Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 947098, 14 pages
http://dx.doi.org/10.1155/2015/947098

Research Article
Training Spiking Neural Models Using Artificial Bee Colony

Roberto A. Vazquez' and Beatriz A. Garro®

Intelligent Systems Group, Faculty of Engineering, La Salle University, Benjamin Franklin 47, Colonia Condesa,
06140 Mexico City, DE Mexico

’Instituto en Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Auténoma de México,
Ciudad Universitaria, 04510 Mexico City, DE, Mexico

Correspondence should be addressed to Roberto A. Vazquez; ravem@lasallistas.org.mx
Received 18 October 2014; Accepted 6 January 2015
Academic Editor: Jianwei Shuai

Copyright © 2015 R. A. Vazquez and B. A. Garro. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been
proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of
learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand,
several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including
those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior
of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be
used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach
is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model
only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning

strategy.

1. Introduction

Artificial neural networks (ANNs) are applied in a broad
range of problems. Among the most popular tasks using
ANN, we could mention pattern recognition, forecasting, and
regression problems. However, the accuracy of these models
could drastically diminish if the topology is not well-designed
and if the training algorithm is not selected carefully. One
interesting alternative to designing the topology and training
and exploiting the capabilities of an ANN is to adopt a learn-
ing strategy based on evolutionary and swarm intelligence
algorithms. It is well-known that designing and training tasks
can be stated as optimization problems; for that reason,
it is possible to apply different types of evolutionary and
swarm intelligence algorithms. For example, particle swarm
optimization [1] and differential evolution [2] have been used
to design and train ANNs automatically.

Several swarm intelligence algorithms based on the
collective behavior of self-organizing systems have been

proposed in the last years. Among the most popular, we
could mention ant colony system (ACO) [3] and particle
swarm optimization (PSO) [1] and artificial bee colony (ABC)
[4]. Most of the studies related to honey bee swarm are
focused on the dance and communication, task allocation,
collective decision, nest site selection, mating, marriage,
reproduction, foraging, floral and pheromone laying, and
navigation behaviours of the swarm [5]. ABC is a novel
algorithm that tries to mimic the behavior of the bees in
nature, which tasks consist in exploring their environment to
find a food source.

The ABC algorithm has been used in a broad range
of optimization problems. This algorithm is relatively sim-
ple, and its implementation is straightforward for solving
optimization problems, being able to produce acceptable
results at a low computational cost. The different studies
performed in the literature compare its efficiency against
other traditional strategies such as genetic algorithm (GA),
differential evolution (DE), particle swarm optimization

http://dx.doi.org/10.1155/2015/947098

(PSO), ant colony optimization (ACO), and their variants.
The efficiency obtained on numerical problems using numer-
ical test functions, multivariable functions, constrained and
unconstrained optimization problems, and even multiobjec-
tive problems, suggests that the ABC algorithm is a serious
candidate for training ANN [5].

Some of the first works that use the ABC algorithm to
adjust the synaptic weight of an ANN are described in [6, 7].
In [8] the authors train a feed-forward ANN using ABC
applied to solve the XOR, 3-bit parity, and 4-bit encoder-
decoder problem, and some signal processing applications.
In [9], the ANN is trained using ABC algorithm to solve a
medical pattern classification problem. In [10], the authors
train an ANN to classify different dataset utilized in the
machine learning community. In [11], the ANN is trained
for the classification of the acoustic emission signal to their
respective source. Another interesting paper for designing
and training an ANN is presented in [12], where the authors
described a methodology for maximizing its accuracy and
minimizing its connections by evolving the weights, the
architecture, and the transfer function of each neuron. In the
context of forecasting, [13] used ABC to train an ANN for
bottom hole pressure prediction in underbalanced drilling.
Whereas in [14] the authors train a recurrent ANN for stock
price forecasting, in [15] the author uses ABC for training an
ANN for earthquake time series data. Reference [16] presents
an ANN trained with ABC for S-models of biomedical
networks approximation. From all these papers the authors
conclude that ABC algorithm is capable of training ANN with
an acceptable accuracy and, in some cases, the results are
better than those obtained with other traditional techniques.

Moreover, there exist many algorithms based on the bees’
behavior such as bee algorithm, honey-bee mating algorithm,
and bee colony optimization (BCO), among others [17].
Hence, there are investigations about training ANNs that use
different kinds of algorithms related to the ABC. For example,
in [18] the authors apply the bee colony algorithm to train an
ANN, which later is applied to the wood’s defect problem. In
[19], the authors estimate the state variables in distribution
networks, including distributed generators using a honey-bee
mating algorithm. Furthermore, in [20], the authors use this
algorithm in combination with a self-organizing map (SOM)
in the market segmentation problem.

Swarm intelligence algorithms have contributed and
gained popularity in the field of ANN as a learning strategy.
However, the intrinsic limitations of ANN do not allow
applying them in complex pattern recognition problems,
even using different learning strategies. These limitations
motivate to explore other alternatives to model and generate
neural models to make possible their application in several
pattern recognition problems.

Although ANNs were inspired by the behavior of the
human brain, the fact is that they do not mimic the behavior
of a biological neuron. In that sense, the development and
application of more realistic neural models could improve the
accuracy of an ANN during several pattern recognition tasks.

Spiking neuron models are called the 3rd generation of
artificial neural networks [21]. These neurons increase the
level of realism in a neural simulation and integrate the

Computational Intelligence and Neuroscience

concept of time. These types of models have been used in a
broad range of areas, mainly from the field of computational
neurosciences [22], brain region modeling [23], auditory
processing [24, 25], visual processing [26-28], robotics [29,
30], and so on.

Several spiking models have been proposed in the last
years. One of the most realistic and complex models was
proposed in [31]. Nonetheless, there are simplified ver-
sions of this model that reduce its computational com-
plexity. Among these models, we could mention the well-
known integrate-and-fire model [32], Izhikevich model [33],
FitzHugh-Nagumo model [34], and Hindmarsh-Rose [35].

Theoretically, these types of models could simulate the
behavior of any perceptron type neural network. However,
their application in computer vision and pattern recognition
has not been widely explored. Although there are some
works related to image segmentation [36-38] and pattern
recognition [39-43], there still are several issues to research
related to the learning process, design, and implementation.

The process of learning of these models is conducted with
different techniques. In [44], the authors present the Spike-
Prop, an adaptation of the well-known backpropagation
algorithm to train a spiking neural model. Furthermore,
several variants to improve the efficiency of spike-prop have
been proposed [45-47]. However, these algorithms require a
careful tuning of the network to obtain acceptable results.

Another approach to train these models is based on prob-
abilistic models [47-49], information bottleneck learning
[50-52], and reinforcement learning [53-55].

On the other hand, nongradient based methods like evo-
lutionary strategies (such as GA, PSO, and DE) have emerged
as an alternative to traditional methods for training spiking
neural models. Although this approach is computationally
more expensive compared with traditional methods, it has
several advantages that make possible its application in real
pattern recognition problems [42, 56, 57].

Recently, it has been proven that only one spiking neuron
model can solve nonlinear pattern recognition problems,
showing a clear advantage against the traditional perceptron
[58-60]. One alternative to simulate the learning process of
this type of model is to use swarm intelligence algorithms.
For example, in [58] the authors describe an approach to
applying a leaky-integrate-and-fire spiking neuron in various
linear and nonlinear pattern recognition problems. In that
work, the authors use the differential evolution algorithm as
a learning strategy. In other researches, the authors use the
Izhikevich spiking model to the same set of problems using a
differential evolution strategy [60]. In [61, 62], the authors use
the Izhikevich spiking model to the same set of problem using
cuckoo search and particle swarm optimization algorithms,
respectively. In general, the methodology described in those
papers can be stated as follows: given a set of input patterns
belonging to K classes, first of all, each input pattern is
transformed into an input signal. Then the spiking neuron
is stimulated during T'ms and the firing rate is computed.
After adjusting the synaptic weights of the spiking model by
means of a swarm intelligence algorithm, we expect that input
patterns from the same class produce similar firing rates,

Computational Intelligence and Neuroscience

and input patterns from different classes generate firing rates
different enough to discriminate among the categories.

Despite the results presented in those papers, it is still
necessary to explore and develop strategies that allow these
models to learn from their environment and improve their
accuracy solving complex pattern recognition problems.
Due to the capabilities of producing acceptable results at
a low computational cost in a broad range of optimization
problems, including ANN field, the ABC algorithm could
be an excellent tool for simulating the learning process of a
spiking neural model.

In this paper, we proposed to use the ABC algorithm as a
learning strategy to training a spiking neuron model aiming
to perform various linear and nonlinear pattern recognition
problems. Based on the methodology described in [60, 61], we
present a comparison of the results presented in [58, 60, 61] to
determine which learning strategy provides the best accuracy
and how it affect the accuracy of the spiking neuron. In order
to test the accuracy of the learning strategy combined with
the spiking neuron model, we perform several experiments
using different pattern recognition problems, including an
odor recognition problem and cancer classification based on
DNA microarrays.

The outline of this paper is divided into five sections.
A brief introduction to the ABC algorithm is presented
in Section 2. The concepts related to the third generation
of neural networks knowing as spiking neural networks
are presented in Section 3. Section 4 presents the proposed
methodology for training spiking neural networks using the
ABC algorithm. The experimental results, as well as the
discussion of the results, are presented in Section 5. Finally,
the conclusions of this work are presented in Section 6.

2. Basics on Artificial Bee Colony

The artificial bee colony (ABC) algorithm is a novel approach
in the area of the swarm optimization proposed by Karaboga
and Akay [6]. The ABC algorithm is based on the behavior
of bees in nature, whose task consists of exploring their
environment to find a food source, picking up the flower’s
nectar and returning to the hive in order to evaluate the
quality and the amount of the food, and then call the other
bees of the community to fly towards the food source.
Communication among bees is done by a particular dance.

This algorithm can find the optimum values in the search
space of a given optimization problem. A global optimization
problem can be defined as finding the parameter vector x that
minimizes the objective function f(x):

n
X1, X,) €R

@

which is constrained by the following inequalities and/or
equalities:

minimize f (x), x=(x,%...,X..

IISXISul, i=1,...,n. (2)
f(x) is defined on a search space, S, which is #n dimensional
rectangle in R". The variable domains are limited by their
lower and upper bounds (2).

This algorithm represents the solutions of a given problem
by means of the position of different food sources visited by a
bee. Furthermore, it works with three kinds of bees in order
to explore and exploit the search space: employed, onlookers,
and scouts bees.

Following the work described in [7], the employed bee
has to modify the position (solution) in its memory based on
the local information (visual information) and test the nectar
amount (fitness value) of the new source (new solution). If the
quantity of nectar in the new position is better than the old
one, the bee memorizes it and forgets the old one. Contrarily,
it keeps the previous one in its memory. After the entire
employed bees complete the search process, they share the
nectar information about the food sources and their position,
with the onlooker bees in the dance area.

An onlooker bee checks the nectar information obtained
from all employed bees and selects a food source with a
probability in terms of its nectar amount. The employed bee
modifies the position in its memory and checks the quantity
of nectar obtained from the candidate source. If its nectar is
higher than that of the previous one, then the bee memorizes
the new position and forgets the old one.

An artificial onlooker bee chooses a food source depend-
ing on the probability p; associated with that food source. This
probability is calculated with the following expression:

fit;

e 0

where fit; is the fitness value of the solution i of dimension D
which is proportional to the nectar amount of the food source
in the position 7 and SN is the number of food sources that is
equal to the number of employed bees.

In order to produce a candidate food position from the
old one in memory, the ABC algorithm uses the following
expression:

vij = x5+ by (x5~ %), (4)

where k € {1,2,...,SN} and j € {1,2,...,D} are indexes
randomly chosen. Although k is determined randomly, it has
to be different from i. ¢;; is a random number between [-1, 1]
that controls the production of neighbor food sources around

" The food source whose nectar is discarded by the bees
is changed with a new food source by the scouts. In the
ABC algorithm, this is simulated by producing a random
position and replacing it with the abandoned one. If that
position cannot be enhanced after a number of trials, then
the solution is discarded. This parameter is called the “limit”
for abandonment. Assume that the abandoned source is x;
and j € {1,2,..., D}; then the scout bee discovers a new food
source to be replaced with x;. This operation can be defined
as

xij =lj+rand(0> 1) (uj_lj)’ (5)

where [; and u; are the lower and upper bounds of the

parameter x;;, respectively.

Computational Intelligence and Neuroscience

(1) Initialize the population of solutions x; Vi = 1,...,SN
(2) Evaluate the population x; Vi = 1,...,SN
(3) for cycle =1to MCN do

(5) Apply the greedy selection process.
evaluate them.

(8) Apply the greedy selection process.

(10) Memorize the best solution achieved so far.

A1) cycle = cycle + 1
(12) end for

(4) Produce new solutions v; for the employed bees by using (4), verify boundaries and evaluate them.

(6) Calculate the probability values p; for the solutions x; by (3).
(7) Produce the new solutions v; for the onlookers from the solutions x; selected depending on p;, verify boundaries and

(9) Determine the abandoned solution for the scout, if exist, and replace it with a new randomly produced solution x; by (5).

PSEUDOCODE 1

After each candidate source position v;; is generated
and then evaluated by the artificial bee, its performance is
compared to the performance associated with the previous
position. If the new food source has equal or better nectar
than the old one, then it is substituted with a new one in the
memory. Otherwise, the old one is retained in the memory.

The pseudocode of the ABC algorithm is shown in
Pseudocode 1.

The ABC algorithm randomly initializes a population of
solutions that represent the position of food sources within
the lower and upper bounds. The size of the population is a
parameter that corresponds to the number of food sources
that is equal to the number of employed or onlooker bees.
The stop criterion adopted in this algorithm is the maximum
cycle number. The solutions are limited by their lower and
upper bounds (2). If they are out of the boundaries, they are
set to the lower or upper bounds.

One advantage of this algorithm is that only three control
parameters are needed: population size (SN), the maximum
cycle number (MCN), and the value of the “limit”

3. Spiking Neural Models

The main distinctive elements that compose a typical spiking
neuron are: dendrites (input device), soma (central processing
unit), and axon (output device). The dendrites collect signals
from other neurons and transmit them to the soma. The
soma performs an important nonlinear processing step where
an output signal is generated if the total input exceeds a
certain threshold. Finally, the output signal is taken over by
the axon, which delivers the signal (short electrical pulses
called action potentials or spikes) to other neurons. Typically,
the spikes have an amplitude of about 100 mV and a duration
of 1-2ms [63]. Although the same elements exist in a linear
perceptron, the main difference between a linear perceptron
and a spiking model is the action potential generated during
the stimulation time. Furthermore, the activation function
used in spiking models is a differential equation that tries to
model the dynamic properties of a biological neuron in terms
of spikes.

According to [63], a spike train is a sequence of stereo-
typed events generated at regular or irregular intervals.

The form of the spike does not carry any information, and
what is important is the number and the timing of spikes.
The shortest distance between two spikes defines the absolute
refractory period of the neuron that is followed by a phase of
relative refractoriness where it is difficult to generate a spike.

Several spiking models have been proposed in the last
century aiming to model different neurodynamic properties
of neurons [64]. Among these models, we could mention
the well-known integrate-and-fire model, resonate-and-fire,
Izhikevich model, FitzZHugh-Nagumo model, and Hodgkin-
Huxley model.

One of the most simple and versatile models is the
one proposed by Izhikevich. This model has only nine
dimensionless parameters, and it is described with the next
equation:

Cv=k(v-v)(v-v)-u+I ifv=v,, then
(6)
u=a{b(v-v,)-ul ve—c, u—u+d.

Depending on the values of a and b, the spiking model can
act as an integrator or a resonator. Whereas a is the recovery
time constant, the sign of b force to u behaves as an amplifying
(b < 0) or aresonant (b > 0) variable. The parameters ¢ and
d consider that the action of high-threshold voltage-gated
currents activated during the spike affects only the after-
spike transient behavior. In addition, c define the voltage reset
value, and d describes the total amount of outward minus
inward currents activated during the spike. On the other
hand, the variable v represents the membrane potential, u is
the recovery current, C is the membrane capacitance, v, is the
resting membrane potential, v, is the instantaneous threshold
potential, and v, is the spike cutoff value [65].

According to [33], the spiking model can reproduce
various intrinsic firing patterns based on different values
of the parameters. Regular spiking (RS) neurons are the
most typical neurons in the cortex; see Figurel. For the
intrinsically bursting (IB) behavior, the neurons fire a stereo-
typical burst of spikes followed by repetitive single spikes.
Whereas the neurons with a chattering (CH) behavior can
fire stereotypical bursts of closely spaced spikes, neurons with
a fast-spiking (FS) behavior can fire periodic trains of action

Computational Intelligence and Neuroscience

40
=
E 20}
>
=)
£ Of
2
5]
a,
Y -20 +
I
Na}
E 40}
=
_60 1 1 i L
0 200 400 600 800 1000
Time (ms)

()

5
40 T T T T
=
E 20}
=~
=
g O
(%)
5]
a,
@ -20
I
s
E —40
= P
60 : : : :
0 200 400 600 800 1000
Time (ms)

()

FIGURE 1: Simulation of the Izhikevich neuron model 100V = 0.7(v + 60)(v + 40) — u + I, 2 = 0.03{-2(v + 60) — u}, if v > 35 then v « —50
and u < u + 100. (a) Injection of the step of DC current I = 70 pA. (b) Injection of the step of DC current I = 100 pA.

potentials with extremely high frequency practically without
any adaptation (slowing down). Finally, for the low-threshold
spiking (LTS), the neurons can also fire high-frequency spike
trains but with a notable spike frequency adaptation.

A profound description of the Izhikevich model can be
found in [65]. In this paper, we will concentrate on the
parameters that produce regular spiking patterns. However,
we do not discard the use in the near future of other firing
patterns, useful for solving pattern recognition tasks. The
Izhikevich model can produce a class 1 neural excitability
behavior: action potentials can be generated with arbitrary
low firing rate, depending on the strength of the applied
current [65]. The response of the Izhikevich neuron changes
if the input current changes generating different firing rates;
see Figure 1.

The neuron is stimulated during T'ms with an input
signal, and it fires when its membrane potential reaches a
specific value and thus generating an action potential (spike)
or a train of spikes.

4. Proposed Method

Based on the hypothesis “patterns from the same class
produce similar firing rates in the output of the spiking
neuron and patterns from other classes produce firing rates
different enough to discriminate among the classes,” the
authors in [58, 60] proposed a methodology which describes
the way that a spiking neuron can be applied to solve pattern
recognition problems.

Following the same approach, let D = {x",k}f= , be a set
of associations composed of p input patterns, where k =
1,...,K is the class to which X' € R” belongs. The learning
process adjusts the synaptic values of the spiking model in
such way that the output generates a different firing rate
for each class k, reproducing the behavior described in the
hypothesis.

4.1. Classifying with Firing Rates. This subsection describes
how a spiking neural model can be applied in a pattern
classification task based on [58, 60].

In order to use a spiking neural model to solve a pattern
classification problem, it is necessary to compute the input
current I that stimulates the model. In other words, the
spiking neuron model is not directly stimulated with the
input pattern X' € R” but with the input current I. If we
assume that each feature of the input pattern x' corresponds
to the presynaptic potential of different receptive fields, then
we can calculate the input current I that stimulates the spiking
neuron as

I=x-w, (7)

where w' € R” is the set of synaptic weights of the neuron
model. This input current is used in the methodology to
stimulate the spiking model during T' ms.

Instead of using the spike train generated by the spiking
model to perform the pattern classification tasks, we compute
the firing rate of the neuron defined as

fr = ;p , (8)

where N, is the number of spikes that occur within the time
window of lenght T'.

It is necessary to calculate the average firing rate AFR €
RX of each class, by using the firing rates produced by each
input pattern. In this sense, the learning process consists of
finding the synaptic values of the spiking model in such way
that it generates a different average firing rate for each class k.

Suppose that the spiking neuron is already trained using
a learning strategy. To determine the class to which an
unknown input pattern x belongs, it is necessary to compute
the firing rate generated by the trained spiking neuron. After
that, the firing rate is compared against the average firing
rate of each class. The minimum difference between the
firing rate and the average firing rates determines the class
of an unknown pattern. This is expressed with the following
equation:

K
cl=arg r?_lfl (|AFR, - fr|), (9)

Computational Intelligence and Neuroscience

)

FIGURE 2: (a)-(d) Some of the images used to train the proposed method. (f)-(i) Some of the images were used to test the proposed method.

where fr is the firing rate generated by the neuron model
stimulated with the unknown input pattern X.

4.2. Adjusting Synapses of the Spiking Neuron Model. In order
to achieve the desired behavior at the output of the spiking
neuron, it is necessary to adjust its synaptic weights. This step
corresponds to the learning (training) phase of the spiking
neuron. Several swarm intelligence algorithms can be used
in the learning phase, but in this research we focus on the
artificial bee colony (ABC) algorithm as a learning strategy.

The synapses of the neuron model w are adjusted by
means of the ABC algorithm. The food source in the ABC
algorithm represents the synaptic weights of the spiking
model. In order maximize the accuracy of the spiking neuron
model during a pattern recognition task, the best set of
synaptic weights must be found using the ABC algorithm.
However, if we state the problem as a minimization problem,
the classification error must be minimized. The fitness func-
tion that uses the classification error to find the set of synaptic
weights is defined as

f (w, D) = 1 - performance (w, D), (10)

where w are the synapses of the spiking model, D is the set
of input patterns, and performance(w, D) is a function which
computes the classification accuracy, in terms of (9), given by

PCC
performance (w, D) = 7 (11)
t

where P_. denotes the number of patterns correctly classified
and P, denotes the number of tested patterns.

5. Experimental Results

In this section, we analyze and discuss the results gener-
ated with the proposed methodology. In order to evaluate
the accuracy of the proposed methodology, we perform
several experiments using different datasets. The section is
divided into three subsections. The first section presents a
comparison of the proposed methodology against different

swarm intelligence algorithms. In the last two subsections, we
present preliminary results applying spiking neural models
using the proposed methodology for solving an odor clas-
sification problem and cancer classification based on DNA
microarrays.

5.1. Analysis and Comparison of Experimental Results. In
order to evaluate the classification accuracy, when the spiking
neuron is trained using the ABC algorithm, six sets of
experiments were performed. Each set of experiments was
performed with a dataset that corresponds to a specific
pattern recognition problem. The iris plant, glass, diabetes,
liver-bupa, and wine datasets were taken from the UCI
machine learning benchmark repository [66].

The iris plant dataset is a three-class problem composed
of input patterns with four features. The wine dataset also
is a three-class problem composed input patterns with 13
features. The glass dataset is a six-class problem composed of
patterns with nine features; however, in this experiment we
used the two most representative classes. The diabetes dataset
is a two-class problem composed of input patterns with eight
features. Finally, the liver dataset also is a two-class problem
composed of input patterns with six features.

Furthermore, an object recognition problem, composed
of five different objects, was used to evaluate the accuracy
of the proposal; see Figure 2 [67]. A dataset was generated
from a set of 100 images in different positions, rotations,
and scale changes. Instead of recognizing objects directly
from their images, an invariant description of each object
was calculated applying the next process over each image: a
standard threshold [68] was applied to get its binary version;
small spurious regions were eliminated from each image by
means of a size filter [69]; finally, the seven well-known
Hu moments invariant to translations, rotations, and scale
changes [70] were computed over each image. As a result
of this process, we obtained a five-class dataset problem
composed of patterns with seven features.

To reproduce the regular spiking behavior, the parameters

for the Izhikevich neuron model were set as C = 100, v, =
60, v, = —40, Vpey = 35,k = 0.7, = 0.03,b = -2, ¢ = 50,

Computational Intelligence and Neuroscience 7
TABLE 1: Statistical results obtained with the proposed methodology.
Dataset Confidence intervals
Tr. cr. Te. cr. TR TE

Wine 0.963 = 0.015 0.878 £ 0.038 [0.957-0.968] [0.864-0.892]
Iris plant 0.996 £ 0.006 0.957 £ 0.025 [0.994-0.999] [0.948-0.967]
Glass 0.832 £ 0.029 0.703 + 0.064 [0.822-0.843] [0.679-0.727]
Diabetes 0.800 = 0.016 0.743 £ 0.024 [0.794-0.806] [0.734-0.752]
Liver 0.749 £ 0.024 0.688 + 0.034 [0.740-0.757] [0.675-0.700]
Object recognition 1.000 + 0.000 0.990 £ 0.021 [1.000-1.000] [0.982-0.998]

Tr. cr = training classification rate, Te. cr. = testing classification rate.

and d = 100. To solve the differential equation, Euler method
with dt = 1 with a simulation time of T' = 1000. Finally, the
parameters for the artificial bee colony algorithm were set to
SN = 40, MAXGEN = 1000, LIM = 100, and the boundaries
for the solution to XMAX = 10 and XMIN = -10.

The classification rate of the model was computed in
terms of the number of input patterns correctly classified
divided by the total number of tested input patterns. 30
experiments over each dataset were performed to validate the
accuracy of the spiking neuron when the ABC algorithm is
used as a learning strategy. In order to train the spiking neural
model, 80% of the samples (training subset) were randomly
selected to do so, the remaining samples (testing subset) were
used during the testing phase.

At the beginning of the evolutionary learning process, we
observed that the learning error rapidly converges to a stable
error and after a certain number of generations the learning
error changes at a slower rate. Although this behavior was
observed in whole experiments, the learning error achieved
with the ABC algorithm was not good enough for all the
problems. For some problems, the achieved learning error
was highly acceptable. In Figure 3 is shown how the learning
error evolves through each generation of the ABC algorithm.

After the spiking neuron was trained, we proceed to
evaluate the accuracy of the neuron using the remaining
20% samples. From these experiments, we can observe that
the performance of the spiking neuron trained with the
ABC algorithm was highly acceptable for the six pattern
recognition problems. The average percentage of classifica-
tion computed from all experiments is shown in Table 1.
Something that should be remarked is that these methods
only used one Izhikevich neuron model. Furthermore, we
present the results using the ¢-distribution test to construct
the confidence intervals around the mean.

We observed that the classification rate achieved for the
iris, wine, and object recognition problems using the spiking
neuron trained with the ABC algorithm during the training
phase was greater than 96%. However, the classification
rate achieved during the testing phase most of the times
diminished. Nonetheless, the classification rate was higher
than 87%.

On the contrary, for the case of the glass and diabetes
problems, we observed that whereas the classification rate
achieved using the spiking neuron trained with the ABC
algorithm during the training phase was not greater than

84%, the classification rate for the liver problem was not
greater than 75%. As a consequence, the accuracy achieved
with the spiking neuron drastically diminished during the
testing phase. Nonetheless, the results obtained with the spik-
ing neuron trained with the ABC algorithm were acceptable.

Figures 4(a), 4(b), and 4(c) show the experimental results
obtained with the wine, iris plant, and object recognition
datasets. Each dot represents the time when the neuron
produces a spike. As the reader can observe, the synaptic
weights found with the ABC algorithm provoke that the
Izhikevich neuron generates almost the same firing rate
when it is stimulated with patterns from the same class.
Furthermore, the Izhikevich neuron generates firing rates
different enough to discriminate patterns that belong to other
classes.

On the other hand, Figures 4(d), 4(e), and 4(f) show
the experimental results obtained with the glass, diabetes,
and liver datasets, respectively. For this pattern recognition
problems, the set of synaptic weights found with the ABC
algorithm during the training phase were not good enough
for the spiking neuron to generate a similar firing rate when
it is stimulated with patterns from the same class; as a result,
some patterns belonging to the same class were classified in
a different class. Although the Izhikevich neuron does not
generate firing rates different enough to discriminate among
patterns from different classes, the results achieved with the
proposed method were quite acceptable.

In addition, in Table 2, we compare the behavior of
the methodology using three different swarm intelligence
algorithms as a learning strategy: differential evolution (DE)
[58, 60], cuckoo search (CS) [61], and particle swarm opti-
mization (PSO) [62].

Furthermore, we perform a comparison against the well-
known feedforward neural network (FNN). Two different
topologies (1 and 2 hidden layers) and two different training
algorithms (descendant gradient and Levenberg-Marquardt)
[71] were used to design the FNN. The parameters for
training algorithms were set as 0.1 for the learning rate,
2000 epochs for the stop criterion. For each combination
(topology-learning algorithm), 30 experiments were done to
prove the obtained results statistically. For each experiment,
we randomly select the 70% and 10% of the samples for both,
training and validation phases. The remaining 20% of the
samples were chosen for the testing phase.

Evolution of learning error

30
25 1
£
L
£ 20
o}
)
w 15
g
E
5 10 ¢
Z
5
200 400 600 800 1000
Iterations
(@)
Evolution of learning error
30 T T T -
m_
25
E
L
£ 20
)
oy
s
o 15
3
E p———
5 10 E
Z
5]
l—
200 400 600 800 1000
Iterations
©)
Evolution of learning error
30 T T
25

[So3
[=}

Number of experiments
_ -
(=) w

200 400 600 800 1000

Iterations

(e)

0.3

o
o

o
=

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.2

Number of experiments Number of experiments

Number of experiments

30

25

20

15

10

5

Computational Intelligence and Neuroscience

Evolution of learning error
0.06
0.05
0.04
0.03
0.02

0.01

200 400 600 800 1000
Iterations

(b)

Evolution of learning error

! | W o3
0.25
| H oz
, 1 Fqoas
“ 1 B o1
{ I 0.05
200 :))

400 600 800 1000

Iterations

(d)

Evolution of learning error

0.1
0.05
0
200 400 600 800 1000
Iterations

()

FIGURE 3: Training error achieved by the spiking model during the learning phase using ABC algorithm. (a) 30 experiments using the wine
dataset are shown. (b) 30 experiments using the iris dataset are shown. (c) 30 experiments using the glass dataset are shown. (d) 30 experiments
using the diabetes dataset are shown. (e) 30 experiments using the liver dataset are shown. (f) 30 experiments using the object recognition

dataset are shown.

Computational Intelligence and Neuroscience

Spike raster for iris database

Spike raster for wine database

200 T T T T 150
150
. 100
g 8
Q =1
£ 100 £
z z
2. 5
| 5,‘:: J,M‘u ?1!1 1 I! 50
50 il ir/f u " '
i “ s o i
" C'\
. w» -
. il 5 i)
0 0 200 400 600 800 1000
Time (ms) Time (ms)
(@ (®)
Spike raster for object recognition database Spike raster for glass database
= - SR 150 T T T T
[
100
Z £
5 =
g g
a 50
0
0 200 400 600 800 1000 200 400 600 800 1000
Time (ms) Time (ms)
(© (d)
Spike raster for diabetes database 350 Spike raster for liver-bupa database
5 LS
300 | L e e e
250 - N 4
=] [=] .
g g 200} . .
& g, :
é % 150
100
50 +
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (ms) Time (ms)
(e) (f)

FIGURE 4: Experimental results obtained with proposed methodology for different datasets. Notice that different firing rates which correspond
to different classes can be observed. Each dot represents the time that the neuron generate an spike. (a) Wine dataset. (b) Iris plant dataset.
(c) Object recognition dataset. (d) Glass dataset. (e) Diabetes dataset. (f) Liver dataset.

10 Computational Intelligence and Neuroscience
TABLE 2: Average accuracy provided by the methods using different databases.
Dataset Method using DE Method using PSO Method using CS
Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr.
Wine 0.9796 0.8744 0.9782 0.8879 0.9831 0.9078
Iris plant 0.9933 0.9833 0.9933 0.97 0.9942 0.9467
Glass 0.8158 0.7411 0.8178 0.7457 0.8080 0.7646
Diabetes 0.8038 0.7371 0.7990 0.7619 0.8051 0.7477
Liver 0.7620 0.6870 0.7591 0.6754 0.7609 0.6536
Object recognition 1 0.9850 1 0.9950 1 1
Tr. cr = training classification rate, Te. cr. = testing classification rate.
TABLE 3: Average accuracy provided by the FNN using different databases.
FNN FNN FNN FNN

Dataset DG-1 DG-2 LM-1 LM-2

Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr.
Wine 0.9867 0.9800 0.9497 0.9171 0.9986 0.9714 0.9797 0.9629
Iris plant 0.9133 0.8867 0.6625 0.6367 0.9942 0.9767 0.7667 0.7733
Glass 0.6907 0.6738 0.6390 0.6310 0.8453 0.7714 0.7413 0.7119
Diabetes 0.7663 0.7732 0.7153 0.7144 0.7993 0.7320 0.7850 0.7588
Liver 0.5924 0.6145 0.5928 0.5623 0.7243 0.6652 0.7181 0.6812
Object recognition 0.7413 0.6800 0.7413 0.6800 0.7413 0.6800 0.7413 0.6800

Tr. cr = training classification rate, Te. cr. = testing classification rate.

The number of neurons that compose the hidden layers
depends on the classification problem. The next two topolo-
gies were used in combination with each dataset.

(1) Wine dataset: 1 HL composes 8 neurons. 2 HL com-
pose 5 and 3 neurons, respectively.

(2) Iris plant dataset: 1 HL composes 4 neurons. 2 HL
compose 2 and 2 neurons, respectively.

(3) Glass dataset: 1HL composes 8 neurons. 2 HL com-
pose 5 and 3 neurons, respectively.

(4) Diabetes dataset: 1HL composes 5 neurons. 2HL
compose 3 and 2 neurons, respectively.

(5) Object recognition dataset: 1 HL composes 6 neurons.
2 HL compose 4 and 2 neurons, respectively.

Table 3 shows the classification efficiencies using feed-
forward neural networks (FNN). Each column contains
the obtained results using a combination of topology and
learning algorithms during training and testing phases. Label
DG-1 means that the descendant gradient method and one
hidden layer (HL) were used to design the FNN, and label
LM-2 indicates that Levenberg-Marquardt method and two
hidden layers were used to create the FNN, and so on.

The results obtained with the spiking neuron model
trained with the ABC algorithm are similar to those obtained
in [58, 60-62]. Although with some dataset the ABC algo-
rithm provides better results than DE and PSO algorithm and
vice versa, we could not say that one learning strategy is better
than the other.

In fact, swarm intelligence algorithms can be considered
as a learning strategy to adjust the synaptic weights of a third-
generation neural model. After comparing the different
algorithms, we note that they present the same behavior
and are serious candidates to be considered as a learning
strategy. These results suggest that swarm intelligence algo-
rithms combined with spiking neurons can be regarded as
an alternative way to perform various pattern recognition
tasks. After several experiments, we observed that if we
want to improve the efficiency of the methodology, it is
not enough to change the learning strategies because they
provide similar efficiencies. Nonetheless, the results obtained
are highly acceptable.

On the other hand, the reader can observe in Table 2
that the proposed methodology provides better results than
traditional FNN composed of several neurons. These results,
obtained with the described methodology, show a visible
advantage of a spiking model against FNN.

We can also conjecture that if only one neuron is
capable of solving pattern recognition problems, perhaps
several spiking neurons working together can improve the
experimental results obtained in this research.

5.2. Application of the Proposed Methodology in a Odor
Recognition Problem. In this subsection, we present some
preliminary results obtained with the proposed methodology
in a problem related to odor recognition. The dataset used
was built in Bermak and Martinez [72] where the authors
developed an automated gas delivery experimental setup for
extracting volatile compounds at given concentrations from
liquids, composed of two pumps, two mass flow controllers

Computational Intelligence and Neuroscience

TABLE 4: Statistical results obtained with the proposed methodology.

1

TABLE 5: Statistical results obtained with the proposed methodology.

Mean Confidence intervals
Dataset
Tr. cr. Te. cr. TR TE
Odor 0.952 +0.024 0.898 +0.064 [0.943-0.961] [0.874-0.922]

Tr. cr = training classification rate, Te. cr. = testing classification rate.

(MFCs), one bubbler, a gas chamber, and a data acquisition
system. This dataset contains patterns obtained from ethanol
and butanol vapors injected into the gas chamber at a flow
rate determined by the mass flow controllers. The authors
also used sensor arrays composed of five commercial TGS
Figaro gas sensors (TGS 2600, 2602, 2610, 2611, and 2620).
The potential differences across the sensor resistances were
measured using a voltage divider with 2.2k load resistors
while keeping the heating voltage constant to 5 V. Finally, the
sensors output voltages were sampled at a rate of 10 Hz and
quantized with an 11 bit analog to digital converter to build a
dataset composed of 124 patterns with 5 features each pattern.

The parameters for the Izhikevich neuron and for the arti-
ficial bee colony algorithm and the number of experiments as
well as the samples used for training and testing phases were
set as equal as in the previous subsection.

Table 4 presents the results achieved with the pro-
posed methodology applied to an odor recognition problem.
According to the results presented in Table 4, the reader can
observe that the accuracy of the spiking neuron is highly
acceptable.

These results obtained with the proposed methodology
confirm that spiking neurons can be considered as a pattern
recognition technique useful in a wide range of applications,
including odor recognition.

5.3. Application of the Proposed Methodology in Cancer Clas-
sification Based on DNA Microarrays. In this subsection, we
present some preliminary results obtained with the proposed
methodology for a problem related to cancer classification
based on DNA microarrays.

DNA microarrays are a powerful technique in genetic
science due to the possibility to analyze the gene expression
level of millions of genes at the same time. However, the main
problem that arises when DNA microarrays are analyzed with
computational intelligent techniques is that the number of
genes is too big, and the samples are too few [73].

In that sense, we evaluate the capabilities of a spiking
neuron for predict a disease based on the DNA microarrays
dataset. It is important to mention that in order to capture
the real behavior of the spiking neuron, we do not apply any
dimensional reduction technique over the dataset.

The dataset used in this paper was built in [74] where the
authors described a generic approach to cancer classification
based on gene expression monitoring by DNA microarrays
that discover the distinction between acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL). The dataset
consists of 38 bone marrow samples for training (27 ALL and
11 AML), over 7129 probes from 6817 human genes. Also, 34
samples testing data are provided, with 20 ALL and 14 AML.

Mean Confidence intervals
Dataset
Tr. cr. Te. cr. TR TE
g’;‘\‘l‘fr 0.883 + 0.024 0.625 + 0.097 [0.875-0.892] [0.588-0.661]

Tr. cr = training classification rate, Te. cr. = testing classification rate.

The parameters for the Izhikevich neuron and for the arti-
ficial bee colony algorithm and the number of experiments
were set as equal as in the previous subsection.

Table 5 present the results achieved with the proposed
methodology applied to a cancer recognition problem using
DNA microarrays. According to the results presented in
Table 5, the reader can observe that the accuracy of the
spiking neuron is highly acceptable during training phases;
however during the testing phase, the accuracy drastically
diminished.

These results obtained with the proposed methodology
are preliminary and suggest that only one spiking neuron
is not enough to solve this problem. Nonetheless, if we
combine several spiking neurons to build a network or apply
a dimensional reduction stage before training the spiking
model, the accuracy could increases. It is important to remark
that few highly dimensional samples were used to train the
spiking neural model.

6. Conclusion

In this paper, we described how the artificial bee colony
algorithm can be used as a learning strategy to train a spiking
neural model. The results obtained with this approach suggest
that ABC algorithm is a useful alternative to adjusting the
synaptic weights of the spiking neuron model. Furthermore,
we observed that the spiking neuron model provides accept-
able results during the pattern recognition task, regardless of
the swarm intelligence algorithms used as a learning strategy,
the spiking neuron model provides acceptable results during
the pattern recognition task.

Although we found that the spiking neuron did not
behave as good as we desired with the six datasets, we
could say that, in general, the behavior achieved with the
spiking neuron provokes that patterns belonging to the same
class generate almost the same firing rate in the output
of the spiking neuron, and patterns belonging to different
classes produce firing rates different enough to discriminate
among the different classes. Thanks to the swarm intelligence
algorithm used during the evolutionary learning process, the
spiking model behaves like we previously described in our
starting hypothesis.

Furthermore, a comparison among the ABC, DE, CS,
and PSO algorithms was performed. In general, we observe
that the accuracy obtained with the spiking neuron model
trained with the ABC algorithm is comparable to the accu-
racy obtained with the methods described in [58, 60-62].
We could not say that one learning strategy is better than
the other because, with some datasets, the ABC algorithm

12

provides better results than DE and PSO algorithm and vice
versa.

This research provides a clear idea of how powerful a
spiking neuron model is in a pattern classification task.
Furthermore, the results obtained with the odor recognition
and cancer classification problem based on DNA microarrays
were highly encouraged.

Nowadays, we are testing different spiking neuron mod-
els. Despite the encouraging results achieved with this
methodology, we are developing a new method to evolve the
synaptic weights at the same time not only for one spiking
neuron, but for several spiking neurons as well as to adjust
the parameters of the models.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Universidad La Salle for the
economic support under Grant no. ULSA 1-061/12. Beatriz
Garro thanks CONACYT for the posdoctoral scholarship.

References

[1] B. A. Garro, H. Sossa, and R. A. Vazquez, “Design of artificial
neural networks using a modified particle swarm optimization
algorithm,” in Proceedings of the International Joint Conference
on Neural Networks (ITCNN *09), pp. 938-945, June 2009.

[2] B. A. Garro, H. Sossa, and R. A. Vazquez, “Design of artificial
neural networks using differential evolution algorithm,” in
Proceedings of the 17th International Conference on Neural Infor-
mation Processing: Models and Applications—Part II (ICONIP
’10), vol. 6444 of Lecture Notes in Computer Science, pp. 201-208,
Springer, Berlin, Germany, 2010.

[3] M. Dorigo and C. Blum, “Ant colony optimization theory: a
survey, Theoretical Computer Science, vol. 344, no. 2-3, pp. 243-
278, 2005.

[4] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459-471, 2007,

[5] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A
comprehensive survey: artificial bee colony (ABC) algorithm
and applications,” Artificial Intelligence Review, vol. 42, no. 1, pp.
21-57, 2014.

[6] D. Karaboga and B. Akay, “Artificial Bee Colony (ABC) algo-
rithm on training artificial neural networks,” in Proceedings of
the IEEE 15th Signal Processing and Communications Applica-
tions (SIU 07), pp. 1-4, IEEE, Eskisehir, Turkey, June 2007.

[7] D. Karaboga and B. Basturk, “Artificial bee colony (abc)
optimization algorithm for solving constrained optimization
problems,” in Proceedings of the 12th International Fuzzy Systems
Association World Congress on Foundations of Fuzzy Logic and
Soft Computing (IFSA °07), pp. 789-798, Springer, Cancun,
Mexico, 2007.

[8] D. Karaboga, B. Akay, and C. Ozturk, “Artificial bee colony
(ABC) optimization algorithm for training feed-forward neural

[9

(10]

(11]

(12]

(18]

(20]

Computational Intelligence and Neuroscience

networks,” in Proceedings of the 4th International Conference
on Modeling Decisions for Artificial Intelligence (MDAI 07), pp.
318-329, Springer, 2007.

D. Karaboga, C. Ozturk, and B. Akay, “Training neural net-
works with abc optimization algorithm on medical pattern
classification,” in Proceedings of the International Conference on
Multivariate Statistical Modelling and High Dimensional Data
Mining, 2008.

D. Karaboga and C. Ozturk, “Neural networks training by
artificial bee colony algorithm on pattern classification,” Neural
Network World, vol. 19, no. 3, pp. 21-57, 2009.

S. N. Omkar and J. Senthilnath, “Artificial bee colony for
classification of acoustic emission signal source,” International
Journal ofAerospace Innovations, vol. 1, no. 3, pp. 129-143, 20009.
B. A. Garro, H. Sossa, and R. A. Vazquez, “Artificial neural
network synthesis by means of artificial bee colony (ABC)
algorithm,” in Proceedings of the IEEE Congress of Evolutionary
Computation (CEC ’11), pp. 331-338, New Orleans, La, USA,
June 2011.

R. Irani and R. Nasimi, “Application of artificial bee colony-
based neural network in bottom hole pressure prediction
in underbalanced drilling;” Journal of Petroleum Science and
Engineering, vol. 78, no. 1, pp. 6-12, 2011.

T. J. Hsieh, H. E Hsiao, and W. C. Yeh, “Forecasting stock mar-
kets using wavelet transforms and recurrent neural networks:
an integrated system based on artificial bee colony algorithm,”
Applied Soft Computing, vol. 11, no. 2, pp. 2510-2525, 2011.

H. Shah, R. Ghazali, and N. M. Nawi, “Using artificial bee colony
algorithm for MLP training on earthquake time series data
prediction,” Journal of Computing, vol. 3, no. 6, pp. 135-142, 2011.
W.-C. Yeh and T.-]. Hsieh, “Artificial bee colony algorithm-
neural networks for S-system models of biochemical networks
approximation,” Neural Computing and Applications, vol. 21, no.
2, pp. 365-375, 2012.

D. Karaboga and B. Akay, “A survey: algorithms simulating bee
swarm intelligence,” Artificial Intelligence Review, vol. 31, no. 1-
4, pp. 61-85, 2009.

D. T. Pham, A. J. Soroka, A. Ghanbarzadeh, E. Koc, S. Otri, and
M. Packianather, “Optimising neural networks for identifica-
tion of wood defects using the bees algorithm,” in Proceedings
of the IEEE International Conference on Industrial Informatics
(INDIN °06), pp. 1346-1351, IEEE, Singapore, August 2006.

T. Niknam, “Application of honey-bee mating optimization
on state estimation of a power distribution system including
distributed generators,” Journal of Zhejiang University: Science
A, vol. 9, no. 12, pp. 17531764, 2008.

B. Amiri and M. Fathian, “Integration of self organizing feature
maps and honey bee mating optimization algorithm for market
segmentation,” Journal of Theoretical and Applied Information
Technology, vol. 3, pp. 70-86, 2007.

W. Maass, “Networks of spiking neurons: the third generation
of neural network models,” Neural Networks, vol. 10, no. 9, pp.
1659-1671, 1997.

E Rieke, D. Warland, Robert, and W. Bialek, Spikes—Exploring
the Neural Code, 1997.

M. E. Hasselmo, C. Bodelon, and B. P. Wyble, “A proposed
function for hippocampal theta rhythm: separate phases of
encoding and retrieval enhance reversal of prior learning;
Neural Computation, vol. 14, no. 4, pp. 793-817, 2002.

J. J. Hopfield and C. D. Brody, “What is a moment? ‘Cortical
sensory integration over a brief interval,” Proceedings of the

Computational Intelligence and Neuroscience

National Academy of Sciences of the United States of America,
vol. 97, no. 25, pp. 13919-13924, 2000.

[25] S. Loiselle, J. Rouat, D. Pressnitzer, and S. Thorpe, “Exploration
of rank order coding with spiking neural networks for speech
recognition,” in Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN °05), vol. 4, pp. 2076-
2080, Québec, Canada, July-August 2005.

[26] H. Azhar, K. Iftekharuddin, and R. Kozma, “A chaos
synchronization-based dynamic vision model for image
segmentation,” in Proceedings of the IEEE International Joint
Conference on Neural Networks (IIJCNN ’05), vol. 5, pp.
3075-3080, 2005.

[27] S.]. Thorpe, R. Guyonneau, N. Guilbaud, J.-M. Allegraud, and
R. VanRullen, “SpikeNet: real-time visual processing with one
spike per neuron,” Neurocomputing, vol. 58-60, pp. 857-864,
2004.

[28] R. A. Vazquez, B. Girau, and J. C. Quinton, “Visual attention
using spiking neural maps,” in Proceedings of the International
Joint Conference on Neural Network (IJCNN ’11), pp. 2164-2171,
August 2011.

[29] E. A. di Paolo, “Spike-timing dependent plasticity for evolved
robots,” Adaptive Behavior, vol. 10, no. 3-4, pp. 243-263, 2003.

[30] D. Floreano, J.-C. Zufferey, and J.-D. Nicoud, “From wheels to
wings with evolutionary spiking circuits,” Artificial Life, vol. 11,
no. 1-2, pp. 121-138, 2005.

[31] A. L. Hodgkin, “The local electric changes associated with
repetitive action in a non-medullated axon,” The Journal of
Physiology, vol. 107, no. 2, pp. 165-181, 1948.

[32] L. E. Abbott, “Lapicque’s introduction of the integrate-and-fire
model neuron (1907),” Brain Research Bulletin, vol. 50, no. 5-6,
pp. 303-304, 1999,

[33] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE
Transactions on Neural Networks, vol. 14, no. 6, pp. 1569-1572,
2003.

[34] R. FitzHugh, “Impulses and physiological states in theoretical
models of nerve membrane,” Biophysical Journal, vol. 1, no. 6,
pp. 445-466, 1961.

[35] R. M. Rose and J. L. Hindmarsh, “The assembly of ionic
currents in a thalamic neuron. I. The three-dimensional model,”
Proceedings of the Royal Society B: Biological Sciences, vol. 237,
no. 1288, pp. 267-288, 1989.

[36] P. Rowcliffe, J. Feng, and H. Buxton, “Clustering within
integrate-and-fire neu rons for image segmentation,” in Arti-
ficial Neural Networks—ICANN 2002, J. Dorronsoro, Ed., vol.
2415 of Lecture Notes in Computer Science, pp. 69-74, Springer,
Berlin, Germany, 2002.

[37] B. Meftah, O. Lezoray, and A. Benyettou, “Segmentation and
edge detection based on spiking neural network model,” Neural
Processing Letters, vol. 32, no. 2, pp. 131-146, 2010.

[38] Q.X. Wu, T. M. McGinnity, L. P. Maguire, A. Belatreche, and B.
Glackin, “Processing visual stimuli using hierarchical spiking
neural networks,” Neurocomputing, vol. 71, no. 10-12, pp. 2055—
2068, 2008.

[39] A. Belatreche, L. P. Maguire, and T. M. McGinnity, “Pat-

tern recognition with spiking neural networks and dynamic

synapse,” in Proceedings of the International FLINS Conference

on Applied computational intelligence, pp. 205-210, 2004.

J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT:

a spiking neural network training algorithm for classification

problems,” IEEE Transactions on Neural Networks, vol. 21, no.

11, pp. 1817-1830, 2010.

(40

(41]

(42]

[43]

13

Q. Yu, K. Tan, and H. Tang, “Pattern recognition computation in
a spiking neural network with temporal encoding and learning,”
in Proceedings of the International Joint Conference on Neural
Networks (IICNN ’12), pp. 1-7, IEEE, Brisbane, Australia, June
2012.

H. N. Abdull Hamed, N. Kasabov, Z. Michlovsky, and S. M.
Shamsuddin, “String pattern recognition using evolving spiking
neural networks and quantum inspired particle swarm opti-
mization,” in Neural Information Processing: 16th International
Conference, ICONIP 2009, Bangkok, Thailand, December I-
5, 2009, Proceedings, Part II, vol. 5864 of Lecture Notes in
Computer Science, pp. 611-619, Springer, Berlin, Germany, 2009.
N. Kasabov, “Evolving spiking neural networks for spatio-and
spectro-temporal pattern recognition,” in Proceedings of the 6th
IEEE International Conference Intelligent Systems (IS ’12), pp. 27—
32, September 2012.

S.M. Bohte, J. N. Kok, and H. la Poutré, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neuro-
computing, vol. 48, no. 1-4, pp. 17-37, 2002.

B. Schrauwen and J. van Campenhout, “Extending SpikeProp,”

in Proceedings of the IEEE International Joint Conference on
Neural Networks, vol. 1, pp. 471-475, July 2004.

J. Xin and M. J. Embrechts, “Supervised learning with spiking
neural networks,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN ’01), vol. 3, pp. 1772-
1777, July 2001.

R. P. N. Rao, “Hierarchical bayesian infere nce in networks of
spiking neurons,” in Advances in Neural Information Processing
Systems, vol. 17, MIT Press, 2005.

S. Deneve, “Bayesian spiking neurons. I: inference;” Neural
Computation, vol. 20, no. 1, pp. 91-117, 2008.

N. Kasabov, “To spike or not to spike: a probabilistic spiking
neuron model,” Neural Networks, vol. 23, no. 1, pp. 16-19, 2010.

D. Barber, “Learning in spiking neural assemblies,” in Proceed-

ings of the 16th Annual Neural Information Processing Systems
Conference (NIPS °02), December 2002.

G. Chechik, “Spike-timing-dependent plasticity and relevant
mutual information maximization,” Neural Computation, vol.
15, no. 7, pp. 1481-1510, 2003.

J. P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal
spike-timing-dependent plasticity for precise action potential
firing in supervised learning,” Neural Computation, vol. 18, no.
6, pp. 1318-1348, 2006.

H. S. Seung, “Learning in spiking neural networks by reinforce-

ment of stochastic synaptic transmission,” Neuron, vol. 40, no.
6, pp. 1063-1073, 2003.

E. M. Izhikevich, “Solving the distal reward problem through
linkage of STDP and dopamine signaling,” Cerebral Cortex, vol.
17, no. 10, pp. 2443-2452, 2007.

R. Legenstein, D. Pecevski, and W. Maass, “A learning theory
for reward-modulated spike-timing-dependent plasticity with
application to biofeedback,” PLoS Computational Biology, vol.
4, no. 10, Article ID 1000180, 2008.

S. Schliebs, M. Defoin-Platel, S. Worner, and N. Kasabov,
“Integrated feature and parameter optimization for an evolving
spiking neural network: exploring heterogeneous probabilistic
models,” Neural Networks, vol. 22, no. 56, pp. 623-632, 2009,
Advances in Neural Networks Research: International Joint
Conference on Neural Networks (IJCNN’09).

A. Cachén and R. A. Vazquez, “Tuning the parameters of an
integrate and fire neuron via a genetic algorithm for solving

14

(58]

(63]

[64]

(67]

[68]

[72]

(73]

pattern recognition problems,” Neurocomputing, vol. 148, pp.
187-197, 2015.

R. A. Vazquez and A. Cachdn, “Integrate and Fire neurons
and their application in pattern recognition,” in Proceedings
of the 7th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE ’10), pp. 424-
428, September 2010.

R. Vazquez, “Izhikevich neuron model and its application in
pattern recognition,” Australian Journal of Intelligent Informa-
tion Processing Systems, vol. 11, no. 1, pp. 35-40, 2010.

R. A. Vazquez, “Pattern recognition using spiking neurons and
firing rates,” in Advances in Artificial Intelligence—IBERAMIA
2010: Proceedings of the 12th Ibero-American Conference on
Al Bahia Blanca, Argentina, November 1-5, 2010, vol. 6433
of Lecture Notes in Computer Science, pp. 423-432, Springer,
Berlin, Germany, 2010.

R. A. Vazquez, “Training spiking neural models using cuckoo
search algorithm,” in Proceedings of the IEEE Congress of
Evolutionary Computation (CEC ’11), pp. 679-686, June 2011.
R. A. Védzquez and B. A. Garro, “Training spiking neurons by
means of particle swarm optimization,” in Advances in Swarm
Intelligence: Ist International Conference, ICSI 2010, Beijing,
China, June 12-15, 2010, Proceedings, vol. 6728 of Lecture Notes
in Computer Science, Part I, pp. 242-249, Springer, Berlin,
Germany, 2011.

W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single
Neurons, Populations, Plasticity, Cambridge University Press,
Cambridge, UK, 2002.

E. M. Izhikevich, “Which model to use for cortical spiking
neurons?” IEEE Transactions on Neural Networks, vol. 15, no.
5, pp. 1063-1070, 2004.

E. M. Izhikevich, Dynamical Systems in Neuroscience: the Geom-
etry of Excitability and Bursting, Computational Neuroscience,
MIT Press, 2007.

P. M. Murphy and D. W. Aha, “UCI repository of machine
learning databases,” Tech. Rep., Department of Information and
Computer Science, University of California, Irvine, Calif, USA,
1994.

R. A. V. E. de Los Monteros and J. H. S. Azuela, “A new
associative model with dynamical synapses,” Neural Processing
Letters, vol. 28, no. 3, pp. 189-207, 2008.

N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 9, no. 1, pp. 62-66, 1979.

R. Jain and R. K. B. G. Schunck, Machine Vision, McGraw-Hill,
1995.

M.-K. Hu, “Visual pattern recognition by moment invariants,”
IEEE Transactions on Informatian Yheory, vol. 8, no. 2, pp. 179-
187,1962.

M. 1. A. Lourakis, A Brief Description of the Levenberg-
Marquardt Algorithm Implemented by Levmar, Foundation
for Research and Technology-Hellas, Vassilika Vouton, Crete,
GREECE, 2005.

A. Bermak and D. Martinez, “A compact 3D VLSI classifier
using bagging threshold network ensembles,” IEEE Transactions
on Neural Networks, vol. 14, no. 5, pp. 1097-1109, 2003.

B. A. Garro, R. A. Vazquez, and K. Rodriguez, “Classification of
DNA microarrays using artificial bee colony (ABC) algorithm,”
in Advances in Swarm Intelligence, Y. Tan, Y. Shi, and C. Coello,
Eds., vol. 8794 of Lecture Notes in Computer Science, pp. 207-
214, Springer, 2014.

Computational Intelligence and Neuroscience

[74] T. R. Golub, D. K. Slonim, P. Tamayo et al, “Molecular

classification of cancer: class discovery and class prediction by
gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531-
527,1999.

