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Living organisms have evolved over millions of years to fine tune their metabolism
to create efficient pathways for producing metabolites necessary for their survival.
Advancement in the field of synthetic biology has enabled the exploitation of these
metabolic pathways for the production of desired compounds by creating microbial
cell factories through metabolic engineering, thus providing sustainable routes to obtain
value-added chemicals. Following the past success in metabolic engineering, there
is increasing interest in diversifying natural metabolic pathways to construct non-
natural biosynthesis routes, thereby creating possibilities for producing novel valuable
compounds that are non-natural or without elucidated biosynthesis pathways. Thus,
the range of chemicals that can be produced by biological systems can be expanded
to meet the demands of industries for compounds such as plastic precursors and new
antibiotics, most of which can only be obtained through chemical synthesis currently.
Herein, we review and discuss novel strategies that have been developed to rewrite
natural metabolic blueprints in a bid to broaden the chemical repertoire achievable
in microorganisms. This review aims to provide insights on recent approaches taken
to open new avenues for achieving biochemical production that are beyond currently
available inventions.

Keywords: metabolic engineering, synthetic biology, pathway engineering, protein engineering, biochemical
production

INTRODUCTION

Nature’s strength and beauty come from its diversity in biochemical systems, which not only
generate but also degrade essential and non-essential chemical substances in living single cells
or multicellular organisms through different biochemical reactions (i.e., metabolic pathways) that
collectively form cellular metabolism. Consequently, a diverse range of biochemicals are present
in nature. Many of these biochemicals are secondary metabolites to the native organisms but
are of high biotechnological value to industries (Oksman-Caldentey and Inze, 2004; Harvey,
2008; Dhakal et al., 2017). Characterization of these secondary metabolites and exploration
of the metabolic networks involved can potentially enable sustainable production of valuable
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and useful chemicals (Oksman-Caldentey and Inze, 2004).
Although metabolic engineering has enabled the bioproduction
of many valuable chemicals and has realized the aim of industrial-
scale bio-based manufacturing of important compounds
(e.g., 1,3-propanediol and artemisinin) (Zhu and Jackson,
2015), the range of compounds that can be generated are
generally limited to those that occur naturally in living systems
and with known biosynthesis pathways. Furthermore, the
array of value-added chemicals required by industries is
highly varied and many of these compounds can only be
chemically synthesized as they are non-natural, and hence
beyond the biosynthesis capabilities of existing biological
systems. For example, different metabolic architectures have
been identified from various organisms to produce carboxylic
acids, which are central compounds in cellular metabolism
(Lidén, 2017), thereby presenting promising sources for
industrially important building blocks to manufacture bio-
commodities, such as bioplastics. However, silicon-based
materials can only be produced chemically because of the
absence of organosilicon molecules in living organisms (Apeloig
et al., 2001). Likewise, important secondary metabolites, such
as polyketides and alkaloids, isolated from organisms (e.g.,
plants and marine microorganisms) can provide alternative
therapeutics against health threats such as multidrug resistance
bacteria and intractable cancers (Dhakal et al., 2016). Yet,
while more potent analogs of these natural products may be
discovered and obtained chemically (DeChristopher et al.,
2012), novel biosynthesis routes to these superior non-
natural drugs are elusive. Thus, it is imperative to diversify
natural metabolic pathways to conceive novel ones that
are capable of producing any desirable chemical through
biological means. Herein, we will review novel strategies
for rewriting natural metabolic blueprints and designing of
biosynthetic pathways with computational tools (Figures 1, 2
and Table 1). We aim to provide current insights and future
perspectives on how progress in the state-of-the-art approaches
in metabolic pathway diversification for the production of
novel value-added compounds will eventually facilitate the
development of efficient designer microorganisms that can
potentially meet most of the chemical needs of modern
civilization.

STRATEGIES TO DIVERSIFY METABOLIC
PATHWAY FOR SYNTHESIS OF
VALUE-ADDED COMPOUNDS

In order to produce novel compounds biologically, it is essential
to rewire the native metabolic pathways in production hosts to
form new ones that will lead to the desired compounds. Non-
natural biosynthesis routes need to be designed, implemented
and optimized through metabolic engineering for efficient
production of the target compounds. In this section, we
will review efforts in production of value-added compounds
accomplished through rewriting of metabolic network with
natural and non-natural enzymes, as well as computational
design of non-natural metabolic pathways.

Rewriting the Metabolic Blueprint Using
Natural Enzymes
Enzymes vary widely in the reactions they catalyze and in their
substrate specificities. Homologs are present across different
species thus there is a vast number of enzyme candidates that can
be selected from nature for construction of novel pathways. By
introducing non-native enzymes from different organisms into a
production host, metabolic rewiring can be achieved to expand
possibilities for biosynthesis of novel compounds. Two different
approaches have been utilized to rewrite metabolic networks
using natural enzymes: gap-filling and mix-and-matching of
pathways. Here, we will review the employment of these strategies
for diversifying metabolic pathways to produce value-added
compounds.

Gap-Filling of Pathways
Native metabolic pathways in organisms are connected and
insulated from one another to varying degrees (Hartwell et al.,
1999). By gap-filling pathways with heterologous enzymes,
shunts can be built between the pathways to create new and
diverse biosynthesis routes toward desired metabolites (Shin
et al., 2013; Lee and Kim, 2015). Essentially, by introducing
a suitable non-native enzyme, a metabolite from a native
pathway can be converted by the heterologous enzyme to a
non-native intermediate to serve as a substrate of a previously
disconnected native pathway, thus creating a novel biosynthesis
pathway for producing target compounds. For example, the
biosynthesis of odd-chain fatty alcohols, which is of industrial
value, is made possible by the heterologous expression of
α-dioxygenase from Oryza sativa in Saccharomyces cerevisiae
(Jin et al., 2016). The α-dioxygenase can convert endogenous
even-chain fatty acids to odd-chain fatty aldehydes which are
subsequently reduced by native alcohol dehydrogenases to
produce odd-chain fatty alcohols (Jin et al., 2016). Notably,
although the biosynthesis pathway of salvianic acid A in the
plant Salvia miltiorrhiza was unclear, the therapeutic antioxidant
was remarkably produced in Escherichia coli by rerouting
endogenously produced 4-hydroxyphenylpyruvate with D-
lactate dehydrogenase derived from Lactobacillus pentosus to
4-hydroxyphenyllactate for conversion by a native hydroxylase
complex to salvianic acid A (Yao et al., 2015). Similarly, novel
nargenicin A1 derivatives were synthesized in Nocardia by
introducing a hydroxylase (PikC) derived from the pikromycin
gene cluster of Streptomyces venezuelae (Dhakal et al., 2016).
The gap-filling strategy was also employed for the efficient
synthesis of optically pure D-lactic acid in high titers by
utilizing a glycerol dehydrogenase engineered for D-lactate
dehydrogenase activity to gap-fill the pyruvate metabolism in
Bacillus coagulans (Wang et al., 2011). Likewise, to produce
biofuels such as propanol and butanol in high yield, a new
pathway was engineered in E. coli for the production of
2-ketoacid precursors from pyruvate and acetyl-CoA by utilizing
citramalate synthase from Methanococcus jannaschii (Atsumi
and Liao, 2008). Other notable value-added chemicals produced
by the gap-filling strategy, such as long-chain dicarboxylic
acid (Song et al., 2014) and 2-pyrrolidone (Zhang et al., 2016),
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FIGURE 1 | Overview of strategies employed for diversification of metabolic pathways to produce value-added compounds in microorganisms.

are summarized in Table 1. These examples illustrate that
although gap-filling is a simple approach, relying on expression
of a heterologous enzyme to diversify metabolic pathways,
it demonstrates great potential in expanding the range

of bio-based chemicals that can be produced. However, a
major disadvantage of the gap-filling strategy is that it is
applicable only when an intermediate metabolite can be
found that links two native pathways to produce the target
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FIGURE 2 | Illustration of distinct examples for each diversification approach.

compound, thus limiting the possibilities of attainable pathway
diversification. To allow greater diversification of biosynthetic
pathways, rewiring of metabolic networks needs to be more
extensive using other strategies such as mix-and-matching of
pathways.

Mix-and-Matching of Pathways
The mix-and-match approach combinatorically expresses
multiple genes or clusters from numerous organisms in a
production host to produce metabolites of interest (Figure 1).
Given the large number of annotated enzymes with known
functions, artificial biosynthesis routes can therefore be built
rationally by mix-and-matching suitable non-native enzymes
to diversify native pathways toward target compounds. This
strategy is particularly useful for reconstruction of pathways that
are not fully elucidated and is exemplified by the production of
the skin lightening agent arbutin in E. coli. Although the natural
pathway for biosynthesizing arbutin is not fully understood, it

was successfully produced in E. coli by diversifying the chorismic
acid metabolic pathway with 4-hydroxybenzoate 1-hydroxylase
from Candida parapsilosis to produce hydroquinone, which
serves as the substrate for arbutin synthase from Rauvolfia
serpentina to produce arbutin (Shen et al., 2017). The mix-
and-match approach is also an effective strategy for producing
variants of natural products, such as polyketides, carotenoids,
phenyl propanoids and alkaloids, which involve gene clusters
for biosynthesis. Genes in diverse sets of homologous gene
clusters from different organisms can be viewed as “modules”
for combinatorial assembly to produce novel derivatives.
Using this strategy, novel pathways were constructed to enable
biosynthesis of compounds with therapeutic and commercial
value (Table 1). Taken together, the mix-and-match approach
has demonstrated immense potential for diversifying metabolic
pathways using combinations of natural enzymes for the
production of novel value-added compounds. Nevertheless, mix-
and-matching of pathways is often marred by low productivity
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TABLE 1 | Examples of notable novel valuable compounds produced in microbial cell factories through diversification of metabolic pathways and computational tools
developed for pathway design.

Products Details of strategy Reference

Rewriting metabolic blueprint with natural enzyme

Gap-filling of pathways

Nargenicin A1 Novel analog of nargenicin A1 was produced by expression of hydroxylase PikC from
Streptomyces venezuelae.

Dhakal et al., 2016

Odd-chain fatty alcohol Plant-derived α-dioxygenase enabled odd-chain length fatty aldehyde production from even
chain fatty acid, further reduction led to formation of odd-chain fatty alcohol.

Jin et al., 2016

Long chain dicarboxylic
acid

Pseudomonas-derived Baeyer–Villiger monooxygenase enzyme enabled production of
dicarboxylic acid.

Song et al., 2014

Salvianic acid A Metabolic engineering of Escherichia coli with D-lactate dehydrogenase achieved salvianic acid
A production.

Yao et al., 2013

2-Pyrrolidone Metabolic engineering of E. coli with 2-pyrrolidone synthase from Streptomyces azureus
enabled 2-pyrrolidone production.

Zhang et al., 2016

Biofuels Metabolic engineering of B. coagulans with citramalate synthase from Methanococcus
jannaschii enabled synthesis of 2-ketoacid precursors.

Atsumi and Liao, 2008

D-Lactic acid Synthesis of optically pure D-lactic acid was achieved in E. coli by expression of engineered
glycerol dehydrogenase evolved for D-lactate dehydrogenase activity.

Wang et al., 2011

Mix-and-matching of pathways

Arbutin The skin-lightening agent was biosynthesized in E. coli by co-expressing 4-hydroxybenzoate
1-hydroxylase from Candida parapsilosis and arbutin synthase from Rauvolfia serpentina.

Shen et al., 2017

Polyketide analogs Matching the D-desosamine and L-mycarose deoxysugar pathways with the alternative
D-mycaminose and D-olivose pathways to produce new erythromycin analogs through the
E. coli heterologous system.

Jiang et al., 2013

Opiates and related
molecules

Production of opiate in yeast was achieved through the combination of new enzyme discovery,
enzyme modification, and metabolic pathway optimization. Mixing and matching of 44 enzymes
from bacteria, yeast, plants, and mammals were required.

Galanie et al., 2015

Phenylpropanoid
derivatives

Seven biosynthetic genes from plants and bacteria were mixed and matched in E. coli to
produce phenylpropanoid acids, stilbenoids and curcuminoids.

Wang et al., 2015

4-Ketozeinoxanthin 4-Ketozeinoxanthin was produced in E. coli by mixing and matching of carotenoid ketolase
gene from marine bacteria, lycopene biosynthesis genes from soil bacterium Pantoea ananatis
and lycopene β-cyclase, lycopene ε-cyclase, β-carotenoid hydroxylase from liverwort
Marchantia polymorpha.

Maoka et al., 2014

Unnatural
multi-methyl-branched
butyl esters (MBEs)

MBEs were produced by engineered E. coli where mycocerosic polyketide synthases (PKSs)
were mixed and matched from Mycobacterium tuberculosis. Expression of those enzymes
enabled the biosynthesis of MBEs by utilizing various lengths of fatty acid with linear and
branched chain alcohols.

Menendez-Bravo et al.,
2014

Rewriting metabolic blueprint with non-natural enzyme

Precursor-directed biosynthesis

Polyketides Substrate promiscuity of crotonyl-CoA carboxylase/reductase (CCR) homologs enabled the
production of unnatural polyketide derivatives.

Wilson and Moore, 2012

Andrimid analog Precursor-directed evolved non-ribosomal peptide synthetase (NRPS) produced three
derivatives of the antibacterial compound, andrimid, in the native producer, Pantoea
agglomerans. The compounds were analogs of the natural product with diverse functionality.

Evans et al., 2011

Fluorinated polyketide Directed evolution-generated polyketide synthase enabled utilization of fluorinated building
blocks to produce novel fluorinated scaffold of polyketide.

Walker et al., 2013

Tetracycline analogs Novel tetracycline analogs with different scaffolds were produced using a new set of tailoring
enzymes.

Wang et al., 2012

Calcium dependent
antibiotics

Engineering the adenylation domain of NRPS enabled novel NRP production using non-natural
amino acid as precursor.

Thirlway et al., 2012

Nitro-substituted
polyketide aureothin

Rational design and directed evolution of aureothin modular polyketide synthase enabled
diverse polyketide production.

Sugimoto et al., 2014

Unnatural alkaloid
scaffold

Novel polyketide-alkaloid hybrid molecules were produced using precursor-directed and
structure-based design.

Morita et al., 2011

Erythromycin A analog Tailoring the enzymes of erythromycin gene cluster enabled benzoate to be used as a precursor
leading to the formation of novel erythromycin derivative.

Zhang et al., 2010;
Jiang and Pfeifer, 2013

Clorobiocin analog 3,4-Dihydroxybenzoic acid was produced de novo as precursor for the biosynthesis pathway of
the antibiotic clorobiocin to generate a potent analog.

Alt et al., 2011

(Continued)
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TABLE 1 | Continued

Products Details of strategy Reference

Alkyne labeled
polyketide

Heterologous expression of a terminal alkyne-forming operon with PKS/NPRS genes in E. coli
enabled alkyne-labeled polyketide production from hexenoic acid.

Zhu et al., 2015

Evolution of natural enzymes for non-natural biochemical reactions

2,4-DHB Novel products were produced by evolving enzymes in an aspartate-using pathway for
previously unreported activities to create an analogous malate-utilizing pathway.

Walther et al., 2017

Cyclopropanes and
olefin metathesis

Engineered cytochrome P450 enabled selective carbene transfers from diazoesters to olefins
for cyclopropanation.

Coelho et al., 2013

Sulfimides Evolved cytochrome P450 catalyzed imidation of sulfides to form sulfimides. Farwell et al., 2014

Aziridines Engineered cytochrome P450 achieved intermolecular aziridination using tosyl azide and
styrenes as substrates.

Farwell et al., 2015

Organoboranes Directed evolution of cytochrome c enabled synthesis of organoboranes. Kan et al., 2017

Computational pathway design

fastGapFill fastGapFill reconstructs metabolic networks by identifying enzyme candidates from universal
reaction databases to gap-fill missing pathways.

Thiele et al., 2014

BoostGAPFILL BoostGAPFILL predicts missing biochemical reactions in metabolic networks based on
metabolites present, including non-native ones.

Oyetunde et al., 2017

RetroPath RetroPath is a computation tool that automates metabolic pathway design for given sets of
specifications, including precursors and target chemicals.

Carbonell et al., 2014

Pinocembrin A five-enzyme pathway was designed using RetroPath to successfully produce pinocembrin in
E. coli from malonyl-CoA.

Feher et al., 2014

due to substrate specificity constraints since the new metabolites
are not natural substrates of the enzymes in the pathways
assembled. Thus, the full potential of the mix-and-match
strategy could only be realized by involving non-natural
enzymes that have been evolved to suit the needs of the novel
pathways.

Rewriting the Metabolic Blueprint with
Non-natural Enzyme
Diversification of natural metabolic pathways to create
novel biosynthesis routes will inevitably form intermediate
metabolites that are beyond the substrate range which the
natural enzymes involved can perform efficiently. Although
nature has provided us with a gamut of enzymes to choose
from, generation of non-natural enzymes is often essential
for successful construction of efficient novel pathways to
extensively rewrite metabolic blueprints (Foo et al., 2012).
As most natural enzymes exhibit degrees of substrate
promiscuity to analogs of their natural substrates (Gupta,
2016), promiscuous properties of natural enzymes can be
exploited through protein engineering approaches to evolve
their activities toward non-natural substrates. In addition to
employment in gap-filling and mix-and-matching of pathways,
non-natural enzymes have important applications for precursor-
directed biosynthesis and catalysis of non-natural biochemical
reactions, which are powerful strategies that we will review
in this section for bio-based production of novel value-added
chemicals.

Precursor-Directed Biosynthesis
Precursor-directed biosynthesis involves using evolved enzymes
with altered substrate specificity to incorporate structurally
diverse analogs of natural substrates into novel metabolic

pathways in order to produce non-natural biochemicals.
Commonly, substrate analogs are provided ex vivo to production
hosts with non-natural enzymes with relaxed substrate specificity
to form novel intermediates. While it is possible to rely on
substrate promiscuity of the natural enzymes in the native
pathways to convert the intermediates to the desired natural
product derivatives, engineered enzymes are frequently required
for the pathways to be efficient. For example, acyltransferase,
the “gatekeeping” enzyme to polyketide synthesis, has been
engineered to accept analogs of natural acyl-CoA precursors
to initiate production of novel polyketide derivatives (Dunn
and Khosla, 2013). Inclusion of enzymes modified by protein
engineering in the downstream pathway can greatly facilitate
the conversion of the resulting non-natural intermediates
to a wide range of polyketide derivatives with potential
therapeutic properties, as exemplified by the work of Lee et al.
(2011) to create derivatives of the antibiotic erythromycin.
Similar approaches were applied to enable biosynthesis of
a wide range of novel derivatives of polyketides, non-
ribosomal peptides (NRPs) and phenyl propanoids (Table 1).
De novo precursor-directed biosynthesis can be achieved by co-
expressing a pathway for generating substrate analog in vivo
instead of ex vivo supplementation. This was demonstrated
by Alt et al. for producing a novel derivative of the
antibiotic clorobiocin by employing a 3,4-dihydroxybenzoic
acid-producing pathway to provide the non-natural precursor
to the clorobiocin biosynthesis pathway, resulting in the
production of a potent DNA gyrase inhibitor (Alt et al.,
2011).

With these examples, precursor-directed biosynthesis
has proven to be an effective approach for generating a
wide array of novel compounds rapidly with non-natural
precursors. However, these precursors are often expensive
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and could only be synthesized chemically. Therefore,
generating enzymes that can catalyze non-natural reactions
are vital for progressing diversification of metabolic
pathways.

Evolution of Natural Enzymes for Non-natural
Biochemical Reactions
Metabolic engineering has advanced by leaps and bounds over
the past decades facilitating the biosynthesis of many valuable
compounds for pharmaceutical and industrial applications.
However, chemical synthesis still has an edge in terms of
the versatility of chemical structures that can be generated
because biological synthesis is limited by the number of
natural enzymes available (Wallace and Balskus, 2014). To
circumvent this constraint, efforts have been directed toward
creating enzymes that can perform reactions that have not
been possible biologically for constructing novel metabolic
pathways to produce compounds without known natural
biosynthesis routes. For example, the versatile chemical,
2,4-dihydroxybutyric acid (2,4-DHB), was produced by
exploiting a natural metabolic pathway involving aspartate
to utilize malate, a structurally similar analog, as precursor
(Walther et al., 2017). By engineering the enzymes in the
natural pathway, novel enzymes with previously unreported
activities in nature, namely malate semialdehyde reductase,
malate kinase, and malate semialdehyde dehydrogenase,
were generated to create an artificial 2,4-DHB-producing
pathway. This illustrates the importance of non-natural
enzymes for diversifying metabolic pathways. In recent years,
numerous evolution and engineering strategies were applied
to mechanistically diverse the superfamilies of biocatalysts
to perform novel reactions (Gerlt and Babbitt, 2009). For
instance, cytochrome P450s have been evolved to perform
olefin aziridination (Farwell et al., 2015), carbene transfer
to olefin (Coelho et al., 2013), and imidation of sulfides
(Farwell et al., 2014), reactions which are unknown in the
biological world. The promising trend of growing number of
novel enzymes catalyzing non-natural biochemical reactions
suggest the possibility of constructing fully artificial pathways
to biosynthesize any compound that can be accomplished
chemically.

Computational Pathway Design
As computing power grew exponentially in the past decade,
computational tools became increasingly attractive as toolkits
for metabolic engineering. While these tools initially were
employed mainly to optimize metabolic pathways for achieving
production of target compound with high yield (Copeland
et al., 2012), they have been extended to facilitate designing of
novel pathways. For example, to complement a rapid increase
in the number of sequenced genomes, computational methods
were created for data mining to identify and annotate genes
(Blanco and Abril, 2009). However, it has reached a stage
where the data generated exceeds the rate that they can be
sifted and organized (Khosla, 2015). Automated annotation of
these “big data” simply based on sequence homology has been
unreliable or unsuccessful half of the time (Gerlt, 2016). To

understand relationships between proteins in the databases, the
“big data” generated could greatly benefit from tools developed
by the Enzyme Function Initiative, such as EFI-EST and EFI-
GNT (Gerlt, 2017), which use multidisciplinary approaches
to accurately assign enzyme functions (Gerlt, 2016). Proper
functional assignment is vital for identifying novel enzyme
candidates from diverse superfamilies that can be deployed
to construct non-natural biosynthesis routes. However, for
diversification of metabolic pathways, creation of tools to predict
and identify plausible routes are imperative to accelerate the
design process for integrating heterologous genes to produce
novel compounds in defined hosts. Therefore, computational
tools such as BoostGAPFILL (Oyetunde et al., 2017) and
fastGapFill (Thiele et al., 2014) have been developed to enable
identification of candidate enzymes from a universal biochemical
reaction database to fill network gaps. To enable the design of
biologically feasible pathways to produce any target compound
of interest, the retrosynthesis approach, which is a well-
established method used in organic chemistry for identifying
suitable precursors and synthesis routes, was combined with
biological knowledge to create tools such as RetroPath (Carbonell
et al., 2014) to automate the pathway design process. Several
possible pathways consisting of various enzymes that can lead
precursors to the target compound can be proposed and
ranked based on selected criteria. Subsequently, RetroPath was
successfully applied to design a pathway for biosynthesizing
the antioxidant flavonoid pinocembrin, resulting in a five-
enzyme pathway starting from malonyl-CoA as precursor
(Feher et al., 2014). These promising computational tools
and results suggest that computational pathway design will
greatly facilitate the design of novel pathways and continued
efforts in improving these computational suites will enable
expansion of the chemical repertoire that can be produced
biologically.

CONCLUSION AND FUTURE
PERSPECTIVES

Metabolic engineering has progressed tremendously over decades
with the aim to efficiently produce biochemicals from renewable
resources to serve industrial needs. Indeed, there are many
examples of engineered microbes that are able to produce
industrially relevant levels of biochemical for commercialization
(Zhu and Jackson, 2015). However, metabolic engineering is still
largely limited to production of chemicals that exist naturally
in biological systems. Therefore, the range of chemicals that
metabolic engineering can generate is unable to meet that
required by industries. Consequently, there is still heavy reliance
on chemical synthesis from fossil resources for precursors needed
by industries (Wallace and Balskus, 2014). Hence, diversification
of metabolic pathways is crucial to achieve biosynthesis of non-
natural compounds to rival the capabilities of chemical synthesis.
Herein, we have reviewed several strategies that have been
developed in the attempt to broaden the spectrum of compounds
that can be created biologically. While the results have been
promising, much still needs to be done before biological
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systems can be utilized to produce any target compound of
choice.

Being a well-established field on its own, protein engineering
is an area that can greatly benefit and complement efforts
in metabolic pathway diversification (Foo et al., 2012). By
increasing the number of available biocatalysts to catalyze
non-natural reactions, protein engineering tools act as
a driving force for designing new biosynthesis routes to
create novel compounds. Further, these tailor-made enzymes
catalyzing novel non-natural reactions uncover new arena
to establish novel metabolic pathways. One remarkable
example of the capability of protein engineering is the
evolution of a natural enzyme to create carbon-silicon
bonds, which are important moieties in many commercial
products but do not exist in nature, essentially opening up
possibilities of creating silicon-based biosynthetic pathways
(Kan et al., 2016). Likewise, evolved Rhodothermus marinus
cytochrome c have been employed to enable carbon–boron
bond formation in E. coli to produce organoboranes, a class
of compounds that are not found in biological systems but
with applications in chemotherapeutics (Kan et al., 2017).
With rapid advances in genome sequencing techniques,
more enzymes will be identified to serve as candidates for
engineering non-natural biochemical reactions. This may be
complemented by the recent boom in microbiome studies,
where metagenomics techniques have been developed and
applied to sequence genomes of many microorganisms that
were previously uncultivable. Computation-guided genome
mining can thus be applied to discover novel natural products
and their biosynthetic pathways (Medema and Fischbach,
2015).

Ultimately, biosynthesis pathways are a series of synchronized
chemical reactions performed in biological chassis. Therefore, to
create diverse non-natural metabolic pathways, it is imperative
to incorporate chemical knowledge and techniques, particularly
retrosynthesis, to complement our understanding of biological
systems when designing biochemical routes required to produce
novel target compounds. As discussed earlier, combining
computational tools with retrosynthesis has already achieved
some success in designing non-natural pathways for the
biosynthesis of novel value-added compounds (Feher et al.,
2014). By further developing user-friendly computational tools
and databases that include all known natural and non-
natural enzymes, automated platforms that integrate current
strategies and knowledge pertinent to pathway diversification
could be established to significantly accelerate designing and
implementation of novel pathways.

Despite rapid advancement in the field of metabolic
engineering and the potential tools available for interplaying
with genetic material and metabolic networks of microbial
workhorses, there are major bottlenecks that require resolution
when forward engineering metabolic pathways. Alterations to
metabolic pathways with heterologous or engineered enzymes in
microbial hosts burden the microbial host and cause issues such
as imbalance in metabolic pathways, poor growth, accumulation
of toxic intermediates and other physiological stresses. Moreover,
conventional model strains commonly used as production

hosts often face issues under the harsh operating conditions
of downstream industrial processes. These problems may be
overcome by selecting suitable production hosts beyond the
conventional ones, depending on the target compounds (Czajka
et al., 2017). For example, the non-conventional oleaginous yeast
Yarrowia lipolytica was exploited for production of fatty acid-
derivatives (Zhu and Jackson, 2015). Furthermore, Pseudomonas
strains possess metabolic, physiological and stress-tolerance
characteristics that are favorable for metabolic engineering (Nikel
et al., 2014) and Pseudomonas putida was demonstrated to
be an ideal host for production of para-hydroxybenzoic acid
due to its exceptional tolerance for aromatic compounds (Yu
et al., 2016). In addition to strategic selection of production
host, computation-guided pathway designing approaches, such
as genome scale modeling and novel machine learning methods,
have proven to be alternative solutions to solve metabolic
imbalance issues by efficient strain engineering strategies (Wu
G. et al., 2016; Wu S.G. et al., 2016). Concurrently, the lack of
natural enzyme reaction cascade in engineered pathways brings
about inefficient substrate conversion. To address this issue,
artificial enzyme channels have been constructed to organize
enzymes for efficient production of target compounds. This
strategy has been reviewed extensively in literature (Proschel
et al., 2015). These examples demonstrate that extensive efforts
are ongoing for strain development to implement synthetic
pathways efficiently, which is immensely beneficial for pathway
diversification.

In conclusion, much progress in diversification of metabolic
pathways has been made and the future for production of
non-natural chemicals using biological systems is promising.
There are fundamental concerns regarding the compatibility
of non-natural pathways and products with living systems,
such as substrate availability, toxicity of substrates and
products, availability and intracellular balance of cofactors,
and influx/efflux of substrates and products, that will impede the
yield and productivity of the biosynthesis routes. Nevertheless,
there are many tools available for strain engineering, such
as targeted multi-site CRISPR/Cas9-based gene insertion
or deletion (Jakociunas et al., 2015), riboswitch-based self-
directed evolution of phenotype (Pham et al., 2017) and
Synthetic Chromosome Recombination and Modification by
LoxP-mediated Evolution (SCRaMbLE) in Synthetic Yeast 2.0
(Dymond and Boeke, 2012), that may be utilized to optimize
host strains for tolerance towards non-natural pathways and
products. Impressively, synthetic biology recently enabled
the creation of a semi-synthetic organism to possess two
additional letters in its codons that form an unnatural base
pair. The organism can thus store increased genetic information
and potentially create enzymes with novel activities, e.g., by
incorporating non-canonical amino acids, thereby facilitate
diversification of metabolic pathways (Zhang et al., 2017). In
future, intensive research in pathway diversification might
enable development of highly efficient microbial strains that
can potentially carry out desired chemical reactions to produce
any target compounds and eventually serve as a sustainable
source for supplying valuable biochemicals to meet industrial
needs.
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