition function. d The graph-level representation through arithmetic mean of all node embeddings
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where N is the number of nodes in the graph. While this is a simple operation to obtain 
the graph-level representation, it works well in practice.

The graph-level representation extracted by GNN embedded the 2D structure infor-
mation of molecules into the feature vector, compared with the binary fingerprints 
used by other methods [15, 35], it effectively avoids the problem of sparse features. 
We think the graph-level representation extracted by GNN can benefit our task.

Weight vector/matrix to evaluate the significance of genetic mutation

Most published research use only gene expression data or only genetic mutation data 
to train models [18]. We wanted to integrate these two data types, so we added a 
weight layer to the deep learning model. In this way, the mutation status of each gene 
is fed into the model with a weight that can be trained. As shown in Fig.  3, a com-
bined feature for gene is calculated as:

where geneCom is the combination of expression (geneExp) and mutation (geneVar). w′ 
represents the weight for genetic mutation. ∗ represents the vector dot product. The fea-
ture of each gene is the gene expression value plus the product of genetic mutation value 
and weight by Eq.(6). We have two kinds of weights: one is single weight vector whose 
dimension is w (1,  1478), and the other is multi-weight vector whose dimension is W 
(N, 1478). N is the number of anticancer drugs. Thus, for each compound, we trained for 

(5)hG = 1

N

N
∑

i=1

v
(t)
i

(6)geneCom = geneExp+ geneVar ∗ w′

Fig. 3  Gene weight layer. Gene feature was combined as the sum of normalized gene expression value and 
a weight adjusted genetic mutation value. Two ways of generating the mutation component were tested. a 
Single weight layer: a common weight vector w′ was applied to all genetic mutations without considering 
the heterogeneity of gene-drug relationship. b Multiple weight layers: a weight matrix W ′ was applied to 
account for the heterogeneity of gene-drug relationship so that each drug would have its own weight vector 
for genetic mutation
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a vector w (1, 1478) that represented the significance of mutant genes. In the later sec-
tion, we will show how to train the multi-layer weight matrix.

Multi‑task learning

Multi-task learning (MTL) problem is defined as multiple supervised learning 
tasks considered together [12]. In the previous section, we described a multi-layer 
weight matrix to measure the interaction between individual compound and genetic 
mutation. Each layer (vector of size 1 ∗ 1478 ) is thus independent, and the simplest 
approach would be to solve these tasks independently through separating the data-
set by compounds. However, it has been shown in previous studies that MTL can 
improve the performance [12, 36]. Since each task has the same model structure, we 
trained the 221 tasks all at once, using a common MSE loss for all drugs.

Self‑attention

For the multi-task model described in previous section, each drug has its own gene 
weight parameters, which are supposed to be relevant to the drug itself. But we 
believe that similar drugs may have similar gene weight parameters. To take into 
consideration the similarity between drugs’ chemical structures, we applied a self-
attention method, which uses drug similarity matrix to update the parameters of gene 
weight layer.

An attention function can be described as a query and a set of key-value pairs to 
an outputs, where the query, keys, values and output are all vectors. The output is 
computed as a weighted sum of the values, where the weight assigned to each value is 
computed by compatibility of the query with the corresponding key [23].

Q, K represent SMILES of compounds. V represents weight parameters of gene weight 
layer. a(Q, K) is an alignment function [20] which gives scores how well the inputs and 
the outputs match, and we normalized the scores by softmax function. The softmax 
function is a normalized exponential function as follows:

In our model, the calculation process is shown in Fig. 4. First, we used RDKit Tools to 
calculate the similarity of Morgan fingerprints between compounds to obtain a(Q, K). 
Then we performed matrix multiplication with the weight matrix. a(Q, K) represents the 
similarity matrix between all compounds. The output W ′ has the same dimension as W, 
but contains drug similarity information. Figure 1 illustrates the self-attention mecha-
nism for IC50 prediction.

For the drug response prediction of a new drug, its corresponding w could be calcu-
lated from the trained w′ . The calculation process is described in Fig. 4a–c. This way, 
the drug response prediction for new drugs will be more accurate.

(7)Attention(Q,K ,V ) = softmax(a(Q,K ))V

(8)softmax(x)i =
exi

∑d
j=1 e

xj
, for i = 1, . . . , d and x = (x1, . . . , xd) ∈ Rd
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Other methods for comparison

We selected four previously published methods for comparison. We used Mean 
Square Error (MSE) and R2 to evaluate the performance of models. The MSE met-
ric measures the average squared difference between the predicted values ŷi and the 
actual values yi , it is calculated as follows:

where the N represents the number of samples. The R2 quantifies the degree of any lin-
ear correlation between the predicted values ŷi and the actual values yi , it is calculated as 
follows:

These methods were all trained and tested on GDSC and CCLE datasets. 

(9)MSE = 1

N

N
∑

i=1

(yi − ŷi)
2

(10)R2 = 1−
∑N

i (yi − ŷi)
2

∑N
i (yi − ȳ)2

, where ȳ = 1

N

N
∑

i

yi

Fig. 4  Self-attention calculation process. a Function a calculates the similarity between drugs. b The softmax 
function calculates the proportion of similarity score. c For one compound, through matrix multiplication, 
the weight layer will have compound similarity features. d The W ′ layer will be updated during the training 
process and finally reflects the contribution of genetic mutation to each drug’s sensitivity. By multiplying the 
W layer with the softmax matrix, drug–drug similarity is taken into account
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(1)	 Kernelized Bayesian multi-task learning (KBMTL). This method formulated a novel 
Bayesian algorithm that combines kernel-based non-linear dimensionality reduc-
tion and binary classification or regression [11]. The joint Bayesian formulation 
projects data points into a shared subspace and learns predictive models for all 
drugs in this subspace. In our paper, we used the Gaussian kernel with 

√
25000 ker-

nel width to calculate similarity between cell lines. The parameters were ( α� , β� , αǫ , 
σh , σh , R) = (1,1,1,1,0.1,1,10) and we used 200 iterations in all the experiments for 
KBMTL.

(2)	 Similarity-regularized matrix factorization (SRMF). This method predicted anti-
cancer drug responses of cell lines by using chemical structures of drugs and base-
line gene expression levels in cell lines [14]. Specifically, chemical structural similar-
ity of drugs and gene expression profile similarity of cell lines were considered as 
regularization terms, which were incorporated to the drug response matrix factori-
zation model. We used Morgan fingerprint to calculate the drug similarity matrix 
in our paper. And the regularization parameters in SRMF were (K, �l , �d , �c ) = (45, 
2−3 , 0, 2−3 ). Finally, we used 50 iterations in all the experiments for SRMF.

(3)	 Weighted Graph Regularized Matrix Factorization (WGRMF). This method con-
structed a p-nearest neighbor graph to sparsify drug similarity matrix and cell line 
similarity matrix, respectively [37]. Using the sparse matrices in the graph regulari-
zation terms, it performed matrix factorization to generate the latent matrices for 
drugs and cell lines in anticancer drug response prediction task. We used Morgan 
fingerprint to calculate the drug similarity matrix in our paper. The regularization 
parameters used in our paper were (k, p, �l , �d , �c ) = (182, 20, 1, 2, 2−5 ) for GDSC 
dataset and (k, p �l , �d , �c ) = (24, 10, 1, 2, 1) for CCLE dataset. Finally, we used 50 
iterations in all the experiments for WGRMF.

(4)	 Cancer Drug Response profile scan (CDRscan). This paper employed a deep learn-
ing dual convergence architecture, where the genomic mutational fingerprints of 
cell lines and the molecular fingerprints of drugs were processed individually, and 
then merged by ‘virtual docking’, an in silico modelling of drug treatment [35]. By 
inputting molecular fingerprints of drugs, they achieved better IC50 prediction 
result.

(5)	 Graph convolutional network for drug response prediction (GraphDRP). In Graph-
DRP [22], drugs were represented in molecular graphs directly capturing the bonds 
among atoms. Meanwhile, cell lines were depicted as binary vectors of genomic 
aberrations. The features of drugs and cell lines were learned by the convolutional 
layers, and then the combination of drug and cell line features were used to predict 
IC50 value. In our paper, we used GIN graph model in GrapDRP to learn the repre-
sentation of the drug in GDSC and CCLE datasets.

Results
In this section, we showed the performance of our method on GDSC and CCLE datasets. 
Meanwhile, we studied the effect of gene weight layer, multi-task, self-attention and dif-
ferent r-radius GNN for our model on GDSC dataset. We designed three experiments. 
The first is the initial model with single matrix of gene weight layer. The second is MTL 
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model with multiple matrices of gene weight layer. The third is self-attention model base 
on MTL but with increased similarity feature of drugs. The three experiments are with 
different r-radius (r = 1, 2, 3). As shown in Table 3, after introducing the self-attention 
mechanism, the performance has been significantly improved. In addition, the trained 
gene weight layer helped to identify genes whose mutation status may strongly influence 
the prediction of drug ecacy.

Performance on GDSC and CCLE datasets

GDSC data was pre-processed according to Methods Section Training and testing data. 
The final GDSC dataset consists of 983 cell lines with 1478 gene-level signatures and 
221 drugs. A total of 177,128 instances of “chemical structure + gene signature vs. drug 
sensitivity” were in the final input for training the deep learning models (removing miss-
ing values where drug sensitivity is not available). The CCLE dataset consists of 24 com-
pounds, covering 469 distinct cell lines for a total of 10853 instances.

In order to train and test the model, we randomly divided the GDSC dataset into 
the training (159415 instances) and testing (17,713 instances) sets, and split the CCLE 
dataset into the training (9767 instances) and testing (1086 instances) sets, which cor-
responded to 90% and 10% of the total instances, respectively.

Compared with previously published methods, our deep learning model shows supe-
rior predictive performance (Table  1). Other models extracted features in all gene 
expression to achieve good predictive performance, but it is very difficult to extract 
really effective features from so many gene expression datasets. Different from other 
papers, CDRscan used mutation position to train model. They selected sequence varia-
tion information at 28328 positions from 567 genes in CGC [38].

Single weight layer

In this section, we discussed the effectiveness of genetic mutation features and gene 
weight layer. To study the influence of genetic mutation on model performance, we 
trained SWnet without gene weight layer. In Table  2, we input two data types into 
SWnet gene branch: (1) gene expression only; (2) gene expression plus genetic 

Table 1  Comparison of performances with previously published methods

Bold values represents the result is the best performance among the models participating in the comparison

Dataset Model MSE R
2

GDSC KBMTL 1.2642 0.8225

SRMF 0.9874 0.8614

WGRMF 0.9844 0.8618

GraphDRP 1.2586 0.8229

CDRscan 2.1525 0.6978

SWnet 0.9384 0.8683
CCLE KBMTL 1.9480 0.5439

SRMF 1.2565 0.7058

WGRMF 1.3026 0.6950

GraphDRP 1.3121 0.6928

CDRscan 1.1960 0.7200

SWnet 1.1604 0.7283
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mutation. As shown in Table 2, the best MSE is 0.9727 when the gene expression fea-
tures as input and r = 2 for radius. Meanwhile, the best MSE is 0.9853 when the gene 
expression and genetic mutation as input and r = 2 for radius. From the results we 
could see that the introduction of genetic mutation through simple addition would 
change the distribution of gene expression data and lead to the deterioration of train-
ing results.

To study the significance of gene weight layer on model, we used the gene weight 
layer in Table 3 to combine the gene expression and genetic mutation. We tried apply-
ing the gene weight layer to the following: (1) genetic mutation only; (2) gene expres-
sion only; (3) genetic mutation and gene expression. Our model performed the best 
( MSE = 0.9384 ) when we applied the gene weight layer to genetic mutation only. 
Based on this experimental result, we finally decided to apply the gene weight layer to 
the genetic mutation only. In Table 3, when r = 2 radius, single weight layer without 
self-attention, the MSE is 0.9804. It is smaller than 0.9853, illustrating that through 
gene weight layer the two genetic traits are dynamically combined, achieving better 
performance than simple addition strategy. However, Table  3 shows that in single 
gene weight layer, r = 2 , the MSE is 0.9804, bigger than 0.9727 in Table 2. This means 
the single weight layer has little side effects on model training. Taking genetic muta-
tion data as input means more features are introduced into the model. Meanwhile, 
GNN is a deeper model, harder to train than CNN. This leads to the fact that during 

Table 2  Performance of model training without gene weight layer in different r-radius

Bold values represents the result is the best performance among the models participating in the comparison

Features r-radius MSE R
2

Gene expression 1 1.0765 0.8489

2 0.9727 0.8634
3 1.0763 0.8489

Gene expression + genetic mutation 1 1.0663 0.8503

2 0.9853 0.8616
3 1.1061 0.8447

Table 3  Performance of model training with different weight layers, self-attention, or r-radius

Bold values represents the result is the best performance among the models participating in the comparison

Weight layer Self-attention r-radius MSE R
2

Single No 1 1.0848 0.8477

Single No 2 0.9804 0.8623
Single No 3 1.0694 0.8498

Multi No 1 1.0654 0.8504

Multi No 2 1.0078 0.8585

Multi No 3 0.9767 0.8628
Multi Yes 1 1.0724 0.8495

Multi Yes 2 0.9785 0.8626

Multi Yes 3 0.9384 0.8683
Multi Yes 4 0.9917 0.8608

Multi Yes 5 1.2083 0.8304
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SWnet training, back propagation is more inclined to GNN network training, so as to 
obtain better MSE results. On the other hand, although our CNN gene branch added 
single weight layer, it has little effect on model training.

In fact, before training GNN as drug feature extract model, we have trained a model of 
SWnet with a similar structure. Its drug feature extraction is realized through the convo-
lutional neural network and the input feature is fingerprints. When we did simple addi-
tion of the gene features, MSE was 1.0223. If we combined the gene features through 
gene weight layer, MSE was 0.9912. This indicates that the convolutional layer can make 
the genetic mutation participate in the training of the model well and improve the per-
formance of the model. It is worth mentioning that although single weight layer has little 
effect on SWnet when drug branch is GNN, the MSE is 0.9804, better than CNN drug 
branch whose MSE is 0.9912.

Multi‑task and self‑attention

In section “Single weight layer”, we have solved the problem of how to input both gene 
expression and genetic mutations through single gene weight layer. In this section, we 
discussed how to design the gene weight layer to balance the complexity between GNN 
and CNN. First, we introduced multi-task learning. The single gene weight layer was 
upgraded to multiple gene weight layer. Each drug corresponded to a single gene weight 
layer at a specific location. However, there are too many weight layers to train, result-
ing in the model’s predictive performance degradation. As shown in Table 3 when using 
multi-weight layers and r = 3 without self-attention, the MSE is 0.9911.

Then we introduced self-attention mechanism to improve gene branch of the model. 
With self-attention structure, drug similarity enhanced the training of multi-weight lay-
ers, and then gene expression and genetic mutation features can be better fused together. 
As shown in Table 3, when r = 3 and using multi-weight layers and self-attention, the 
MSE = 0.9384 and R2 = 0.8583.

Different r‑radius

In section “Single weight layer” and section “Multi-task and self-attention” we have 
learned that the relative complexity of GNN and CNN determines the predictive ability 
of the model. With different r-radius subgraphs in GNN, we can adjust the complexity of 
the GNN branch. So we designed all experiments with different r-radius.

As shown in Table 3, single gene weight SWnet achieved the best performance when 
r = 2 radius, self-attention SWnet achieved the best performance when r = 3 radius. 
Compared the two model, since self-attention SWnet contained multiple matrix W and 
self-attention mechanism, it has more ability to extract molecule feature, therefore the 
GNN branch can be more complicated. Self-attention SWnet became overfitting when 
r = 4 radius. Meanwhile, single gene layer SWnet model is simpler than self-attention 
SWnet, it means that the model would become overfitting faster when r = 3 radius.

Relationship between drug targets and genetic mutation status revealed by the gene 

weight layer

The trained gene weight layer reflected the normalized contribution of the binary 
genetic mutation status to the prediction of drug efficacy. To explore biological 
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relevance of the model, genes with weight = 1 have been identified for each drug, 
which represents the genetic mutation with the strongest predictive power. Proteins 
encoded by these genes might interact among themselves or interact with the drug 
targets. We identified these connections from protein–protein interaction database 
[39]. The protein–protein interactions were illustrated for BRAF inhibitors and BCL2 
inhibitors (Fig. 5). Connections within 2 degrees from the target were shown in the 
network. For BRAF, two of the drugs (AZ628 and Dabrafenib) have their strongest 
predictive genes directly interacting with BRAF. For the other 3 BRAF inhibitors, 
there is at least one strongest predictive gene connected with BRAF within the sec-
ond degree. The same was observed for BCL2 inhibitors. Interestingly, TP53 serves 
as a connection hub in the BCL2 case and SRC in the BRAF case. It is known that 
BCL2 and TP53 are two important nodes in the apoptosis signaling pathway and it 
has been reported that combining TP53 activation and BCL2 inhibition could result 
in synthetic lethality in AML [40]. Similarly, BRAF V600E mutation and SRC muta-
tions have been found to be mutually exclusive in colorectal cancer patients, and both 
could serve as molecular markers for prognosis [41]. Lists of genes with weight = 1 for 
each drug are available in Additional file 1: Table S1. These protein–protein interac-
tions indicated the relevance of the gene weights in our model.

Split training data with cell lines

To further explore the generalization ability of the model, we split the data set by cell 
lines, so that part of the genomic information never participated in the model train-
ing. We randomly divided training data with cell lines and trained GNN with differ-
ent r-radius subgraphs, resulting in 159913 instances (90%) for training and 17215 
instances (10%) for testing. As shown in Table 4, the MSE is 2.2793 when single weight 
layer with r = 3 radius. Since the cell lines are of different tissue lineages, the perfor-
mance of the model is not as good as that when all the cell lines appeared in the train-
ing dataset. Meanwhile, when r = 2 and using multi-weight layers and self-attention, 

Fig. 5  Physical interactions often occur among drug target proteins and proteins encoded by genes with the 
highest weight ( weight = 1 ). a Five BRAF inhibitors were included in the training data. Genes with weight = 1 
were extracted from the gene weight layer after model training, and their interactions with BRAF were 
analyzed in the String database. Connections within 2 degrees from BRAF were shown, grouped by drug. 
b Three BCL2 inhibitors was included in the training data. Analysis procedure was the same as above. The 
network showed connections within 2 degrees from BCL2
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the MSE = 2.2840 . This result is close to single layer SWnet. Due to weak cell line 
similarity, the different r-radius subgraphs have little effects of model performance.

Conclusion
In this paper, we proposed a new end-to-end deep learning model called SWnet. With 
the gene weight layer, we input the gene expression and genetic mutation at once. We 
used GNN to encode chemical structures of drugs with different r. We predicted the 
IC50 based on gene signatures and molecular graphs and achieved better predictive 
performance than methods reported in previous literatures. We used the self-atten-
tion mechanism for the first time to explore the interactions between genetics and 
chemical structure of drugs.

SWnet combined genomic signatures and molecular graphs for drug efficacy pre-
diction. We applied SWnet to GDSC and CCLE dataset, and showed that SWnet 
outperformed other models. With more datasets becoming available in the public 
domain, we envision training SWnet with more datasets and eventually using SWnet 
for in silico drug screenings. This model holds great promise for cancer therapy and 
precision medicine.

It is worth noting that the molecular structure information extracted by GNN is 
important for drug response prediction, where we applied the extend GNN to extract 
graph-level representation for molecule in this work. However, we used a simple 
arithmetic mean to get the graph-level representation from node-level representa-
tions. We believe that there will be more effective ways to extract the graph-level rep-
resentation. We will improve the current GNN for more effective node information 
fusion in molecular graph.

The complex deep learning model SWnet can hardly be well-trained when it deals 
with a small dataset. In the future, we will design a GNN with a simpler structure to 
encode the drug structure to fit small datasets. We will try to fix the weight param-
eters for common atoms when updating node features in molecule. This may make 
GNN focus more on the structure of the molecule and the special atoms in it, and it 
will make it easier to train GNN with small datasets.

Table 4  Performance of SWnet in terms of MSE in random split dataset by cell lines with different 
r-radius subgraphs

Bold values represents the result is the best performance among the models participating in the comparison

Weight layer Self-attention r-radius MSE R
2

Single No 1 2.3090 0.6756

Single No 2 2.3102 0.6755

Single No 3 2.2793 0.6799
Multi Yes 1 2.2975 0.6773

Multi Yes 2 2.2840 0.6792
Multi Yes 3 2.3304 0.6726
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