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Abstract

The identification, purification and characterization of cancer stem cells (CSCs) holds tremendous promise
for improving the treatment of cancer. Mounting evidence is demonstrating that only certain tumour cells (i.e.
the CSCs) can give rise to tumours when injected and that these purified cell populations generate hetero-
geneous tumours. While the cell of origin is still not determined definitively, specific molecular markers for
populations containing these CSCs have been found for leukaemia, brain cancer and breast cancer, among
others. Systems approaches, particularly molecular profiling, have proven to be of great utility for cancer diag-
nosis and characterization. These approaches also hold significant promise for identifying distinctive proper-
ties of the CSCs, and progress is already being made.

Keywords: transcriptomics • proteomics • molecular signature • networks

J. Cell. Mol. Med. Vol 12, No 1, 2008 pp. 97-110

*Correspondence to: Qiang TIAN, M.D., Ph.D.,
Institute for Systems Biology, 1441 N. 34th St.
Seattle, WA 98103, USA.

Tel.: +1-206-732-1308
Fax: +1-206-732-1299
E-mail: qtian@systemsbiology.org

© 2008 The Institute for Systems Biology
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

doi:10.1111/j.1582-4934.2007.00151.x

Introduction

Cancer is the second deadliest disease in the United
States, accounting for one out of every four deaths.
Despite tremendous efforts dedicated to conquering
this disease, the age-adjusted mortality rate has
remained almost unchanged for most cancers for the
past five decades, with one compelling instance 

being a devastating brain tumour – glioblastoma –
which carries a median survival rate of merely 9–12
months regardless of treatment. Among the con-
glomerate of cellular, molecular and genetic compli-
cations contributing to the persistence of cancer, the
cellular origin provides a promising avenue that could
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lead to targeted elimination of cancer. Cancers often
occur in tissues with constant proliferation. A para-
digm learned from developmental biology suggests
that only the clonogenic stem cells in the hierarchical
tissue developmental processes are long-lived,
whereas their differentiated progenies lose proliferat-
ing potential. Emerging evidence suggests that can-
cers may actually be a malignance derived from a
small cell population dubbed cancer stem cells
(CSCs), among the heterogeneous tumour cells, that
demonstrate self-renewal and multiple lineage differ-
entiation properties [1]. Discovered initially in
leukaemia [2], cancer stem cell populations have
been isolated from several tissues, including breast,
brain and colorectal cancers [3–5]. The identification
of these cancer stem cell populations sets the stage
for systems level analysis, and holds potentially
tremendous ramifications in terms of our understand-
ing of the molecular pathogenesis of cancer, patient
stratification, and therapeutic intervention.

As with any complex biological system, cancer
(including CSCs) can be viewed and interrogated at
the genome-scale using systems biology approach-
es. Systems approaches stress three concepts
regarding biological information [6]. First, there are
two fundamental types of biological information – the
digital information of the genome and the environ-
mental information that is outside our DNA. Second,
the digital genome information encodes two types of
biological networks – protein interactions and gene
regulatory networks. Protein networks transmit and
use biological information for development, physiolo-
gy and metabolism. Gene regulatory networks – tran-
scription factors and RNAs that regulate networks of
other transcription factors and other RNAs – receive
information from, for example, signal-transduction
networks, integrate and modulate it, and convey the
processed information to networks of genes and pro-
teins that execute developmental and physiological
functions. In biological systems, these two types of
networks are closely integrated. The organization of
these networks can be inferred from various different
types of measurements including, for example, glob-
al measurements of dynamically changing levels of
mRNAs and proteins during developmental and
physiological responses, as well as large-scale
measurements of protein-protein and protein-DNA
interactions. Third, there are many hierarchical levels
of organization and information (for example, DNA,
RNA and protein networks, cell signalling and meta-

bolic networks and organization and responses of
organ systems). To understand biological systems,
information must be gathered from as many informa-
tion levels as possible and integrated into models
that generate testable hypotheses about how biolog-
ical systems function.

In this review article we delineate our view for
investigating CSCs using powerful integrated tran-
scriptomic, proteomic and computational approach-
es. We will focus on gene expression profile signa-
tures which will provide fundamental insights into the
networks in the application of cancer diagnosis,
patient stratification, and treatment management. We
will also discuss emerging new experimental tech-
nologies and computational modelling approaches
that empower systems strategies for tackling cancer
stem cell challenges.

Molecular profiling 

for cancer classification

Systems approaches have proven of great utility in
the study of cancer, with increasing power expected
to continue to emerge in the future. Despite notable
and significant challenges that remain [7, 8], one
area that has shown significant promise is in the min-
ing of global gene expression data sets to identify
molecular signatures that can be used for diagnosis
and treatment selection [9].

These studies typically involve the collection of
samples from two or more classes (e.g. cancer ver-
sus normal, or responsive versus non-responsive to
treatment) and the use of a set of data on which to
train the classifier and another set on which to test. In
the absence of a true test set, re-sampling methods
such as cross-validation are generally used to esti-
mate likely performance of the classifier on future
data. Challenges often arise in these studies when
different measurement platforms are used in training
and test sets.The ability to generate an accurate clas-
sifier is a function of factors such as (1) the size of the
training set relative to the number of features, (2) the
computational method used and (3) the inherent dis-
tinctness of the selected phenotypes. Typically, the
number of samples is far less than the number of tran-
scripts, leading to overfitting being a significant prob-
lem. This leads to the need for computational meth-
ods that aid in avoiding overfitting when selecting a
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classifier. A variety of methods have been applied to
cancer diagnoses including approaches based on
support vector machines [10, 11] and relative expres-
sion reversals [12–15], among many others.

Application of these methods has led to the discov-
ery of molecular classifiers of varying degrees of accu-
racy to identify prognostic signatures for breast cancer
[16–32], ovarian cancer [33–35], colon cancer [36,
37], prostate cancer [14, 38–43] and brain cancer [44,
45], among others. Given the success of such global
approaches to identify signatures for cancer tumours,
there is reason to suppose that such approaches will
prove very useful in uncovering new biology, markers,
and treatments in the emerging area of CSCs. Indeed,
progress in this direction is already being made.

Molecular profiling 

of cancer stem cells 

Following on the successes of molecular profiling in
identifying prognostic signatures for many cancers,
researchers have begun to perform profiling of CSCs
as well. We will discuss such efforts in the context of
three cancers: leukaemia, brain and breast. In addi-
tion to profiling for signatures of specific CSCs, inter-
esting work has also been done to find general sig-
natures for ‘stem-ness’ in tumours. For example, an
11-gene signature for ‘stem-ness’ in multiple cancer
types has been identified [46] that predicts short
interval to disease recurrence, distant metastasis
and death from cancer. This signature reflects a BMI-
1 oncogene-driven gene expression pathway, where
the BMI-1 gene is essential for the self-renewal of
haematopoietic and neural stem cells. Using
Kaplan–Meier analysis, this signature for ‘stem-ness’
was found to show predictive ability in 11 different
cancers, including five epithelial cancers (prostate,
breast, lung, ovairna and bladder) and six non-
epithelial (lymphoma, mesothelioma, medulloblas-
toma, glioma and acute myeloid leukaemia). Thus,
there is evidence that the property of ‘stemness’
(defined with this signature) is predictive of outcome
in a wide variety of tumours. If validated, this obser-
vation could have a major impact on patient care
[47]. Recent studies have also shown that cancer
and normal stem cells share the same self-renewal
mechanisms, such as the Bmi1 and Wnt canonical
pathways [48, 49], further strengthening the link
between stem cells and CSCs.

Historical perspective:

cancer stem cells in leukaemia 

The fundamental concept of CSCs came from early
studies of blood cancer (leukaemia) and the blood
forming haematopoietic stem cells (HSC). Elegant
work by Till and McCulloch in the early 1960s estab-
lished the existence of bone marrow HSC capable of
forming myelo-erythroid colonies in the spleen of
lethally irradiated hosts [50]. These cells were later
isolated by Weissman and colleagues and shown to
be able to self-renewal and exhibit multi-potent differ-
entiation giving rise to all the blood lineages [51, 52].
Studies of human leukaemia using in vitro and in vivo
colony-formation assays demonstrated that only a
small subset of leukaemia cells possess extensive
proliferative capability [53, 54] suggesting that
leukaemia may actually be derived from a small
leukaemic stem cell (LSC) population. This concept
was further proved by the successful isolation of
myeloid leukaemia-initiating cells using cell surface
phenotype CD34+CD38_ and subsequent in vivo
transplantation into severe combined immune-defi-
cient (SCID) mice [2]. One intriguing question that
remained unanswered until very recently is whether
the LSCs are derived from normal HSCs or from their
downstream committed progenitor cells that regain
the self-renewal property. Using mouse genetics and
clinical studies, Weissman and colleagues demon-
strated that both mechanisms exist in leukaemia:
while chronic myeloid leukaemia can be derived from
LSC residing at the HSC stage [55], the more differ-
entiated progenitor – granulocyte-macrophage pro-
genitor (GMP) – can also gain LSC property during
the blast-crisis of myeloid leukaemia [56]. One com-
mon characteristic between stem cells and cancer is
the unlimited self-renewal capability. The hierarchical
organization and the cellular heterogeneity in the
haematopoietic systems, and lessons learned from
LSC have inspired later isolation of CSCs from solid
tumours [3], and will continue to provide theoretical
framework for investigating tumouregenesis.

Molecular profiling 

of brain cancer stem cells

Brain cancer is a highly heterogeneous disease con-
sisting of multiple tumour types affecting both chil-
dren and adults [57]. The most malignant form of
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brain cancer, glioblastoma multiforme (GBM), is
characterized by a diverse cellular phenotypic and
genetic heterogeneity which has been a significant
impediment to the development of effective targeted
medical therapies.Traditional treatment for GBM con-
sists of surgical resection to reduce the tumour mass
followed by radiation and chemotherapy selective for
highly-proliferating tumour cells. Despite continuous
refinement over the past three decades, these treat-
ments have not significantly impacted time to tumour
recurrence or long-term survival in GBM patients.
Given the low-proliferate rate of normal brain tissue,
it has long been hypothesized that brain cancer may
arise from neural stem or progenitor cells which were
thought to be more sensitive to oncogenic transfor-
mation [58]. Using neural stem cell culture tech-
niques, two different types of malignant brain
tumours were shown to possess sub-populations of
tumour cells with characteristic stem cell-like proper-
ties, such as self-renewal, potential for differentiation
and capacity to form neurospheres [59]. The cell (or
cells) of origin for these putative brain CSCs has not
been determined definitively, but evidence on this
subject is starting to accumulate. For example, a
number of groups have confirmed that brain tumours
contain a small fraction of cells that can be separat-
ed on the basis of the cell-surface marker CD133
and that have clonogenic potential as measured by
the neurosphere assay. In a key in vivo experiment, a
minority population of cells from brain tumours was
shown to be tumourigenic by implantation into
immuno-compromised mouse brain. In this model,
injection of as few as 100 CD133+ cells could gener-
ate tumours in vivo, whereas injecting of as many as
105 CD133– cells, which comprise the majority of the
GBM tumour cells, did not lead to any viable tumour
growth. Interestingly, CD133 had previously been
found to be a marker of HSC [60–62] and has now
been implicated in the identification of a number of
putative tumour stem cells from a variety of human
cancers, including leukaemia [63], prostate cancer
[64] and colon cancer [4]. At this point, evidence sup-
ports that the sub-population of tumourigenic brain
cancer cells is a subset of CD133+ cells as not all
CD133+ cells are tumourigenic [65]. Several labs are
currently refining molecular markers to refine tumour
stem cell identification and purification.

The paradigm that brain tumours possess a small
fraction of cancer-initiating tumour stem cells which
can reconstitute the tumour’s cellular and functional

hierarchy has important implications for treatment. To
further explore the potential differences in sub-popu-
lations of GBM cells, Lee et al. used high-throughput
genome-wide molecular profiling to characterize
GBM-derived tumour stem cells cultured in serum-
free conditions optimized to sustain neural stem cells
[66]. Genome-wide expression and genotyping stud-
ies revealed that these GBM-derived tumour stem
cells had extensive similarities to normal neural stem
cells and possessed the capacity to initiate brain
tumours in a xenograft mouse model. Significantly,
the genotype and phenotype of the mouse xenograft
brain tumours resulting from implantation of tumour
stem cells cultured in serum-free conditions matched
that of the parent human GBM tumours from which
they were derived. When GBM-derived tumour cell
lines were generated using standard serum-based
culture conditions not conducive to stem cell growth,
the resulting cells lacked the ability to initiate or prop-
agate tumours in the mouse xenograft model.
Genome-wide transcription analysis and genotyping
studies revealed significant differences between
these serum-cultured cell lines and their correspon-
ding parent GBM tumours and matched serum-free
cultured tumour stem cell lines. Of note, the serum-
cultured cell lines did manifest extensive similarities
to the most commonly utilized immortalized cancer
cell lines. These studies provided further evidence
that GBM has a distinct sub-population of tumour
cells with stem cell-like properties, and that it is these
cells that are biologically relevant in initiating and
sustaining tumour growth. Unfortunately, most pre-
clinical studies have historically been based on tar-
geting therapies to features identified in serum-cul-
tured immortalized cancer cell lines. This landmark
large-scale molecular profiling study raises signifi-
cant concerns about this approach and suggests the
use of serum-free cultured tumour-stem cells as a
more appropriate pre-clinical model [66].

There is great interest in identifying effective ther-
apies that can target the tumour-initiating and
tumour-maintaining sub-population of tumour stem
cells identified as CD 133+. Two recent studies used
molecular profiling to characterize the differential
response of CD133+ cells to therapeutic intervention
compared to CD 133– cells. After radiation treatment,
GBM tumours exhibited an increase in the fraction 
of CD133+ cells, more robust activation of DNA
repair pathways in CD 133+ than CD 133– cells, and 
more aggressive growth characteristics on serial
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transplantation [67].Pre-treatmentwith an inhibitor of cell-
cycle checkpoints CHK1/CHK2 sensitized CD 133+

cells to radiation, suggesting a role for heightened
DNA repair in the relative resistance of CD 133+

tumour stem cells to radiation-induced DNA damage.
CD133+ cells also retain the ability to differentiate
into more terminally-differentiated and less aggres-
sive cells, a feature lacking in CD133– cells. Bone
morphogenic protein (BMP), a potent differentiating
molecule, led to significant differentiation of CD133+

cells and decreased tumour growth in an in vivo
mouse model [68]. This suggests that the use of dif-
ferentiating agents may play an important role
against tumour stem cells which, which unlike CD
133– cells, retain important differentiation capacity –
presumably because different triggering leads to the
loss of neoplastic potential. Another area of fertile
discovery is the role of epigenetic regulation in the
control of stem cell maintenance, self-renewal and
differentiation. Transcriptional changes that result
from the pharmacological reversal of epigenetic gene
silencing, typically with either a histone deacetylase
inhibitor or a demethylating agent, allows for the
identification of epigenetically-regulated genes on a
genome-wide scale using molecular profiling tech-
niques [69, 70]. Recent large-scale genomic studies
have confirmed the importance of epigenetic gene
silencing in the biological behaviour of GBM, includ-
ing response to therapy [69, 71, 72]. Using a similar
approach, several investigators have identified key
genes which are epigenetically regulated during dif-
ferentiation in neural stem cells and have been impli-
cated in neoplasia [73–75]. Epigenetic modifications
make attractive therapeutic targets as they are read-
ily reversed and the underlying DNA sequence is not
altered. Taken together, these studies highlight the
importance of targeting therapies to the CD 133+

sub-population of cells which can exploit the tumour
stem cell properties and vulnerabilities important in
the effective therapeutic treatment of GBM.

The fraction of cells in a GBM tumour that express
CD133 has been observed to be as little as 1% in
low-grade tumours and as high as 30% for high-
grade glioblastoma. However, in any particular grade,
such as glioblastoma, there is high variability in this
fraction [65]. Interestingly, time to progression and
overall survival are not greatly affected by extent of
resection in GBM patients. Despite the removal of the
bulk tumour, consisting mostly of CD133– cells, the
tumour recurs within 1 year on average.Thus, it is not

yet clear whether the fraction of CD133+ cells in the
bulk tumour will prove to be useful as a prognostic
marker. It could be that the important neoplastic-
associated stem cells constitute only a small fraction
of the total CD133+ cells. Assuming that CD133+

cells (or a sub-fraction) are the biologically active
tumour stem cells responsible for tumour recurrence,
identifying and targeting the location of these cells in
vivo, within the tumour or in the surrounding brain
after tumour resection, will be of great importance. A
recent study indicates that tumour stem cells exist in
the ‘perivascular niche’, and that endothelial cells
potentiate the tumour stem cells capacity to initiate
and maintain tumour growth [76]. Application of
inhibitors of endothelial cells significantly depleted
tumour blood vessels resulting in a dramatic reduc-
tion of tumour stem cells but not CD 133– cells in the
bulk tumour. This suggests that targeting the unique
vulnerabilities of tumour stem cell populations should
include further characterization of the micro-environ-
ment that support and sustains tumour stem cell self-
renewal and differentiation. Large-scale molecular
profiling of purified sub-populations of tumour cells
from GBM will play a critical role in further defining
these molecular targets [77].

Molecular profiling 

of breast cancer stem cells 

CSCs have also been identified and characterized for
breast tumours, a much more common malignancy
than brain tumours. Breast cancer tumours contain a
sub-population of highly tumourigenic cells character-
ized by CD44 expression and no or low CD24
expression (CD44+CD24–/low), as demonstrated by
their distinguishing capability to generate tumours in
immunodeficient mice [3]. These CD44+CD24–/low cells
have also been demonstrated to have the capacity to
give rise to the various cell types characteristic of the
bulk tumour. As with CD133+ cells in brain tumours, the
CD44+CD24–/low cells in breast tumours contain the
population of CSCs, but may not uniquely identify them.
Indeed, additional cell-surface markers may further dis-
tinguish the tumourigenic breast cell population. For
example, it has been shown that among
CD44+CD24–/low cells, those that were also ESA+ had
enriched tumour generating potential compared with
those that were ESA–. Thus, one hypothesis would be
that ESA+CD44+CD24–/low cells may represent a purer
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population of a subset of the CSCs [3]. This interesting
question for all different tumour stems cells is the extent
to which neoplastic stem cell population may be purified
by additional cell-surface markers. Also of interest is
that CD44+CD24–/low cells generate additional
CD44+CD24–/low cells as well as phenotypically distinct
cells, providing evidence that breast CSCs have the
hallmark stem cell characteristics of self-renewal and
the capacity to generate heterogeneous populations.

It has been shown that these tumourigenic breast
cancer cells can propagate in culture and maintain
properties of normal human mammary gland
stem/progenitor cells that have the distinct ability to
grow in selective culture conditions as non-adherent
spherical clusters of cells [78, 79]. Most importantly,
after in vitro culturing these cells were found to
remain CD44+CD24–/low and maintain their ability to
generate tumours in immunodeficient mice with as
few as 1000 injected cells [78, 79]. Thus, there is
strong evidence that breast CSCs have indeed been
isolated and can even be propagated in culture while
maintaining their cancer stem cell characteristics.

Machine-learning from global gene expression data
has been used to identify a gene signature from
tumourigenic breast-cancer cells that is associated
with both overall and metastasis-free survival in
patients with breast cancer [24]. This signature was
found through comparing the gene-expression profiles
of the CD44+CD24–/low breast CSCs, which demon-
strate enriched invasiveness [80], with normal breast
epithelium. The differentially expressed genes
between these two groups were then used to generate
a 186-gene signature for ‘invasiveness’ that showed a
significant association with overall and metastasis-free
survival of patients with breast cancer [24]. This 
invasiveness signature was then also shown to be
associated with prognosis in other cancers, including
medulloblastoma, lung cancer and prostate cancer,
demonstrating the general features at the gene
expression level of invasiveness. It will be interesting
to convert these tumourigenic gene signatures into
their corresponding biological networks so as to begin to
understand the unique and shared features of CSCs.

Emerging technologies 

for proteome characterization 

While transcriptomic approaches have proven useful
for identifying informative molecular signatures for

cancers and CSCs, proteomic characterizations
have lagged behind. The reason for this is clearly the
more difficult challenge of measuring proteins com-
pared to transcripts. Emerging proteomics technolo-
gies hold the promise of greatly improving our ability
to make detailed assessments of protein-based
molecular signatures, similar to those that have had
success thus far for gene expression. One key
advantage of protein signatures relative to gene
expression is that proteins can be found in the blood
and other accessible bodily fluids more readily due to
slower degradation rates than their mRNA counter-
parts. Thus, protein signatures represent an impor-
tant class of molecular signature for disease diagnosis.
For CSCs, these approaches will help to elucidate
the differences between the proteome of CSCs 
relative to their non-tumourigenic counterparts.
Ultimately, the reconstruction of protein and gene
regulatory networks of CSCs holds the promise of
rationally-designed therapeutics for personalized
medicine by allowing the therapeutic chosen to be
governed by informative molecular signatures meas-
ured from each patient at the time of diagnosis. A few
promising proteomics technologies are described
below (Fig. 1).

Isobaric tagging for relative and

absolute quantitation (iTRAQ)

Stable isotope labelling enables the quantitative
analysis of protein concentrations through mass
spectrometry (MS). One state-of-the-art technique
for quantitative MS is iTRAQ [81], which uses stable
isotope labelling of proteolytic peptides. This tech-
nique modifies primary amino acid groups of pep-
tides by linking a mass balance group (carbonyl
group), and a reporter group (based on N-
methylpiperazine) by forming an amide bond. The
iTRAQ reagents are designed to be isobaric, which
enables differentially labelled peptides to appear as
single peaks in MS, which is important for reducing
peak overlapping in the MS scans. When MS/MS is
used for analysis with iTRAQ-tagged peptides, the
mass balancing carbonyl moiety is released as a
neutral fragment, thereby liberating isotope-encoded
reporter ions that provide relative quantitative infor-
mation on protein abundance. Because four different
iTRAQ reagents are currently available, comparative
analysis of a set of two to four samples is feasible
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within a single MS run [82]. The, iTRAQ technology
represents the state-of-the-art in quantitative pro-
teomics and represents a promising technology for
using proteomics to differentiate key differences in
protein networks of CSCs from normal stem cells or
other cells in the tumour.

Glyco-peptide capture 

MS-based methods will allow for the identification of
proteins spanning approximately three orders of mag-
nitude in concentration from a given sample.
Therefore, methods that can select specified fractions
of the proteome are important for simplifying the sam-
ple sufficiently to identify the proteins of interest. One
recently developed approach is the shotgun glyco-

peptides capture approach [83]. This approach
selects for N-linked or O-linked glycosylated peptides,
which are enriched for secreted proteins and cell-sur-
face markers. Thus, this approach could be used to
identify candidates for unique cell-surface markers for
CSCs that differ from the bulk tumour by comparing
the glyco-captured proteomes from both sample sets.

Antibody microarrays using surface

plasmon resonance imagining (SPRI)

Protein chip methods hold potential for broad quanti-
tative screens of proteins, and a variety of techniques
have been developed based on antibody binding
[84–86]. Antibody microarrays have been used for
biomarker discovery and protein profiling of serum
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from patients with prostate, lung, pancreas and blad-
der cancer [87–90]. One emerging approach with
tremendous promise is SPRI [82, 91, 92], which
enables real-time, label-free measurement of protein
expression. SPR-based chips have a detection sen-
sitivity of 10–100 times less than ELISA [82], but
have a spatial resolution down to approximately 4 µm
[93]. It is thus possible to print up to 800 unique anti-
bodies on Lumera Nanocapture GoldTM microarray
slides and monitor the abundance of the target pro-
teins in real time [82]. Because the same slide can be
regenerated for reuse many times (Z. Hu, C. Lausted,
unpublished observations), this means that the
approach has the capacity necessary to screen
through hundreds of patient samples. Thus, this
approach holds tremendous promise in the case of
CSCs to be able to screen through large numbers of
proteins, including secreted proteins and cell-surface
markers and not only measure their presence, but
also abundance and the dynamics of their binding.
The limitation of this technique is its dependence on
the affinity and specificity of the antibodies it employs
for detection – cross re-activities in complex protein
mixtures (like blood) can pose significant problems.

DNA-encoded antibody libraries (DEAL)

One recently developed technique that offers great
potential for analyses of CSCs is DEAL, which enables
cell localization and single-cell measurements of pro-
tein, RNA, and single-stranded DNA simultaneously on
a single chip [94]. DEAL is a highly sensitive measure-
ment technique, with a reported detection limit of 10 fM
for the protein IL-2-150 times more sensitive than
ELISA.This sensitivity can be applied to the isolation of
rare cells based on combinations of cell-surface mark-
ers, enabling the isolation and addressing of individual
CSCs. DEAL can also be used to make single cell
measurements of secreted proteins from each of these
isolated single cells.Thus, DEAL offers superb sensitiv-
ity and the ability to perform spatially multiplexed detec-
tion for characterization of CSCs.

Biomolecular networks in cancer

Systems approaches to cancer [95–99] require not
only the identification of the key components of a

system through global analyses, but also information
about how these components interact in biological
networks. Network models of multiple types have
been applied to cancer systems. The most commonly
applied to cancer are interaction networks, including
protein–protein interaction networks, protein-DNA
interaction networks and so forth. Gene expression
data can be used to identify differentially expressed
genes in which can then be visualized on interaction
networks, as has been done for lung cancer [100].
Various properties of these networks have been
studied [99], with reported findings including, for
example, the enrichment of cancer-related genes
among the ‘hubs’ of the networks. While these inter-
action networks are very useful tools for visualizing
large data sets, they are not computable, predictive
network models, which are those that hold the most
promise for predictive medicine and drug develop-
ment. Predictive models stemming from mathemati-
cal descriptions of biochemical reaction networks
and statistical influence models should prove highly
useful [101].

Another area of network modelling that should
prove very beneficial in research of cancer and
CSCs is that of metabolic networks. Key metabolic
differences have been shown to exist in cancers
which can be exploited using Positron Emission
Tomography (PET) to do in vivo imaging of tumours
[102] and even to predict treatment response [103,
104]. If key metabolic differences can be found
between CSCs and the rest of the tumour, such
approaches could potentially even be used to identi-
fy the location of cancer stem cell populations in vivo.
One enabling resource for large-scale quantitative
modelling of metabolic networks in cancer is the
recent stoichiometric reconstruction of known human
metabolism at the genome-scale [105]. With this
global reconstruction, gene expression and other
data can be used to create initial models of the
genome-scale metabolic networks of a variety of
human cell types, including for CSCs. These bio-
chemical reaction networks can be used to make
numerous quantitative simulations that have been
shown previously to match well with experimental
data in model organisms [106]. These successes
with model organisms have also been extended to
models of simple human systems such as the ery-
throcyte [107, 108] and mitochondria [109], with the
global metabolic reconstruction poised to allow for
larger human metabolic networks to now be modelled.
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These studies may well provide insights into the
unique metabolic features of cancer cells – allowing
one to identify both metabolic features that are
shared among cancer cells and features that are
unique to individual types of cancer.

More detailed dynamic models of specific bio-
chemical networks in cancer have been made for
important signalling networks in cancer, leading to
insightful biological observations for, among many
others, the NF-�B signalling network [110–112]. As
isolated cancer stem cell populations become better
characterized, it will be possible to model these sys-
tems to identify differences in their regulation in CSCs
and further identify possible therapeutic targets.
Dynamic simulations of large-scale signalling net-
works in cancer cells has also been performed [113].

Large amounts of high-throughput data (i.e. tran-
scriptomes) can also be used to infer networks that
can explain statistical dependencies seen in the
data, indicate candidate novel interacting partners,
and quantitatively predict the gene expression result-
ing from knockouts or environmental perturbation.
For model systems, such approaches are now being
successfully applied at the genome-scale for gene-
regulatory networks [114, 115]. Such approaches are
now also being applied to mammalian systems as
was done for normal and cancerous B cells with the
development of an algorithm called Reconstruction
of Accurate Cellular Networks (ARACNe) [116]. As
cancer stem cell populations are profiled extensively,
these same approaches will be useful to identify pre-
dictive networks for CSCs. Comparing these net-
works to those in normal stem cells and other tumour
cells should prove highly informative for identifying
drug targets unique to the cancer stem cell popula-
tion of interest. By generating networks of CSCs in
particular and comparing them with networks of nor-
mal stem/progenitor cells we should be able to great-
ly enhance our understanding of what could lead to
these cells becoming cancerous.

Computational modelling and systems approach-
es will be key to catalyzing the future of drug discov-
ery [117, 118], and drug discovery focused specifi-
cally on CSCs offers tremendous promise for
advancing cancer therapies. Thus, computational
modelling of cancer stem cell networks to identify
potential therapeutic targets and to predict the effect
of drug-induced perturbations is critical to this field
moving forward.

Perspective and 

concluding remarks 

The identification and prospective isolation of CSCs
from leukaemia and a number of solid tumours has
spawned a new paradigm in cancer research. From
the perspective of systems biology – with the goal of
predictive, preventive, personalized, and participato-
ry (P4) medicine – we envision increasingly global
assessment of CSCs and their microenvironments
(niche) at the level of complete transcriptome, pro-
teome and epigenome, using empowering new high-
throughput technologies. The resulting gene expres-
sion profile signatures of cancer stem cell would
serve as more accurate indicatives for cancer diag-
nosis and prognosis. Emerging proteomic technolo-
gies employing MS and protein chip platforms would
allow for identification of better cell-surface markers
and their interaction with the resident stem cell niche
and potential diagnostic markers from both body flu-
ids and tumour tissues. Incorporating these data into
biological networks will provide fundament insights
into the biology of CSCs and their abilities for renew-
al and differentiation. These combined efforts will ulti-
mately lead to new therapeutic strategy specifically
targeting CSCs for unprecedented personalized can-
cer therapy.
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