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Astrocytes are determinants for the functioning of the CNS. They respond to

neuronal activity with calcium increases and can in turn modulate synaptic

transmission, brain plasticity as well as cognitive processes. Astrocytes display

sensory-evoked calcium responses in different brain structures related to

the discriminative system of most sensory modalities. In particular, noxious

stimulation evoked calcium responses in astrocytes in the spinal cord, the

hippocampus, and the somatosensory cortex. However, it is not clear if

astrocytes are involved in pain. Pain is a private, personal, and complex

experience that warns us about potential tissue damage. It is a perception that

is not linearly associated with the amount of tissue damage or nociception;

instead, it is constructed with sensory, cognitive, and affective components

and depends on our previous experiences. However, it is not fully understood

how pain is created from nociception. In this perspective article, we provide

an overview of the mechanisms and neuronal networks that underlie the

perception of pain. Then we proposed that coherent activity of astrocytes in

the spinal cord and pain-related brain areas could be important in binding

sensory, affective, and cognitive information on a slower time scale.
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Introduction

From nociception to pain

According to the International Association for the Study of Pain (IASP), pain
is defined as an unpleasant sensory and emotional experience associated with, or
resembling that associated with, actual or potential tissue damage (Raja et al.,
2020). It is a complex experience defined by biological, psychological, and social
factors with sensorial, emotional, and cognitive components. It is important to
make clear that pain and nociception are not the same phenomena; nociception
is related to the activation, transfer, and processing of noxious stimuli within the
CNS (Loeser and Treede, 2008). Instead, pain is an individual experience that, in
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physiological conditions, warns us about potential or real tissue
damage. Although pain can be induced by different modalities,
here we will focus on nociception and pain evoked by the
somatosensory system.

When you harm yourself, the noxious stimulus is detected in
the periphery by receptors called nociceptors. This information
arrives at the dorsal horn of the spinal cord (Dubin and
Patapoutian, 2010) and is transmitted to the thalamus directly
through the spinothalamic tract or indirectly through the
spinoreticular and spinomesencephalic tracts (Giesler et al.,
1981; Willis and Westlund, 1997). From the canonical view,
thalamic neurons from the ventral posterolateral (VPL)
and ventral posteromedial nucleus (VPM) relay nociceptive
information from the body and the head, respectively, to
the primary somatosensory cortex (SI) to process sensory
components such as quality, intensity, and location of
nociceptive stimuli (Backonja, 1996; Monconduit et al., 2006;
Kim et al., 2019). From there, the information spread to
hierarchically higher cortical regions to transform nociception
into pain perception.

However, growing evidence shows that nociceptive
information is processed in parallel in multiple brain areas
(Figure 1A) and that is necessary to bind sensory, affective,
and cognitive components to generate the experience of
pain (Coghill, 2020). The thalamus, more than a sensory
relay, is a key brain structure interplaying cortical and
subcortical brain structures to integrate the components of
the pain experience. The thalamic nuclei that directly received
nociceptive information from the periphery and relay it to the
primary sensory cortex are classified as first-order (VPL and
VPM); high-order thalamic nucleus (i.e., posterior nucleus)
receive information from the deep cortical layer from S1 and
send it back to S1, secondary somatosensory cortex (S2), and
primary motor cortex to modulate the motor response to pain
(Liao and Yen, 2008; Zhang and Bruno, 2019). The thalamus
is also connected with the amygdala, the anterior cingulate,
and the insular cortex, brain structures involved in the affective
component of pain; it also projects to the association cortices
such as the prefrontal and the parietal cortices related to the
cognitive component of pain (Petrovic et al., 2000; Yen and Lu,
2013). This is relevant because although several brain structures
are active during nociception, the activity of these structures
by themselves cannot explain the pain experience, instead,
the perception of pain requires the coordinated activity from
many of these brain regions, and the thalamus is well located to
accomplish this function.

The parabrachial nucleus (PBN) receives direct information
from nociceptive neurons located in the superficial lamina of the
dorsal horn of the spinal cord through the spinoparabrachial
tract. It processes visceral pain due to noxious thermal stimuli
and inflammatory process (Willis, 1985; Bester et al., 1997) and
conveys several types of information such as a taste, pain, and
aspects of autonomic control like respiration, blood pressure,

fluid balance, and thermoregulation (Chiang et al., 2020). It has
reciprocal connections with the central nucleus of the amygdala,
the nucleus of the bed of the stria terminalis, and hypothalamic
nuclei. The PBN have an important role in the autonomic,
motivational and affective responses to pain (Schaible and
Grubb, 1993; Millan, 1999) regulating the emotional and
autonomic aspects of pain experience (Bourgeais et al., 2001).

In S1, the neuronal activity is somatotopically organized
(Mancini et al., 2012) providing information about the location
of the noxious stimulation (Jin et al., 2018). Its neuronal
activity correlates with the properties of the stimulus including
the intensity (Kenshalo et al., 2000; Bufalari et al., 2007;
Iwamoto et al., 2021). These neurons are highly modulated by
prior experiences or cognitive factors such as attention. For
example, when a subject is diverted from a painful stimulus, the
nociceptive-evoked neuronal responses are reduced (Backonja,
1996; Bushnell et al., 1999). On the other side, neurons
from S2 respond bilaterally to the noxious stimuli (Davis
et al., 1998) coding its intensity with increases in neuronal
activity. Although this region is also involved in nociceptive
processing (Davis et al., 1998; Coghill et al., 1999), the
activation of S2 is better associated with the scores of a sensory
discriminative component induced by different pain modalities
(Maihöfner et al., 2006).

The emotional component of pain is related to the
unpleasantness of the nociceptive stimuli. This is by definition,
an essential component for the categorization of an experience
as painful. It can be associated with the stimulus intensity
(Wilcox et al., 2015), but also be independent of it and related
to individual, contextual, or cultural aspects. Some of the brain
areas involved in this pain-related affective system include the
anterior cingulate cortex (Tölle et al., 1999), the amygdala
(Straube et al., 2011), the insula (Kim et al., 2017), and the
hippocampus (Angenstein et al., 2013).

The basolateral amygdala receives sensory information from
the thalamus and cortical areas (LeDoux et al., 1990; Shi and
Davis, 1999) whereas the central amygdala receives nociceptive
information directly from the spinal cord (Cliffer et al., 1991;
Burstein and Potrebic, 1993) and parabrachial area (Bernard
and Besson, 1990; Gauriau and Bernard, 2002). The anterior
cingulate cortex is connected to the thalamus, prefrontal cortex
(orbitofrontal and the medial portion), and amygdala. They
mediate fight behaviors in response to noxious stimuli (Gao
et al., 2004). The cingulate and the prefrontal cortex are also
active when the subject perceives pain from others and has been
linked to prosocial behavior and empathy (Kim et al., 2021).

The hippocampus receives nociceptive inputs from the
periphery through the spinothalamic and parabrachial pathways
and directly from the spinal cord through the septo-
hippocampal (Mokhtari et al., 2019). It works together
with the anterior cingulate, the insula, the amygdala, the
nucleus accumbens, and the prefrontal cortex (Thompson
and Neugebauer, 2019) to combine emotional and cognitive
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FIGURE 1

Astrocytes respond to tail-pinched stimulation with calcium increases in pain-related brain areas. (A) Diagram showing regions (in color) and
connections (arrows) of the nervous system that process nociceptive stimuli and are involved in pain perception. PFC, prefrontal cortex; ACC,
anterior cingulate area; Hip, Hippocampus; S2, secondary somatosensory cortex; S1, primary somatosensory cortex; IC, insular cortex; Thal,
thalamus. (B) Tail-pinch was applied with forceps to lightly anesthetized mice (0.5% isoflurane) expressing GCaMP6f in astrocytes located in S1,
S2, PFC, and Hip. Representative traces of astrocyte calcium dynamics were monitored with one-photon Miniscope. Tail-pinch stimulation is
indicated with a dotted black line (C). The color maps show the calcium responses before, during, and after tail pinch stimulation. Basal
fluorescence was considered as the calcium activity observed before the sensory stimulation.

aspects of pain perception. For example, remembering a painful
moment can induce pain by itself (Babel, 2017), the novelty of a
painful stimulus is determinant for the percept of pain (a process
known as a “pain alarm”). The importance of the activity of
this pain matrix is also relevant during the expectancy-based
modulation of pain in placebo and hypnosis-induced analgesia
(Bushnell et al., 2013; Geuter et al., 2013; Keller et al., 2018), as
well as during “pain catastrophizing,” where the subject tends
to magnify a possible threat of painful stimulus, with constant
ruminant thoughts associated with pain anxiety and helpless
(Quartana et al., 2009).

Individual pain experiences depend on the activation of
regions and networks that are spatially distributed through the
brain that engage during nociception (Kim and Davis, 2020)
commonly referred to as “pain matrix.” The integration of
pain components depends on the synchronization of neuronal
activity in parallel but also complex temporal patterns of brain
activity to allow communication in a long-range scale (Hauck
et al., 2008; Barardi et al., 2014; Peng and Tang, 2016). Binding
oscillatory activity, in particular gamma oscillations, in the pain
matrix has been proposed as the mechanism to integrate these

components to generate a complete perceptual representation
of pain (Sedley and Cunningham, 2013; Ghiani et al., 2021). In
particular, nociceptive stimulation can induce by itself, coherent
gamma activity (Tan et al., 2019) in sensory (Gross et al., 2007;
Kim et al., 2015) and affective-cognitive pathways (Hauck et al.,
2017; Liberati et al., 2018; Xiao et al., 2019), that have a direct
relation with pain ratings in humans (Ploner et al., 2017; May
et al., 2019). Although the neural mechanism related to the
generation of gamma oscillations is still under investigation, it
has been proposed that the activity of fast-spiking inhibitory
interneurons, and neuromodulator systems are essential for
gamma rhythm (Kim and Davis, 2020).

Astrocytes respond to nociceptive
stimulation

Astrocytes are electrically non-excitable cells that
exhibit changes in cytosolic calcium concentration as
a form of excitability in response to neuronal activity
(Parpura and Verkhratsky, 2012; Zorec et al., 2012;
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Bazargani and Attwell, 2016). Calcium events are observed
throughout the astrocyte due to the activation of ionotropic
calcium-permeable receptors or metabotropic receptors
linked to phospholipase C/inositol trisphosphate receptors
(IP3R) (Foskett et al., 2007; Shigetomi et al., 2012; Okubo,
2020; Sherwood et al., 2021). Astrocyte-calcium events
are diverse in terms of the spatial extension, they can be
localized to some subcellular domains (López-Hidalgo et al.,
2017), extended to the entire astrocyte or throughout gap
junctions forming an astrocyte network (Hirase et al., 2004;
Hoogland et al., 2009).

Astrocytes respond to different sensory modalities
in cortical and subcortical regions involved in sensory
processing (Figures 1B,C) such as the spinal cord,
olfactory bulb, visual, auditory, and somatosensory cortex
(Petzold et al., 2008; Schummers et al., 2008; Ghosh
et al., 2013; Otsu et al., 2015; Sekiguchi et al., 2016;
Lopez-Hidalgo et al., 2019; Lines et al., 2020). In these
structures, evoked-calcium responses encode the intrinsic
properties of the stimulus such as duration, intensity,
location, and modality and share the topographical
organization of neuronal maps (Ghosh et al., 2013;
López-Hidalgo and Schummers, 2014).

In the somatosensory system, astrocytes respond to tactile
and noxious stimuli in regions related to nociception and
the perception of pain. In a seminal work by Sekiguchi
et al. (2016), sensory-evoked calcium activity of dorsal
horn astrocytes was not correlated with the duration and
intensity of the mechanical stimulus whereas the underlying
neuronal activity was positively correlated suggesting that
astrocyte activity is not secondary to the activation of
neurons of the pain matrix. Astrocytes respond to low and
medium pressure-amplitude applied to the tail of freely
moving mice, with increases in the frequency of astrocyte
calcium events, however, this activity was mostly restricted
within the astrocytes. On the other side, high mechanical
pressure induced large-scale synchronized calcium activity in
astrocytes but not in neurons. Although it is not clear if
non-nociceptive or nociceptive fibers are activated during
low/medium or high pressures, respectively, this suggests that
somatosensory-evoked calcium responses on astrocytes depend
on the sensory modality more than the stimulus intensity
(Sekiguchi et al., 2016).

In the somatosensory cortex, astrocyte calcium responses
encode different parameters of the somatosensory stimuli
(Wang et al., 2006; Winship et al., 2007; Stobart et al.,
2018; Lines et al., 2020). The stimulation of the peripheral
receptive field of S1 (Winship et al., 2007; Stobart et al.,
2018) and barrel cortex induced evoked calcium responses
in astrocytes that depend on the intensity and the frequency
of the stimulus (Wang et al., 2006; Thrane et al., 2012;
Stobart et al., 2018). However, as occurs in the spinal
cord, low-intensity electrical stimulation (0.4–0.6 mA) induces

spatially restricted calcium responses within the astrocytes
that do not extend in the field of view (Ghosh et al.,
2013; Zhang et al., 2016). However, high-intensity electrical
stimulation (1–3 mA) evoked large-scale calcium responses
in astrocytes (Gu et al., 2018; Lines et al., 2020) which
reinforces the idea that nociceptive information recruited
astrocytes networks.

Noxious stimulation (footshock) can induce reliable calcium
activity in astrocytes in other brain areas related to pain
perception such as the hippocampus (Zhang et al., 2021).
Moreover, auditory cortical astrocytes are more responsive to
footshock (67%) in comparison to the number of astrocytes
activated by the natural sensory stimuli, sound (8%). Here,
astrocytes respond with a coordinated large-scale activity that is
partially mediated by gap junctions and depends on the nicotinic
acetylcholine receptors (Zhang et al., 2021). This supports
the relevant role of neuromodulatory systems in mediating
nociceptive-evoked responses in astrocytes throughout the
nervous system. Furthermore, this evidence highlights the
importance of nociception in shaping the activity of brain
cortical circuits and hence the behavior. In this case, Zhang
et al. (2021) showed that footshock-evoked calcium activity
in auditory cortical astrocytes is induced in fear memory
and its extinction goes in parallel with the extinction
of the behavior.

Data obtained in our laboratory from astrocytes expressing
GCaMP6f in anesthetized mice (Figure 1B) extend the previous
evidence regarding the nociceptive-evoked calcium responses
(tail pinch) in pain-related areas. Here, we provide evidence
that astrocytes located in S2 and prefrontal cortex also
respond to nociceptive stimulation as occurs in astrocytes
from S1 and hippocampus (Figure 1C). Although there are
differences in the amplitude, the delay, and the duration
of nociceptive-evoked calcium responses in astrocytes, one
common characteristic among these regions is that nociceptive
stimulation recruited a large portion of astrocytes (Gu et al.,
2018; Lines et al., 2020). In this context, it is tempting to
propose that nociceptive stimuli activate coherent activity of
astrocytes located in pain-related brain areas acting as an
“astrocyte pain matrix” that in conjunction with the neural
activity would construct pain perception. Global widespread
activation of astrocytes can be induced by the increase
in glutamate and K+ levels in the synaptic space due to
synchronic neuronal activity (De Pittà et al., 2008). The
activation of astrocytes can lead to gliotransmitter release
acting as a paracrine signal to activate nearby astrocytes
generating a “domino effect” to spread calcium signaling in
large-scale proportions (Pereira and Furlan, 2009; Goldberg
et al., 2010; Lallouette et al., 2019). Another possibility is that
global astrocyte activity is not secondary to the activation
of neurons, instead, nociceptive stimulation could open gap
junctions located in the astrocytes to allow the activation
of the syncytium. In fact, connexin 30, 43, and 32 are
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highly expressed in pain-related brain areas such as the
spinal cord, thalamus, S1, prefrontal cortex, and cingulate
cortex (Hirase et al., 2004; Houades et al., 2008; Ernst
et al., 2011; Zhang et al., 2013; Fujii et al., 2017). In any
case, the activity of the coordinated astrocytes could in turn
feeds back to the neuronal circuit (Pereira et al., 2013)
increasing the synchronization (Makovkin et al., 2022) and
hence contributing to the binding of the information and
pain perception.

Perspective

Cutaneous tactile stimulation evoked sparser calcium
activity in astrocytes (Stobart et al., 2018). This favors local
neuron-astrocyte interaction facilitating the location of the
stimulus in places with a topographic organization. Instead,
nociception informs the nervous system of real or potential
damage and produces pain to protect the harmed area. In
this scenario, the cortical representation of the location of
the stimulus extends to nearby areas developing a state of
hyperalgesia around the damaged zone to ensure the protection
of the area while the integrity of the tissue is restored. In
this context, global astrocytes activity in the cortex could be
involved in short and long-term plasticity to ensure this state
of hyperalgesia.

Although nociceptive processing occurs unconsciously,
emotional, socio-cultural, and cognitive factors (such as
attention) are relevant in producing pain perception; therefore,
a state of consciousness is necessary to construct the experience
of pain. However, an important question in neuroscience
that remains to be answered is how pain is created from
nociception? How are the elements that compose the percept
of pain binding to provide a painful experience? Here,
we provide evidence about global and synchronous calcium
activity in astrocytes evoked by nociceptive stimulation in
areas related to the pain experience. It seems plausible
that a coherent activity of astrocytes in the brain and the
spinal cord could be important to bind sensory, affective,
and cognitive information on a slower time scale forming
an astrocyte pain matrix. According to this, Pereira and
Furlan (2010) proposed that individual astrocytes could
operate as a “local hub” integrating information within their
local domain. However, the astrocyte pain matrix would
communicate astrocytes within the pain network (Pereira
and Furlan, 2010; Lallouette et al., 2014) acting as a
“Master Hub” integrating information from several brain
areas that could be involved in the process of perception
as occurs with pain. Furthermore, because astrocytes can
in turn increase the synchronization of neuronal networks
(Makovkin et al., 2022), it could be involved in directly
modulating gamma activity and hence in the binding process.
Another possibility is that astrocytes respond directly to

neuromodulators such as acetylcholine, norepinephrine, and
dopamine (Jennings et al., 2017; Covelo and Araque, 2018)
that are released by nociceptive stimulation (Wahis and Holt,
2021) resulting in changes in the excitability and synchrony
of neural networks (Sardinha et al., 2017; Adamsky et al.,
2018; Bellot-Saez et al., 2018) that are necessary for the
perception of pain.

Brain oscillations in the frequencies of the gamma band
have been linked to the perception of pain (Tan et al.,
2019; Kim and Davis, 2020). These oscillations are present
throughout the brain (Buzsáki and Draguhn, 2004) including
regions such as the sensory, prefrontal, insula, and anterior
cingulate cortex (Gross et al., 2007; Kim et al., 2015; Hauck
et al., 2017; Liberati et al., 2018; Xiao et al., 2019). In
2020, Lines and colleagues showed that sensory stimulation
in the paw induces an increase in gamma activity in
the primary somatosensory cortex that correlates with the
intensity of the stimulus (Lines et al., 2020). In parallel,
sensory stimulation induces global calcium responses in
cortical astrocytes with a delay in the order of seconds.
Moreover, the manipulation of calcium activity in astrocytes
was inversely correlated with gamma activity demonstrating
that activation of astrocytes with DREADDs is sufficient to
decrease gamma oscillations. On the other side, Lee et al.
(2014) observed during a spatial memory task (Y maze),
that calcium elevations in hippocampal astrocytes precede
the onset of gamma activity in the hippocampus. This could
imply a different role of astrocytes regulating gamma activity
depending on the level of arousal (anesthetized vs. awake), brain
structures (somatosensory cortex vs. hippocampus) as well as
underlying neural activity (natural activity in behaving animal
vs. sensory stimulation).

High-order thalamic nucleus plays an important role
in making consciousness of an experience thanks to the
connections with cortical and subcortical regions, where it acts
as a sensory activity filter and synchronized neuronal activity
(Ward, 2011). Although it is unknown if thalamic astrocytes
respond to nociceptive stimulation with calcium activity and
the extension of these responses, thalamic astrocytes regulate
the sensory acuity of mice in a tactile-discriminatory task by
releasing GABA (Kwak et al., 2020). In this scenario, it would
be interesting to analyze if GABA release by astrocytes could set
an inhibitory tone that regulates gamma activity as occurs with
inhibitory interneurons and hence modulate gamma activity
and its impact on perceptions.

There are still fundamental questions in neuroscience that
are still poorly understood despite all the technical advances
and progress in neurobiology such as the process of creating
perception from sensations. Thus, is tempting to propose that
astrocytes are well equipped, located, and connected to regulate,
in parallel, multiple neuronal networks allowing individual pain
experiences. However, further work integrating astrocytes in this
field is required.
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