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Background. Glioma is the most common primary brain tumor with high mortality and poor outcomes. As a hallmark of cancers,
inflammatory responses are crucial for their progression. The present study is aimed at exploring the prognostic value of
inflammatory response-related genes (IRRGs) and constructing a prognostic IRRG signature for gliomas. Materials and
Methods. We investigated the relationship between IRRGs and gliomas by integrating the transcriptomic data for gliomas from
public databases. Differentially expressed IRRGs (DE-IRRGs) were identified in the GSE4290 cohort. Further, univariate, least
absolute shrinkage and selection operator, and multivariate Cox regression analyses were conducted to construct an IRRG
signature using The Cancer Genome Atlas (TCGA) cohort. Gliomas from the Chinese Glioma Genome Atlas (CGGA) cohort
were employed for independent validation. The performance of gene signature was assessed by survival and receiver operating
characteristic curve analyses. The differences in clinical correlations, immune infiltrate types, immunotherapeutic response
predictions, and pathway enrichment among subgroups were investigated via bioinformatic algorithms. Results. In total, 37
DE-IRRGs were determined, of which 31 were found to be associated with survival. Ultimately, eight genes were retained to
construct an IRRG signature that further classified glioma patients into two groups; the high-risk group suffered a poorer
outcome as compared to the low-risk group. Furthermore, the high-risk group was significantly correlated with several risk
factors, including older age, higher tumor grade, IDH wild type, 1p19q noncodel, and MGMT unmethylation. The nomogram
was constructed by integrating the risk scores and other independent clinical characteristics. Moreover, the high-risk group
had a greater immune infiltration and was most likely to benefit from immunotherapy. Gene set enrichment analysis suggested
that immune and oncogenic pathways were enriched in high-risk glioma patients. Conclusion. We constructed a signature
composed of eight IRRGs for gliomas, which could effectively predict survival and guide decision-making for treatment.

1. Introduction

Gliomas are the most prevalent type of primary intracranial
tumors, representing 80% of all brain neoplasms [1]. Globally,
approximately 1,000,000 new patients are diagnosed with gli-
omas, annually [2]. Although gliomas constitute less than
2% of all new cases of diagnosed cancers, these are often asso-
ciated with substantial mortality rates in patients [3]. Accord-
ing to the World Health Organization (WHO) classification,
2021, gliomas are categorized into lower-grade glioma (LGG,
grade 2-3) and glioblastoma (GBM, grade 4) [4, 5]. Despite

recent advances in treatment options, including surgery, post-
operative radiotherapy, and chemotherapy, the prognoses for
gliomas remain poor. Themedian survival time for GBM is less
than 15 months due to the extensive intracranial invasion and
aggressiveness [6, 7]. In contrast, the patients with LGG exhibit
relatively favorable prognoses, up to a median survival time of
approximately 7 years [8]. Unfortunately, the cases of LGG
inevitably progress to higher grades and develop resistance
against the treatment [9]. Although current molecular markers,
for example, dehydrogenase (IDH)mutations and 1p/19q code-
letion, have been used for molecular pathological diagnoses,
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clinical treatment, and prognostic evaluation [10, 11], several
researchers have tried developing therapeutic strategies by tar-
geting these markers, only a few advances have been made to
date in clinical practice [12]. Therefore, it is necessary to identify
novel biomarkers for effectively predicting clinical prognoses
and therapeutic responses in glioma.

Inflammatory responses have been recognized as the hall-
marks of cancer [13]. Studies have confirmed that inflamma-
tion plays an integral role in tumor initiation, angiogenesis,
and metastases [13, 14]. An estimated 15–20% of all cancer-
related deaths, worldwide, are attributed to the potential infec-
tions and inflammatory responses [14, 15]. The persistent
noncontrollable local and systemic inflammatory responses
induced by tissue damage may mediate the initiation and
development of cancers [16]. In the recent decade, an increas-
ing number of studies on the intersection between inflamma-
tion and cancer pathogenesis show that immune cells,
especially those involved in innate immune responses, play
key roles in the progression of multiple cancers [13, 17].
Indeed, inflammation is present at earlier stages of tumor
growth, even before the detection of malignancy, resulting in
the development of a microenvironment facilitating precan-
cerous lesions to result in cancer [13, 14, 18]. In addition, pre-
vious studies report that inflammation can accelerate the
development of heightened malignancy by inducing the activ-
ities of the nearby cancerous cells due to the release of cyto-
kines and overproduction of reactive oxygen species [19, 20].
Mostofa et al. report that multiple inflammatory mediators
including cytokines, cyclooxygenases, STAT3, NF-κB, and
oxidative stress are closely associated with glioma progression
[21]. However, the knowledge on the relationships between
inflammatory response-related genes (IRRGs) and the out-
comes in patients with glioma is limited.

To examine and annotate the integrative functions of
IRRGs in gliomas, RNA-sequencing data and clinical informa-
tion were extracted from public databases. Differentially
expressed IRRGs (DE-IRRGs) between normal and glioma tis-
sues were identified using the Gene Expression Omnibus
(GEO) database. Next, we constructed a prognostic IRRG sig-
nature to predict clinical outcomes of glioma using the data
from The Cancer Genome Atlas (TCGA). The performance
of the signature was further validated using an independent
cohort from the Chinese Glioma Genome Atlas (CGGA) data-
base. Moreover, analyses of clinical correlation, immune infil-
trates, immunotherapeutic response prediction, and pathway
enrichment were further performed. In summary, we con-
structed a prognostic signature based on IRRGs to predict prog-
noses in gliomas, and the findings may provide a reliable
foundation for prognostic assessment and the development of
personalized targeted treatment strategies.

2. Materials and Methods

2.1. Data Sources. A total of 200 IRRGs were identified in the
Molecular Signatures (MSigDB) database (http://www.gsea-
msigdb.org/gsea/msigdb) [22, 23]. The microarray GSE4290
cohort for differential gene analysis by Sun et al. [24] was down-
loaded from the GEO database (https://www.ncbi.nlm.nih.gov/
), comprising 23 normal brain and 176 glioma tissues. To obtain

deeper insights, a whole-genome microarray analysis was per-
formed for the total cellular RNA using the Affymetrix Human
Genome U133 Plus 2.0 Array. Using the “limma” R package
[25], differentially expressed genes (DEGs) between normal
and tumor tissues were identified with false discovery rate ð
FDRÞ < 0:05 and a ∣log2 fold change ðFCÞ ∣ >1. Venn diagrams
for the commonly sharedDE-IRRGs between IRRGs andDEGs
were drawn using VennDiagram. A protein-protein interaction
(PPI) network was generated using the STRING database
(https://string-db.org/) [26]. Correlation analysis was used to
assess the relationship among these genes in R. Gene Ontology
(GO) and Reactome pathway enrichment analyses were utilized
to annotate biological processes, cellular components, molecu-
lar functions, and the underlying pathways using WebGestalt
(http://www.webgestalt.org/) [27]. Furthermore, we down-
loaded the RNA-sequencing expression profiles and corre-
sponding clinical data from two databases, including the LGG
and GBM cohorts from TCGA database (https://portal.gdc
.cancer.gov/) and the two Chinese cohorts (the 693 and 325
cohorts) from the CGGA database (http://www.cgga.org.cn/).
The samples with missing clinical information were filtered
out. In total, 1471 glioma and 23 normal brain samples were
acquired. The detailed clinicopathological features of glioma
are summarized in Table 1.

2.2. Construction and Validation of a Prognostic IRRG
Signature. The data from TCGA were utilized to construct
the prognostic signature, and the data from the CGGA
cohorts were used for validation. First, the univariate Cox
regression analysis was performed to detect the prognostic
DE-IRRGs based on TCGA data. Only the overall survival-
(OS-) associated genes (P < 0:05) were further analyzed.
Subsequently, the least absolute shrinkage and selection
operator (LASSO) regression analysis was used to obtain
an optimal predictive model by minimizing the risk of over-
fitting [28]. Finally, a prognostic signature was constructed
using the coefficients derived from multivariate Cox regres-
sion analysis, using the following formula: risk score =∑n

i=1C
oefficientðiÞ × ExpressionðiÞ, where CoefficientðiÞ represents
the regression coefficient for each gene and ExpressionðiÞ rep-
resents the gene expression level. This formula was used for
calculating risk scores for each patient in both TCGA and
ICGC cohorts. Principal component analysis (PCA) was used
to identify the distribution of different groups. The survival
curves were analyzed using the Kaplan–Meier method, and
log-rank tests were used to assess the significance. Moreover,
the receiver operating characteristics (ROC) curves were eval-
uated to validate the accuracy of the signature. The signature
was also validated in the CGGA dataset.

2.3. GEPIA, cBioPortal, and DiseaseMeth Databases. Gene
Expression Profiling Interactive Analysis (GEPIA, http://
gepia.cancer-pku.cn/) database is a webserver to analyze
the expression data from RNA sequencing through the stan-
dard analysis pipeline [29]. Using this database, we verified
the prognostic significance of genes constituting the IRRG
signature.

The cBio Cancer Genomics Portal database (cBioPortal
database) (http://cbioportal.org) comprises the data of
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more than 5000 tumor tissues, thereby enabling multilevel
analyses for multiple tumors [30]. Mutation data and copy
number variants of these genes were retrieved from this
database. Mutation data and copy number variants of
these genes were retrieved using this database.

Human Disease Methylation Database Version 2.0 (Dis-
easeMeth2.0, http://bio-bigdata.hrbmu.edu.cn/diseasemeth/
), a human disease methylation database, is used to analyze
the DNA methylation level in several diseases [31]. The dif-
ferences in DNA methylation between normal and glioma
tissues were compared as described previously.

2.4. Survival and Clinical Correlation Analysis of the IRRG
Signature. The stratified survival analyses for gliomas were
performed using clinical characteristics, including age, gen-

der, grade, IDH, radiotherapy, chemotherapy, 1p19q, and
MGMT. The survival outcomes in two groups were
described for all patients stratified in groups through the
Kaplan–Meier curves. The relationships between clinical
characteristics and risk score were analyzed both in TCGA
and CGGA cohorts.

2.5. Nomogram Construction. Univariate and multivariate
Cox proportional hazard regression analyses were employed
to identify the independent prognostic values of the signa-
ture as well as other clinicopathological factors. We con-
structed a nomogram to estimate survival probabilities
using the independent prognostic indicators from TCGA
database based on Cox proportional hazard regression
models [32]. The nomogram was constructed using the

Table 1: Clinicopathological characteristics of glioma patients included in this study.

Variables TCGA cohort CGGA cohort GSE4290

Age

≤45 328 370 —

>45 337 260

Gender

Male 383 373

Female 282 257 —

Tissue

Normal 0 0 23

Tumor 665 630 176

Grade

2 245 222 12

3 261 189 31

4 159 219 77

IDH

Wild 34 282 —

Mutation 91 310 —

N/A 540 38 —

1p/19q

Codel — 135 —

Noncodel — 432 —

N/A — 63 —

MGMT

Methylated — 288 —

Unmethylated — 257 —

N/A — 85 —

Radiotherapy

Yes 143 503 —

No 118 111 —

N/A 404 16 —

Chemotherapy

Yes 403 408 —

No 262 199 —

N/A — 23 —

Abbreviations: TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; IDH: isocitrate dehydrogenase; MGMT: O6-methylguanine-DNA-
methyltransferase; N/A: not available.
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“rms” package in R [33]. The calibration curve was plotted
to evaluate the performance of the nomogram. ROC curve
analysis was used to assess the discriminative performance
of the nomogram.

2.6. Single-Sample Gene Set Enrichment Analysis (ssGSEA)
and Immune Response Analysis. To examine the differences
in immune cell infiltrations and functions of our signature,
29 immune infiltration-associated gene sets were obtained
from Bindea et al. [34]. Next, we performed ssGSEA to cal-
culate the scores for every gene set in each patient using the
“GSVA” R package [35]. The tumor purity, immune, stro-
mal, and ESTIMATE scores for each glioma sample were
calculated using the “Estimate” R package as described pre-
viously [36]. The above microenvironment compositional
parameters were compared between the high- and low-risk
groups. In addition, the relationship between the risk score
and expression of the immune checkpoints was investigated
by Spearman’s correlation analysis. In this study, the immu-
nophenoscore (IPS) was used to evaluate the responses to
anti-CTLA4 and anti-PD1 treatment regimens using The
Cancer Immunome Atlas (TCIA, https://tcia.at/) data-
base [37].

2.7. Protein Network Construction and Gene Set Enrichment
Analyses (GSEA). GeneMANIA is a flexible interactive web
server for performing network analysis for protein-protein
interactions (PPIs) and predicting the functions of preferred
genes [38]. In the present study, we used this web tool to
generate and analyze the interactions among these eight
genes and identify other potential binding partners (at
default set value of 20) in the regulatory network. GO and
KEGG analyses were used to annotate the putatively affected
pathways.

To further elucidate the potential mechanisms
underlying the IRRG signature-suggested poor outcomes in
gliomas, GSEA was performed using the GSEA software
[39]. The reference gene sets (c5.go.bp.v7.2.symbols.gmt,
c2.cp.kegg.v7.1.symbols.gmt, and h.all.v7.4.symbols.gmt)
were obtained from the MSigDB database [23]. The
significant enrichments were calculated and filtered with P
< 0:05 and FDR < 0:05 as the threshold.

2.8. Statistical Analysis. The variables were compared using
Student’s t-test, chi-square test, the Wilcoxon rank-sum test,
and the Mann–Whitney U test, as appropriate. The log-rank
test was performed for estimating the significance of the
Kaplan–Meier analysis. P < 0:05 was considered statistically
significant. All statistical analyses were performed using R.

3. Results

3.1. Identification of Prognostic DE-IRRGs. The workflow of
this study is shown in Supplemental Figure 1. We
compared the differences in gene expressions between 23
normal brain tissues and 176 glioma tissues in the
GSE4290 cohort. According to the criteria, FDR < 0:05 and
∣log2FC ∣ >1:0, a total of 2216 DEGs were identified,
including 826 upregulated and 1390 downregulated genes
in glioma samples from GSE4290 (Figure 1(a)). In

addition, MSigDB an online database was used to identify
200 IRRGs. The Venn diagram, as shown in Figure 1(b),
represents the 37 commonly shared DE-IRRGs between
DEGs and IRRGs. The expression levels of 37 DE-IRRGs
were visualized using a heat map (Figure 1(c)). The PPI
network of these genes was constructed using the STRING
database (Figure 1(d)). A significant correlation between
the majority of the DE-IRRGs was obtained using
Pearson’s correlation matrix (Figure 1(e)). Out of the 37
DE-IRRGs, a total of 31 prognostic genes were screened by
univariate Cox regression in TCGA cohort (Figure 1(f)).
GO analysis was performed to annotate these genes, and
the results of Reactome enrichment analysis showed that
these 31 genes were significantly related to the diseases of
the immune system and those associated with the TLR
signaling cascade (Supplemental Figure 2).

3.2. Construction of a Prognostic IRRG Signature in TCGA
Cohort. To construct an IRRG-based prognostic signature
to predict the risk of gliomas, the 31 prognostic DE-IRRGs
were further analyzed. First, we conducted a LASSO regres-
sion analysis for these 31 genes to avoid overfitting for the
risk signature. As a result, 11 candidate genes were retained
for the subsequent analysis (Figures 1(g) and 1(h)). Next,
multivariate Cox regression analysis was performed for these
candidates. Eventually, a total of 8 target genes (GNAI,
EMP3, PCDH7, CALCRL, TIMP1, ITGA5, NMI, and
NFKBIA) and their coefficients were employed to construct
the predictive signature (Table 2). The IRRG signature was
computed as described: risk score = GNAI ∗ 0:1132 + EMP3
∗ 0:0086 – PCDH7 ∗ 0:1125 – CALCRL ∗ 0:0212 + TIMP1
∗ 0:0008 + ITGA5 ∗ 0:2136 + NMI ∗ 0:0504 –NFKBIA ∗
0:0126. The forest map showed that GNAI, EMP3, TIMP1,
ITGA5, and NMI were the risk factors, while PCDH7,
CALCRL, and NFKBIA showed opposite trends
(Figure 1(i)). In addition, we examined the influence of these
8 target genes on the prognoses of gliomas using the GEPIA
website. High GNAI, EMP3, TIMP1, ITGA5, and NMI while
low PCDH7, CALCRL, and NFKBIA expressions could lead
to poor prognoses in glioma patients. These results were in
line with our previous results (Supplemental Figure 3).
Subsequently, we also utilized the information from 15
diverse glioma datasets to investigate the mutational
landscape of these 8 genes. The results showed that EMP3
and ITGA5 were most commonly genomically altered
(Supplemental Figure 4) and may be involved in glioma
progression. Considering the effects of methylation
associated with gene expressions in glioma, especially the
IDH1 status, we evaluated the methylation levels of these
signature-related genes using the DiseaseMeth2.0 database.
The results showed that the methylation levels of ITGA5 (a
risk gene) were lower in both LGG and GBM tissues
relative to the normal tissues (Supplementary Table 1).

The risk scores of individual patient were computed with
the above formula. The glioma samples were assigned into
high- and low-risk groups with the median risk score value
(0.685) of TCGA cohort. Kaplan–Meier plots indicated that
patients with high-risk score suffered a markedly worse OS
than patients who have low-risk score (Figure 2(a)). The
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result of PCA showed that patients in low- and high-risk
groups were divided in diverse directions (Figure 2(b)).
Time-dependent ROC curve analyses were performed to
assess the performance of IRRG signature for the prognostic
prediction of patients with glioma. The areas under the
curve (AUC) of ROC were 0.88, 0.89, and 0.88 at 1, 3, and
5 years, respectively (Figure 2(c)). The distribution of sur-
vival status is shown in Figure 2(d). In addition, the scatter
plot demonstrated that the mortality rates in the high-risk
group were higher (Figure 2(e)). The heat map suggested
that GNAI, EMP3, TIMP1, ITGA5, and NMI exhibited high
expression levels, whereas PCDH7, CALCRL, and NFKBIA
show low levels of expression (Figure 2(f)).

3.3. Evaluation of the IRRG Signature Using the CGGA
Validation Cohort. Next, we investigated the feasibility of
using the IRRG signature for predicting outcomes using

the CGGA cohort. These patients were also sorted into
low- or high-risk groups according to the median risk score
calculated using the formula described above. Similarly,
Kaplan–Meier curves indicated the patients at high risk
showed an obviously worse survival than their low-risk
counterparts (Figure 3(a)). PCA revealed a complete separa-
tion between two groups (Figure 3(b)). Moreover, the AUCs
were 0.79, 0.85, and 0.84 at 1, 3, and 5 years, respectively
(Figure 3(c)). The risk plot for CGGA comprising the risk
score ranking, survival status according to the gliomas, and
the gene expression heat map is illustrated in Figures 3(d)–
3(f). The results obtained in the CGGA cohort followed
the trends observed in TCGA cohort.

It was relevant to show more prognostic abilities of the
eight-gene signature in GBM. Therefore, we further analyzed
the Kaplan–Meier and ROC curves of GBM patients in both
TCGA and CGGA datasets. The Kaplan–Meier survival
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Figure 1: Identification of target genes and construction of an IRRG signature. (a) Volcano plot for differentially expressed genes (DEGs)
between 23 normal brain tissues and 176 glioma tissues in the GSE4290 cohort. (b) Venn diagram depicting the intersection (n = 37) of
DEGs and inflammatory response-related genes (IRRGs). (c) The expression profiles of 37 differentially expressed IRRGs (DE-IRRGs).
(d) Protein-protein interaction (PPI) network showing the interactions among 37 DE-IRRGs genes. (e) The correlation network of 37
DE-IRRGs genes by Spearman analysis. (f) Univariate Cox regression analysis to determine 31 prognostic DE-IRRGs (P < 0:05) in
TCGA cohort. (g) LASSO regression analysis for further screening out the 11 candidate genes. (h) Illustration of the LASSO coefficient
spectrum for the 11 candidate genes. (i) Multivariate Cox regression analysis identifies 8 target genes. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P <
0:001.
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curves for TCGA-GBM and CGGA-GBM samples demon-
strated significant survival differences between the low-
and high-risk groups based on the best optimal cutoff value
from the log-rank test (Supplemental Figures 5(a) and 5(b)).
As shown, the AUC values at 5 years for the TCGA-GBM
and CGGA-GBM samples were 0.57 and 0.66, respectively
(Supplemental Figures 5(c) and 5(d)). The above results
further validated the stability of the IRRG signature.

With the development of sequencing technology, many
glioma cancer prognostic gene signatures have been recently
published. We compared our signature with those reported
in five previously published studies by performing a ROC
analysis. As shown in Supplemental Figure 6, the AUC of
our signature for determining the 5-year OS was higher as
compared to the five other reports in both TCGA and
CGGA datasets, which implied that our signature has
better performance for predicting prognoses. Taken
together, our results confirmed that the IRRG signature
showed a more accurate and stable evaluation of prognoses
for patients with glioma.

3.4. Relationship of the IRRG Signature with Survival
Prognosis and Clinical Features. To investigate a potential
prognostic value of the IRRG signature in stratified cohorts,
glioma patients were divided according to their age (≤45 or
>45), gender (female or male), grade (WHO 2, 3, or 4),
IDH (mutation or wild type), radiotherapy (no or yes), che-
motherapy (no or yes), 1p19q (codel or noncodel), and
MGMT (methylated or unmethylated) status. In TCGA
dataset, the Kaplan–Meier curves suggested that the high-
risk group showed shorter OS relative to the low-risk group
in all stratified subgroups, except for the IDH mutation sub-
group (Figures 4(a)–4(f)). Surprisingly, all gliomas of grade
4 belonged to the high-risk group. Similar findings were
noticed in the CGGA database for all stratified subgroups,
including the radiotherapy and chemotherapy subgroups
(Figure 5(a)–5(h)). These results demonstrated that classifi-
cations using the IRRG signature could precisely determine
patients with poor survival regardless of their clinical
parameters.

By investigating the associations between the IRRG sig-
nature and various clinical features of gliomas, we found sig-
nificant positive associations of the risk score with age
(Figures 6(a) and 6(g)) and grade (Figures 6(c) and 6(i)) both
in TCGA and CGGA cohorts. Next, we observed that the

high-risk group was significantly associated with IDH wild type
(Figures 6(d) and 6(j)) and chemotherapy (Figures 6(f) and
6(l)) in the two cohorts and were the poor prognostic factor
for gliomas. In addition, the risk score was significantly higher
in 1p19q noncodel (Figure 6(m)) and MGMT unmethylated
(Figure 6(n)) subgroups in the CGGA database. The differences
in risk scores between the with and without radiotherapy sub-
groups were evident in TCGA (Figure 6(e)) but not in the
CGGA dataset (Figure 6(k)). No differences were found based
on the gender in the two datasets (Figures 6(b) and 6(h)).

3.5. Construction and Evaluation of the Nomogram. To iden-
tify the independence of the IRRG signature, we per-
formed a Cox analysis for the signature both in TCGA
and CGGA cohorts. In TCGA cohort, the results from
the univariate Cox analysis showed that age, grade, che-
motherapy status, and risk score were closely related to
the OS (all P < 0:05) (Figure 7(a)). These factors were then
included in multivariate Cox analysis, and the results dem-
onstrated that age, grade, and risk were independent prog-
nostic parameters for gliomas (Figure 7(b)). Analogous
results were obtained in the CGGA cohort (Supplemental
Figure 7). In TCGA dataset, based on the weight of each
selected independent prognostic clinical variable in the
Cox regression analysis (Supplementary Table 2), a
prognostic nomogram was constructed to offer a
quantitative approach for clinicians to estimate the
survival rates for patients with gliomas (Figure 7(c)). The
calibration plots showed better consistency between the
predictions by the nomogram and actual observation for 1-,
3-, and 5-year survival probabilities (Figures 7(d)–7(f)). The
time-dependent ROC curve analyses were used to evaluate the
accuracy of the nomograms; the AUCs for the 1-, 3-, and 5-
year OS predictions for the nomogram were 0.832, 0.838, and
0.823, respectively (Figures 7(g)–7(i)).

3.6. IRRG Signature to Predict Immune Infiltration and
Responses to Immune Checkpoint Inhibitors (ICIs). Subse-
quently, we examined whether the signature was related to
the tumor microenvironment (TME) using the IRRG signa-
ture construed based on the IRRGs. The enrichment scores
for diverse immune cells, functions, and pathways in each
glioma sample were quantized by ssGSEA using 29 immune
gene sets. The high-risk group represented a relatively high
immune status (Figure 8(a)). Specifically, through the

Table 2: Coefficients of the eight target IRRGs from the multivariate Cox regression analysis.

Gene Coefficient HR (95% CI) P value

GNAI3 0.1132 1.1198 (1.0005-102535) 0.048977

EMP3 0.0086 1.0086 (1.0025-1.0138) 0.000858

PCDH7 -0.1125 0.8935 (0.8297-0.9234) 0.002951

CALCRL -0.0212 0.9790 (0.9790-0.9654) 0.003053

TIMP1 0.0008 1.0008 (1.0003-1.0013) 0.000481

ITGA5 0.02136 1.0215 (1.0002-1.0434) 0.047966

NMI 0.0504 1.0517 (0.9946-1.1121) 0.076774

NFKBIA -0.0126 0.9874 (0.9875-0.9813) 8:21e − 05
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Figure 4: Kaplan–Meier survival curves stratified by different clinical features in TCGA cohort. Survival analyses using the IRRG signature
in patients with different (a) ages, (b) gender, (c) grade, (d) IDH, (e) radiotherapy, and (f) chemotherapy.

12 Journal of Immunology Research



1.00

0.75

0.50

0.25

0.00
Su

rv
iv

al
 p

ro
ba

bi
lit

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

Age < 45
High risk
Low risk

+
+

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

Age > 45
High risk
Low risk

+
+

p < 0.001
p < 0.001

(a)

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

Female
High risk
Low risk

+
+

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

Male
High risk
Low risk

+
+

p < 0.001
p < 0.001

(b)

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

WHO 2
High risk
Low risk

+
+

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

WHO 3
High risk
Low risk

+
+

p < 0.001

(c)

Figure 5: Continued.

13Journal of Immunology Research



1.00

0.75

0.50

0.25

0.00
Su

rv
iv

al
 p

ro
ba

bi
lit

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

IDH-mutant
High risk
Low risk

+
+

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

IDH-wild
High risk
Low risk

+
+

p < 0 001
p < 0.001

(d)

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p = 0.002

1p 19q-codel
High risk
Low risk

+
+

1p 19q-non codel
High risk
Low risk

+
+

1.00

0.75

0.50

0.25

0.00
Su

rv
iv

al
 p

ro
ba

bi
lit

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001p < 0 001

(e)

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

MGMT-methylated
High risk
Low risk

+
+

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (Years)

p < 0.001

MGMT-unmethylated
High risk
Low risk

+
+

p < 0.001
p < 0.001

(f)

Figure 5: Continued.

14 Journal of Immunology Research



ESTIMATE algorithm, the tumor purity was found to be lower
in the high-risk group, indicating higher immune cell infiltra-
tion in the tumor tissues (Figure 8(b)). As expected, the
high-risk group was associated with higher immune, stromal,
and ESTIMATE scores as compared to the low-risk group
(Figures 8(c)–8(e)). Additionally, as compared to the low-
risk group, the composition of several immune cells was found
to be more abundant in the high-risk group (Figure 8(f)). All
immune functions or pathways in the high-risk group were
also upregulated (Figure 8(g)). The IRRG signature was asso-
ciated with the TME and the immune system of glioma
patients with high-risk scores.

We then examined the correlation between risk scores
and ICIs (PD1, PDL1, CTLA4, and B7-H3) in gliomas.
Patients in the high-risk group tended to show higher levels
of ICI expressions relative to those in the low-risk group
(Figures 9(a)–9(d)). In addition, a positive relationship
between risk scores and expression levels of the ICIs was
observed (Figures 9(e)–9(h)). We then specifically investi-
gated the impact of the risk scores for evaluating the immu-
notherapeutic outcomes using TCIA database. The results
showed that the diverse groups showed different immunoge-
nicities as responses to CTLA4positive/PD1positive treatments

(Figures 9(i)–9(l)). These findings suggested differential
effects of immune status on treatment using ICIs, and the
higher was the immune infiltration, the greater was the
intensity of immunosuppression.

3.7. IRRG Signature-Related Biological Functions and
Pathways.We constructed an interaction network to inves-
tigate the possible relationships among these eight genes
using GeneMANIA. Additional 20 potential binding part-
ners were automatically identified (Figure 10(a)). We then
performed GO and KEGG pathway enrichment analyses
for these 28 genes. In terms of KEGG enrichment, these genes
were enhanced in the TNF signaling pathway, NF−kappa B sig-
naling pathway, and Chagas disease (Figure 10(b)).

To analyze the potential mechanisms leading to poor
outcomes in gliomas, we performed GSEA based on the
IRRG signature using TCGA data. GO analysis showed that
fibroblast proliferation, interleukin-8 production, response
to TNF, and TNF-mediated signaling pathway were the sig-
nificantly enriched biological processes in the high-risk
group (Figure 10(c)). Moreover, the results of KEGG enrich-
ment indicated malignancy-related pathways were most
active in the high-risk group, such as the cell cycle, DNA
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Figure 5: Kaplan–Meier survival curves stratified by different clinical features in the CGGA cohort. Survival analyses using the IRRG
signature in patients with different (a) age, (b) gender, (c) grade, (d) IDH, (e) 1p19q status, (f) MGMT methylation, (g) radiotherapy, (h)
and chemotherapy.
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replication, and leukocyte transendothelial migration
(Figure 10(d)). The hallmark gene sets demonstrated that the
high-risk group was markedly correlated with DNA repair,
epithelial-mesenchymal transition, interferon-gamma response,
and PI3K/Akt/mTOR signaling (Figure 10(e)).

4. Discussion

Glioma is the lethal brain tumor which often results in an
undesirable prognosis [40]. The 5-year survival rate of
GBM is a disappointing 4.7% owing to its highly aggressive
nature [9]. Conventional treatments including surgery, post-
operative radiotherapy, and chemotherapy yield unsatisfac-
tory survival outcomes. However, currently, there are no
effective targeted molecular therapies for gliomas that can
improve the curative effects. Increasing data support a driv-
ing role of the inflammatory microenvironment in tumori-
genesis, including colorectal cancer and hepatocellular
carcinoma [22, 41]. Michelson et al. show that aberrant sig-
naling induced by inflammation is involved in the malignant
transformation of LGG [42]. Therefore, knowledge of the
biological functions and mechanisms underlying inflamma-
tion is of significance to help predict prognosis and treat-
ment responses in glioma patients.

In this study, we systematically analyzed the genomic
landscape and prognostic value of 200 IRRGs in patients
with glioma. According to the LASSO-Cox regression
model, a prognostic signature consisting of eight IRRGs
(GNAI, EMP3, PCDH7, CALCRL, TIMP1, ITGA5, NMI,
and NFKBIA) was constructed and validated in the CGGA
database. The patients in the low-risk group tended to show
better OS in the two datasets. Furthermore, we found that
the high-risk group was obviously correlated with several
risk factors, such as older age, higher tumor grades, IDH
wild type, 1p19q noncodel, and MGMT unmethylation sta-

tus. This conclusion was in agreement with that of a previ-
ous study [43]. Subsequently, the IRRG signature was
proven as a ponderable prognostic feature independent of
other clinical parameters. Further, we identified the indepen-
dent prognostic indicators (age, grade, and risk scores) and
constructed the nomogram to accurately predict the 1-, 3-,
and 5-year survival probabilities, which may be of help for
improving the individualized treatment strategies for glio-
mas. Overall, these results indicated that the IRRG signature
was significantly associated with prognoses of glioma
patients.

The prognostic signature was constructed based on eight
IRRGs, including GNAI, EMP3, PCDH7, CALCRL, TIMP1,
ITGA5, NMI, and NFKBIA. The mRNA and protein expres-
sions of GNAI were upregulated in human glioma samples
and cell lines. Liu et al. show that the downregulation of
miR-200a can activate AKT and promote glioma cell prolif-
eration by upregulating GNAI in human glioma [44]. EMP3
can promote tumor growth along with activation of TGF-β
signaling in intracranial GBM xenografts [45]. Moreover,
Neftel et al. by single-cell RNA-seq demonstrate that
EMP3 levels are high in GBM-infiltrating macrophages
[46]. PCDH7 is known to be downregulated in cervical can-
cer tissues and cell lines as compared to their corresponding
controls, and the overexpression of PCDH7 markedly
inhibits the migration and invasion abilities of cervical can-
cer cells [47]. Expression of CALCRL is undetected in the
pancreatic cancer cells while primary human pancreatic stel-
late and endothelial cells express CALCRL [48]. The high
expression of TIMP1 confers poor prognoses in several types
of cancers including GBM. Moreover, the effects of topo-
isomerase inhibitors in GBM decrease due to the upregula-
tion of TIMP-1 [49]. Chen et al. show that NEAT1
promotes the expression of ITGA5 in glioma tissues by com-
petitively binding to miR-128-3p. Specifically, ITGA5 may
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Figure 6: The risk score in different subgroups is divided by clinical features in TCGA and CGGA cohorts. Survival analyses using IGGR
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promote the growth of glioma cells via the FAK signaling
pathway without decomposition by miR-128-3p [50]. NMI
is reportedly upregulated in glioma tissues and may play
an important role in the development of GBM through
inflammatory responses [51]. In another previous study
using a glioma mouse model, higher expression of NMI is
even more frequently detected in glioma tissues as compared
to the adjacent nonneoplastic brain tissues, thus confirming
the diagnostic utility [52]. Moreover, NFKBIA can serve as a
promising prognostic marker for those with an advanced
grade of gliomas [53]. In the present study, GNAI, EMP3,
TIMP1, ITGA5, and NMI were found to be significant risk
factors, while PCDH7, CALCRL, and NFKBIA were sub-
stantial protective factors. Collectively, the expression pat-
terns and prognostic values of IRRGs for patients with

glioma in our research were according to those of the previ-
ous studies.

In recent years, the use of immunotherapy has made
noticeable breakthroughs in the treatment of various types
of cancers [54]. However, patients with gliomas have not
substantially benefited from immunotherapy. Therefore, we
further investigated the potential impacts of the IRRG signa-
ture on the immune microenvironment. In this study,
patients in the high-risk category from TCGA cohort
showed an obviously lower tumor purity and higher
immune scores as compared to those in the low-risk group.
Previous studies show that high immunity is closely related
to a poor prognosis in patients with gliomas [43, 55]. Infil-
tration of immunosuppressive cells, mainly the macrophages
and Tregs, plays a critical role in the efficacy of
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Figure 8: The immune status between different risk groups as analyzed in patients with glioma based on TCGA database. (a) The heat map
shows the scores of 29 immune-associated gene sets between low- and high-risk groups by ssGSEA arithmetic. The violin plots display the
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immunotherapy and tumor immune evasion. Recent investi-
gations show that the presence of macrophages and Treg
cells is involved in the unfavorable prognosis owing to their
functions in immune invasion [56]. The patient with high-
risk score in the present study possessed higher fractions of
macrophages and Treg cells. This may also explain why the
prognoses of patients in the high-risk group were poor.
Additionally, we analyzed the association between the risk

score and ICIs, and the results showed that the expressions
of PD1, PD-L1, CTLA4, and B7-H3 in the high-risk group
were significantly higher, that is, these patients were most
likely to benefit from immunotherapy. The present findings
were in strong agreement with those of previous studies [22,
55].

Finally, GSEA was performed to investigate the under-
lying biological functions and mechanisms by which the
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Figure 9: The relationship between the IRRG signature and the levels of ICI expressions. The comparison of the levels of expression of (a)
PD-1, (b) PD-L1, (c) CTLA4, and (d) B7-H3 between the low- and high-risk groups. The Pearson correlation coefficients between risk scores
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Figure 10: IRRG signature-related biological functions and enriched pathways. (a) The regulatory network involving eight genes and 20
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IRRG signature affected the prognoses. The results sug-
gested that inflammation-associated biological processes
including interleukin-8 production and response to TNF
were markedly enriched in the high-risk group, thus fur-
ther confirming the close relationship between inflamma-
tory responses and tumor progression. In addition,
enhanced activities in extensive malignancy-related path-
ways were involved in the high-risk populations. For
example, a recent study by Song et al. demonstrates that
PLAC2 may play tumor-suppressive roles in an RPL36-
dependent manner and block the cell cycle by downregu-
lating the expression of CDK2 [57]. Knocking down
WNK3 can inhibit the invasion of glioma cell lines by reg-
ulating the epithelial-mesenchymal transition, especially in
hypoxic microenvironments [58]. Therefore, we reasonably
speculated that the enhancement of these prooncogenic
signaling pathways likely underlies the worse outcomes
in the high-risk group. However, further experiments are
required to elucidate their specific mechanisms in gliomas.

There were some limitations to this study. First, the data
used were not generated by us but were collected from vari-
ous public repositories. Information on the clinical symp-
toms of some patients with glioma was lacking. Second,
the constructed signature in the present study requires mul-
ticenter data for in-depth verification. Third, our study was a
retrospective design that might contain various types of bias,
like selection bias and information bias. Therefore, we added
this content to our manuscript. Finally, our findings still
require experimental validation in the future.

5. Conclusion

In conclusion, we examined the expression profiles and
prognostic values of IRRGs in patients with glioma and con-
structed a prognostic signature consisting of eight IRRGs.
The IRRG signature was verified to accurately classify
patients with diverse survival outcomes both in TCGA and
CGGA cohorts. Notably, the prognostic signature was fur-
ther confirmed to be of great clinical significance for the
analyses of clinical correlation, immune infiltrates, pathway
enrichment, and immunotherapeutic response predictions.
These findings may deepen our understanding of gliomas
induced by inflammatory responses and shed light on poten-
tial prognostic biomarkers and therapeutic targets for
gliomas.
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