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Abstract: When driving, people make decisions based on current traffic as well as their desired route.
They have a mental map of known routes and are often able to navigate without needing directions.
Current published self-driving models improve their performances when using additional GPS
information. Here we aim to push forward self-driving research and perform route planning even in
the complete absence of GPS at inference time. Our system learns to predict in real-time vehicle’s
current location and future trajectory, on a known map, given only the raw video stream and the final
destination. Trajectories consist of instant steering commands that depend on present traffic, as well
as longer-term navigation decisions towards a specific destination. Along with our novel proposed
approach to localization and navigation from visual data, we also introduce a novel large dataset in
an urban environment, which consists of video and GPS streams collected with a smartphone while
driving. The GPS is automatically processed to obtain supervision labels and to create an analytical
representation of the traversed map. In tests, our solution outperforms published state of the art
methods on visual localization and steering and provides reliable navigation assistance between any
two known locations. We also show that our system can adapt to short and long-term changes in
weather conditions or the structure of the urban environment. We make the entire dataset and the
code publicly available.

Keywords: autonomous driving; self-driving; visual localization; visual navigation; deep learn-
ing; trajectory prediction; geometric computer vision; autonomous driving dataset; localization by
image segmentation

1. Introduction

Nowadays, self-driving cars and intelligent driver-assistant systems heavily relying
on vision are emerging in our everyday reality. Still, the complex task of learning to
navigate only from visual data is in its early stages. Even though we acknowledge that
for self-driving cars, additional control modules are necessary (such as the ones based
on GPS and LiDAR), it is essential to increase the performances and the perception of
the vision-based solutions. Since vision, at both short and long-range distances, is almost
always available at relatively low-cost.

In the literature, there are models [1,2] that use visual information to extract high-
level semantics of the traffic scene and decide the steering action conditioned on these
representations. Other works [3–5] propose end-to-end models that take as input, frames
from the video, and directly output steering commands. The first approach is easier to
interpret by humans, being useful to identify and justify failure cases. On the other hand,
collecting data and training is more efficient in end-to-end solutions, which can learn more
relevant features.

We propose a system (Figure 1) that combines end-to-end learning with precise
mathematical modeling for automatic visual localization and navigation, thus providing
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both efficiency and a certain level of explainability. Our model predicts the vehicle’s
trajectory for the next seven seconds, which offers complete steering and speed information
to avoid obstacles and follow a certain route. Our work is thus related to end-to-end
learning approaches, which started with the pioneering model Alvinn [6] and continued
with the highly successful models in the deep learning era [3–5,7].

Figure 1. The high-level structure of the system. The first ConvNet module learns to predict the location and heading on
the map by an image segmentation-based approach. Road map segments are cropped around the location, one showing
all directions, and the other one only the intended route, conditioned on the destination. From road map crops and video
frames, the second model predicts the navigation trajectory for the next seven seconds, which is also conditioned on the
final destination. The trajectory estimation task becomes very interesting and useful especially in intersections with several
possible routes.

1.1. Differences between Visual-Based and GPS-Based Localization and Navigation

There are several important differences and advantages that a visual-based navigation
system could have over a more traditional GPS-based approach. The two, in fact, have
complementary properties and could be used in combination in a practical system, for the
benefit of the overall accuracy, speed and robustness to various challenging road conditions.
Below we discuss some of these aspects, while emphasizing the advantages that visual-
based navigation could bring:

1. Visual-based navigation systems, using deep convolutional nets, could respond faster
than GPS-based navigation systems since deep nets offer a local, immediate and
direct mapping between visual input and the desired localization and navigation
output, without needing external signal from satellites and various, often expensive,
search and other algorithmic procedures. It is well known that current GPS-based
commercial navigation applications can have a significant delay (often up to a second),
which could make driving very difficult and even unsafe. It is not unusual for a regular
driver to miss, for example, an intersection due to such a delay.

2. Visual-based systems could also be more accurate than GPS-based systems, since
vision, which is based on local sensing information, can offer a vehicle pose (position
and orientation) that is better aligned with the real scene. At rest or very low speeds
it is well known that GPS cannot offer such accurate orientation.

3. GPS signal is not always available or could be erroneous, especially in cluttered urban
or natural areas, with many tall buildings, trees and other large structures, or under
bridges, tunnels and structures that could occlude the sky. GPS could in fact fail
for many other reasons, in which case a visual based navigation system could take
its place.
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4. In general, we could think of GPS-based and vision-based navigation as having
complementary properties such that in practice they could work together, benefiting
from each other’s advantages. While GPS is robust to weather conditions and traffic
and does not need prior learning, the visual system could be faster, sometimes
even more accurate (especially in areas cluttered by tall structures) and it could also
estimate orientation correctly even in cases of zero or very low speed. Together, GPS
and visual-based localization and navigation, could form a more robust and more
accurate system. This hybrid combination between GPS and vision is definitely worth
becoming the subject of future research. In this paper we focus on vision only, in order
to better understand its capabilities and limitations.

Recovering from errors in visual-based localization and navigation: A visual-based navi-
gation system that involves significant temporal processing could in principle be vulnerable
to past errors, which could also accumulate over time or cause the system to suddenly drift
to a completely new and distant location. However, in the case of the Driven by Vision
system presented here, we recover from errors easily since the system does not depend on
past predictions. All estimations are done on a small number of frames around the current
position and time.

1.2. Visual-Based Localization

One of the main tasks we tackle is that of visual-based localization, which aims to
estimate location from visual input (e.g., images or video). Traditional methods performing
this task were based on explicit feature extraction and matching [8,9]. As with the vast
majority of vision problems, the accuracy in localization raised considerably with the
advances in deep learning [10–14]. Feature-based methods are highly accurate but often
require complex pipelines and are not very robust to changes in weather, lighting conditions,
and occlusions.

Kendall et al. [14,15] introduced the idea of predicting the observer’s pose directly
from the image with an end-to-end regression CNN. They also use transfer learning
from classification nets trained on large datasets such as Places and ImageNet. In their
remarkable work, the model achieves good accuracy in real-time, being robust to factors
such as unusual lighting or image blur.

Marcu et al. [12] proposed an original deep-learning approach to localization from
images that formulates localization as a segmentation task: the input to a segmentation-
style U-Net [16] is a given image and the output is a circle on a map, with the center at the
predicted location of that image w.r.t. the map. We compare these methods on our dataset,
then propose an improved localization by segmentation solution that achieves strongly
superior results to the regression paradigm.

1.3. Visual Navigation with Location Information and Trajectory Prediction

The large-scale usage of navigation applications such as Google Maps or Waze makes
it possible to provide both directions and global traffic dynamics. Some driving assistance
solutions [17,18] even generate videos from Google Maps images to offer better route
recognition to users.

In the context of autonomous driving, Hecker et al. [7] introduced the idea of training
end-to-end models with additional online information about the navigation route. Their
deep recurrent CNN model receives images from multiple cameras placed at different
angles along with a screenshot of a route planning commercial application. Amini et al. [19]
propose a variational end-to-end solution for navigation and localization that predicts
the probability distribution of the vehicle’s next pose given an offline map representation,
the previous pose, video, and GPS raw streams.

Another task we tackle is that of trajectory prediction. The idea was firstly introduced
by Glassner et al. [20], who developed a trajectory learning model that exceeds a baseline
end-to-end steering solution in a simulated highway environment. Their neural network is
followed by an analytical module designed to validate the predicted trajectories. Different
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from the model in [20], ours predicts trajectories for a longer time span and is trained and
tested on real-world data. The urban scene, with intersections where there are multiple
possible paths to take, increases both utility and complexity of our task. Apart from
comprising rich steering information and being more natural to interpret, trajectories can
also be fitted in the post-processing step to derive smoother steering actions and improve
passengers’ comfort (studied in [21]). At the higher level, we aim to solve visual-based real-
world navigation, by estimating the trajectory without any GPS knowledge, conditioned
on the desired destination relative to a map (automatically created during training). Our
approach, based solely on visual information in order to perform navigation is different
and complementary to most systems which involve GPS information for autonomous
navigation [22–27].

Mirowski et al. [28] proposed the work that best captures the learning of visual
navigation with a reinforcement learning approach. They solve the maze navigation task
in a context closer to real life, by also integrating it with place recognition, which we
exploit as well. Their agents successfully learn to reach destinations by taking discrete
movement actions in an environment made of Google Street View images. While our
learning approach, automatically supervised by GPS signal during training, is very different
in terms of data, learning models, mathematical formulation, and specific predictions (our
trajectory vs. their discrete set of actions), our work and theirs relate at a high level.

1.4. Robust Visual Solutions in Changing Conditions

Environmental changes such as weather, day-night and long-term structural changes
over time, severely impact the performances of visual models performing various tasks.
Recent research [29] addresses the impact of such factors on the accuracy of visual localiza-
tion models. They also introduce three datasets for this purpose and benchmark the current
localization methods, concluding that we are far from having visual localization robust
to time changes. Some approaches [30] tackle this problem by using additional semantic
information and inserting a new step in a feature-based localization method pipeline. Even
though their solution is effective for some use cases, such semantic information is not
available in our setup and would be expensive to collect.

Several real-world self-driving datasets [4,5,7] also include frames having challenging
luminosity or weather conditions, as well as ours. Still, they only represent a small
percentage of the test data and the authors present only the general, average results of
their methods over all cases. Only very recently researchers [31,32] proposed advanced
artificial weather generation techniques, for augmenting real world datasets (KITTI [33])
with multiple weather conditions. Their models trained on such data perform considerably
better on real bad weather (taken from other datasets).

In experiments (Section 6.4)), we show that by training on an extended dataset, which
includes images with various changes in weather, under diverse conditions of lighting, sun
flare, rain and fog, as well as structural and environmental changes that take place over a
longer period of time (14 months), the results on the test set improved. Therefore, the addi-
tion of such diverse conditions and environmental changes improves generalization.

2. Motivation and System Overview

Our main goal is to replicate humans’ capacity to navigate from vision alone with
minimal expenses. A robust visual navigation solution could also complement the current
GPS based ones by removing the localization delay, by knowing orientation without
needing movement and by understanding fine traffic dynamics. Figure 1 presents an
overview of the system.

In the first stage, a deep net predicts from the current frame the corresponding 2D pose
w.r.t to a known map. In the second stage, the route around the obtained location is fed
together with multi-frame visual information to another deep net, which learns end-to-end
to predict the future trajectory. Due to the lack of data freely available that is suitable for
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our proposed approach, we collected our own dataset covering a relatively large area in a
European city (Figure 2).

Figure 2. (A) The graph structure of the driving map. (B) Cropped sections of the analytically obtained map overlapped
with the corresponding map regions from Google Maps. (C) The sub-part (orange) of the map crossed in the second phase
of data collection.

We make all our data and models freely available on our website Driven by Vision
project website: https://sites.google.com/view/drivenbyvision/home). Our setup is
simple and inexpensive: we use a regular car and a mobile phone that collects video
and GPS streams simultaneously. The ground-truth location and steering labels for the
video frames are generated without human annotation, by automatically processing the
GPS stream, thus obtaining annotations at a minimal cost. A system such as the one we
propose could be easily deployed within a city, for both data collection, annotation, training,
and driving assistance, as it requires no specific hardware or manual annotations.

Main Contributions

The main contributions of our proposed approach are:

1. We introduce, to our best knowledge, the first deep-learning-based system that
simultaneously learns to self-locate and to navigate towards a planned destination
from visual information only. This is an important ability and complementary to the
case when GPS information is available. Due to the loss or inaccuracies in GPS signal,
often met in practice, the capacity to accurately locate using visual information can
significantly improve the performance and robustness of current GPS-based methods.

2. The system is highly scalable at minimal costs and can be easily deployed to learn
over an entire city or other geographical region by having it used by many drivers
simultaneously. We also introduce the Urban European Driving Dataset (UED), which
we make available along with our code and user-friendly application, which we
developed for both data collection and real-time usage.

3. We present competitive numerical results, improving over strong baselines and state-
of-the-art methods.

4. Other contributions: (1) we extend and improve a previous visual localization by
image segmentation model and adapt it to learn to localize accurately in challenging
traffic conditions; (2) we output trajectories, functions of space vs. time, which
comprise steering and speed information for up to seven seconds in the future; (3) the

https://sites.google.com/view/drivenbyvision/home
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map is created analytically and automatically from the collected GPS data, with no
human intervention; (4) we make the localization and navigation components robust
to problem-specific noise.

3. Creating the Urban European Driving (UED) Dataset and the Map

We used a mobile phone to film through the windscreen of the car while driving.
A GPS stream was collected simultaneously with the video by using our custom Android
application. The map representation (Figure 2A) of the roads covered by the dataset
is a directed graph where nodes and edges represent intersections and roads between
intersections, respectively. The resulting graph contains 16 nodes and 41 edges, with a total
length of 35 km.

The dataset contains two parts: one collected in late autumn (91.23%) and the other
one after 14 months, in mid-winter (8.77%). We used the first part data in the main
experiments (Sections 6.2 and 6.3), and the second part to evaluate the methods in different
environmental conditions (Section 6.4).

For the first part, we chose the dataset routes by a simulation designed to cover the
graph in a manner that is both uniform and realistic. From the current node, it generates the
shortest route to a random destination, and then the process is repeated with the previous
destination node as the source until a limit of 350 km is reached. The simulation was run
1000 times, and the best candidate was selected to be the one with the minimum number of
pair-edges (two oriented edges connected by a node) that are crossed less than three times.
We maximize pair edge crosses because they define the actual route, as an intersection can
be passed through in different ways depending on the destination.

In the second collection phase, we select a continuous circuit from the map (Figure 2C)
and cross it four times, in separate days. The UED Dataset consists of 21 h and 5 m of
driving videos at 30 fps.

3.1. Exploring the Urban European Dataset (UED)

The main goal of our approach is to be able to learn localization and navigation from
visual information, with minimal costs for data acquisition and labeling. This makes the
proposed system suitable for real-world applications, overcoming the actual limitations of
current GPS-based system and being easily adaptable to work in conjunction with those,
for improved localization and navigation. Our automatic solution for data collection and
annotation are therefore suited for this purpose, resulting in a unique dataset, which is
indeed complementary to the already existing ones.

Table 1 shows a comparison of published driving datasets, which are dedicated to
self-driving tasks that are related to ours. As shown in the table, our UED dataset is of
medium-to-large size among the others. However as the dataset setup is accessible, so it
can be easily scaled, the same way as in [5]. Even though BDDV [5] was collected in the
same low-cost, scalable manner, it provides no information about the driver’s route, which
is essential for navigation. We choose to process the GPS stream to obtain steering labels,
instead of using the driver maneuvers read from the vehicle’s CAN bus. Using a CAN
bus reader, as well as lidar, or specialized cameras would make the acquisition process
more expensive and harder to scale. Hecker et al. [7] have shown that route planners can
improve learning to drive by also providing knowledge about the destination. Here we
push this idea further into the visual world and create an autonomous route planner based
on our visual localization module. In conclusion, we introduce the first dataset in the
literature that has self-generated route information from a module that is GPS independent
at test time.

In Figure 3, we show diverse environmental conditions from our dataset. The bad
lighting caused by the undesired position of the sun with respect to the camera is a com-
mon condition. Also, heavy traffic, causing large occlusions, is often present in the videos.
The weather conditions across the dataset vary, including light rain and snow. Some
frames are affected by blur caused by camera motion, object motion, or camera losing focus.
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Therefore, we propose a diverse dataset, being the first one having self-generated route
information, and which is highly scalable.

Comparison between our UED dataset and current real-world driving datasets: In
Table 1, we compare several real-world datasets, including ours, along several relevant
dimensions such as: the driving time, the availability of GPS signal, Lidar information,
accessible setup (so it could be easily used by other reasearch groups), availability of its own
route planner (vs. the usage of a commercial application for route planning). For example,
our navigation model learns trajectories conditioned by the destination. To achieve this, it
receives route information along with the video frames. Unlike [7], which uses a commer-
cial application for route planning, we create an autonomous route planer, based on the
visual-localization module and the self-created analytical map. To keep the data collection
as simple as possible, our UED dataset offers vehicle steering labels derived from GPS as
opposed to using CAN bus reader. We choose a highly accessible setup for collecting data,
using only a regular car and a smartphone, to be able to extend the current dataset easily
(similarly to [5]). That is why we avoid on purpose using specific or high-cost equipment
such as lidar, CAN bus reader, and dedicated video cameras. From the information given
in Table 1, one can see that our dataset as several important practical advantages over
the current available datasets in the literature, which could facilitate further research in
the community.

Table 1. Comparison of real-world driving datasets for imitation learning.

Dataset Driving GPS/IMU Route Autonomous CAN Bus Lidar Accessible
Time (h) Planner Route Planner Reader Setup

BDDV [5] 10k Yes No No No No Yes

Cityscapes [34] <100 Yes No No No No No

Comma.ai [35] 7.3 Yes No No Yes No No

Drive360 [7] 60 Yes Yes No Yes No No

KITTI [33] <1 Yes No No No Yes No

Oxford [36] 214 Yes No No No Yes No

Udacity [37] 10 Yes No No Yes No No

UED (ours) 21 Yes Yes Yes No No Yes

Figure 3. Samples from the dataset taken in challenging conditions such as bad lighting, blur, rain, and heavy traffic.
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3.2. Polynomial-Based Analytical Techniques for Modeling Paths, Trajectories and Creating
the Map

Estimating the vehicle trajectory (position as function of time) is at the core of our
navigation system, as shown in Section 5. Here we present a general polynomial-based
trajectory fitting method, which we use for estimating such trajectories. The same basic
mathematical model and approach is then immediately adapted to estimating vehicle paths
(positions as functions of distance travelled), which is at the core of computing an analytical
model of the map, as shown in the next Section 3.3.

Due to the large data space and noise in the data, ConvNets sometimes express
undesired and unpredictable behavior. Precise mathematical models can often complement
neural nets (NN), to reduce such problems and improve generalization. In this paper, we
employ an analytical approach based on polynomial functions of time or distance, used for
fitting time trajectories (functions of time) and map segments (paths—functions of distance),
respectively. We chose the mathematical model of polynomials for trajectory fitting because
polynomials are flexible and also relatively easy to estimate and compute [38]. Given the
initial 2D trajectory points, each trajectory can be analytically modeled with two polynomial
functions of time for the x, respectively y space components. For simplicity, we exemplify
here only the 3rd order case, for which we solve for the polynomial coefficients. The 3rd
order case immediately generalizes to higher orders (in our actual implementation we used
5-th order polynomials):

x(t) = a1t3 + a2t2 + a3t + a4 (1)

y(t) = b1t3 + b2t2 + b3t + b4. (2)

As the x-y coordinates are known along with their time steps, the coefficients can
be estimated using the method of linear least squares, by forming the data matrix T,
with values t3

i , t2
i , ti on the i-th row and the x and y vectors containing the target x(ti)

and y(ti) values. Then the optimal coefficient vectors a and b of the convex least squares
problem are found using the classic formula: a = (TTT)−1TTx and b = (TTT)−1TTy.
After obtaining the polynomial coefficients, we can analytically find x(t) and y(t) for any
time step t. The analytical approach ensures that the resulting trajectories are smooth and
makes it possible to sample XY points in the future at equal time intervals.

3.3. Analytical Map Representation Using Polynomial Path Fitting

Visual map representations can improve the prediction of a driving neural net, espe-
cially in intersections, as shown in [7,19,21], who provide their models with visual map
captions around the current GPS location. Different from them, we analytically derive the
map from the collected GPS streams of the routes traversed in the training phase.

The key idea in map creation is fitting polynomials on conveniently chosen compact
groups of location samples to obtain curved map segments that together form the entire
map. We define the map segments as follows: (1) each directed edge of the graph (connect-
ing road) is a segment. (2) nodes (intersections) include multiple segments. They connect
each pair of distinct edges with direction inside the node. The map creation algorithm
takes as input lists of geolocation samples, nodes centers’ coordinates, and their radius. It
also implies that every two consecutive map segments along a route continue one into the
other smoothly. The steps for building the map representation are:

1. Place each geo-coordinate sample into its segment bucket together with its distance
to the start of the segment. The distance to the segment start is 0 when entering the
segment. Then for each following sample point, its associated distance is the previous
point distance summed with the euclidean distance between the two samples.

2. Fit polynomial functions of distance for each segment given the points and the
corresponding distances in its bucket, using the method presented in Section 3.2,
but using x(d) and y(d) instead of x(t) and y(t), where d is the known distance to the
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start of the segment. The degree of polynomials is directly proportional to the length
of the modeled segments but significantly smaller than the number of points.

3. Using the analytical model, we sample points at 1 m distance interval along each
segment from s = 0 to the segment’s end. After this step, some pairs of segments
(consisting of the sampled points) will not connect smoothly, having small gaps in
between. To tackle this, for each segment we refit its polynomial function, by con-
sidering the ending points of its neighboring map segments, and then sample from
s = −delta to s = end + delta (delta is a small distance buffer) to obtain a final smooth
map representation.

Further understanding of the analytical map: In Figure 2, part B, we present cropped
sections of the analytical map, with different path segments (each connecting two intersec-
tions/nodes), shown in different colors, fitted as higher order polynomial curves. These
polynomials are functions of distance between their start and end intersections (nodes). We
make sure that the path segments that meet at a given intersection (the end of the incoming
one meeting the start of an outgoing one) smoothly continue one into another by using a
common, small overlapping subset of x-y locations (right at the place where they meet),
when we fit them using least squares. The cropped analytical map examples in Figure 2,
part B, also show how complex the map could become in intersections where many roads
enter and exit. These situations further justify our visual trajectory prediction approach,
in such complex cases where there are many ways to approach and exist a large intersection
(changing lanes and direction, avoiding obstacles and other cars in traffic), depending on
the entrance point and the destination.

4. LOVis: Learning to Localize from Vision

Our localization from vision system (LOVis) has to recognize the current location of
the automobile from a continuous online video stream. We test two previously proposed
approaches, one formulating localization as regression and the other as segmentation, then
extend the last one and obtain significantly better performances.

4.1. Localization by Regression

In [14,15], authors train a regression NN to predict the 6 degrees of freedom (DOF)
camera pose from single images of landmarks. The model’s output Urban European Dataset
(con) two vectors: the 3-component position vector of distances on the axes x, y, and z,
and the 4-component quaternion vector of rotation around the three axes. The loss function
is the weighted sum of the L2 norms between each of the outputted vectors and their
corresponding ground-truth. In [14], the weighting is done by hyper-parameters, whereas
in [15] the weights are learned based on the homoscedastic uncertainty of tasks [39]. To
express the vehicle’s pose on a 2D map, we only need a 3-DOF representation. When
implementing the models above, we keep the same setting and evaluate only the pose
components of interest.

4.2. Localization by an Image Segmentation Approach

We first introduced the idea of learning localization by segmentation in [12] for the
case of satellite images with associated geolocation (2-DOF pose). The two-stage model
predicts the mask of a dot on an output map (representing the geographic map), such
that the center (x,y) of the dot represents the coordinates of the image location w.r.t to the
geographic map. Treating geolocalization as segmentation has the advantage of capturing
well the relation between “what” and “where”, between semantics and the geometry of the
output space. Also, in the case of complex output distributions, a segmentation net can
predict several possible locations (e.g., output several dots, later post-processed for getting
a final answer), whereas regression nets can only produce a single output.

The second stage module in [12] is the basis for our architecture. We extend the
network in two distinct ways to predict 3-DOF poses end-to-end from RGB input images.
One approach (LOVis-reg) is by adding a regression branch after the last encoding layer,
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which outputs the value of the observer’s camera orientation. The other full-segmentation
approach (LOVis, Figures 1 and 4A) outputs a secondary orientation map, on which only
half of the dot is segmented towards the vehicle’s heading direction. The orientation is
obtained from the vector connecting the center of the dot (on the first map) with the center
of the half-dot (on the second map).

Figure 4. The network architectures we propose for localization (A) and navigation (B). The localization module A outputs
the vehicle 2D pose (location and orientation) using a segmentation representation (a dot on the map for localization, and a
half dot for orientation). The navigation module (B) outputs the predicted future trajectory (next seven seconds) by seven
2D points, one per second in the future.

4.3. A Deeper Look into the Localization by Segmentation Model

We analyzed the failure cases for location prediction, when the net makes large errors
or does not segment any region. Most such cases are on consecutive frames that contain
occlusion elements, like large vehicles right in front of the car.

For usual segmentation tasks, the segmented area also corresponds to the relevant
region in the input image. This observation does not apply to the localization task, which
has no direct logical relation between features’ positions in the input and the position of the
dot in the output map. However, there are methods [40,41] in the literature that discover
which locations in the visual input are relevant for a particular network’s output response,
based on the activation values of the neurons in forward and backward passes. The guided
backpropagation [40] algorithm fits best our case, as it outputs a fine-grained relevance
map of the input image, and it works for any CNN.

Let us take a closer look at the case presented in Figure 5. When the camera is far from
the vehicle in front (images shown in the middle row in Figure 5A), the localization works
fine and a dot appears on the localization map. However, the moment the vehicle in front
gets very close to the camera, the dot disappears. The saliency map obtained by guided
backpropagation clearly shows that the model’s attention is on the contour of the skyline,
with a higher weight on the central region of the image (Figure 5A). Therefore, when a
taller vehicle comes very close to the camera (as it is the case in the figure) it obstructs the
parts of the skyline which are relevant for localization, so the output immediately degrades:
the segmented dot loses its shape, it is miss-placed or even disappears (as it happens in the
case presented in Figure 5).

In order to avoid this phenomenon, we must consider visual parts of the image
that are less affected by such distractors. For this purpose, we introduce an informed
technique for augmenting the training data. Firstly, the mean of each input pixel’s (guided
backpropagation) activation values is computed (map shown in Figure 5B). From all
calculated values over the training set, an empirical distribution map is obtained. Thus,
positions in the image corresponding to pixels with higher probabilities are more likely to
influence the network’s predictions. Then, for each training image, we randomly sample
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from the distribution a pixel location in which we center a randomly sized box of constant
random gray-scale value (to mimic a large vehicle in front of the camera). This procedure
is exemplified in Figure 5C.

Figure 5. Analyzing the network’s attention by applying the guided backpropagation technique. (A) The top row shows
the prediction of the network for the observer’s location, while the bottom one shows the visual cues of most interest for the
network. It can be seen that as the camera approaches the SUV vehicle, the skyline shape changes and the segmentation of the
dot fades away. (B) The guided backpropagation mean pixel activation values over the training set images. (C) Augmented
images (with occlusions being added in the form of rectangles of constant grey level) used for robust training.

5. NAVis: Learning to Navigate from Vision

The final stage of our method uses the analytical map and the visual localization net,
to learn how to navigate in dynamic traffic between previously seen places. We predict
trajectories to train a model (NAVis) that is better capable of following a route. Also, it
produces significantly fewer high-frequency oscillations and local errors than models with
simple steering output.

The navigation net architecture we propose is shown in Figure 4B). The inputs to the
network come along three branches: one is for the current RGB frame, another one for
three grayscale frames sampled uniformly from the last two seconds, and the third one for
two binary images of the analytical road map. The first road map contains all roads around
the current location, while the second one only shows the road segments that are part of
the vehicle’s route. The width of a pixel in the map images represents 1 m in the real world.
The map is limited to a local neighborhood centered at the predicted vehicle location. The
model outputs seven pairs of real (x,y) values corresponding to points coordinates defining
the trajectory, one per second. The training loss function L is the mean of the euclidean
distances between predicted and truth points (N = 7):

L =
∑N

n=1

√
(xt

n − xp
n)2 + (yt

n − yp
n)2

N
, (3)

where (xt
n, yt

n) is the location of the n-th ground truth point on the real trajectory (as driven
by a human pilot on a given trajectory training case) and (xp

n, yp
n) is the predicted location

of the NAVis network for the same n-th point. There are seven points, one for each second
in the future, up to seven seconds. The loss is the L2 distance between the two vectors of
seven points, the predicted and the ground truth one, respectively. The loss presented in
Equation (3) is, of course, given for a single training case. Then, the overall training loss is
the sum of all such L2 losses for all trajectory training cases.
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A Deeper Look at the Visual Navigation Capabilities of the System

Now it is time to discuss in more detail the actual navigation capability of our system
in practice, for a better understanding of our trajectory prediction module (NAVis) and
how it can help in improving navigation. Once the position and orientation of the vehicle
is found by the localization LOVis system, we know where we are on the map, which has
been automatically learned and stored (Section 3.3).

The map is like a graph with nodes being connected by path segments. Once the
current pose is known and the destination point is given, the optimal route between the
start node and the end node in the map graph is easily found algorithmically, by the
classic Dijkstra’s method. The global optimal route is instrumental in knowing, at every
point on the map, which is the previous intersection (A: start node of the current path
segment/edge), the next intersection (B: end node of the current edge) and the following
intersection C, which follows immediately after the next one B. This intersection C can
be found only by knowing the optimal global route. Determining the intersection C that
follows the next one (B), is conditioned on the final destination, that is why we need to
compute the optimal route first.

Once the three nodes (A,B,C) are known (the previous (A), the next one (B) and the
one after the next one (C)), we can immediately show to the trajectory prediction network
only the part of the local map around the next intersection (B), which is restricted to the
correct route (going from A, through B, towards C). This local map, showing only roads
along the correct route around the next intersection B, becomes one of the inputs to the
navigation deep net (see Figure 4B). Thus, the map, restricted to the correct route, is crucial
in predicting the correct trajectory once we enter the next intersection B.

The role of the visual navigation module is then to show the optimal trajectory in the
next seven seconds towards the desired destination. Different from the classic GPS-based
navigation systems, we consider not only the optimal global route (on an abstract map
graph) but also the actual traffic and complex situations which might arise in complex,
large intersections, where lanes need to be changed and other vehicles need to be avoided
in a proper manner. While a GPS-based system is not considering the current visual input
from the local, actual scene, our predicted trajectory does consider such input, which
changes dynamically, on the spot.

Being blind to what is going on in the actual scene, a standard GPS-based systems
cannot adapt and take in consideration the continuously changing information that comes
from traffic and the exact location and orientation of the vehicle. The delays in the GPS-
based system, slight errors in GPS localization and orientation, lack of information about
the traffic and the absence of the exact visual field of the pilot, make it impossible for a GPS-
based system to predict accurate and safe short-term trajectories. However, such trajectory
prediction is important for reaching the final destination, especially in the complex cases of
heavy traffic and large intersections, for which a classic GPS navigation system becomes
difficult to use.

Thus, our Driven by Vision system not only that it shows which is the best trajectory
based on the best global optimal route to destination, but it also takes in consideration
the cars in front, which it tries to avoid, and the exact position on the road (the lane in
which the car is), when it predicts such trajectory. Also note that such trajectory, which is
represented as a function of time, automatically provides speed, acceleration and braking
information, as well as steering information for the next seven seconds (as first and second
order derivatives w.r.t time).

Therefore, in some sense, our visual-based navigation system, while important for
good and safe navigation, is more local than the larger, global navigation problem in the
graph (which we perform using classic graph search techniques). At the same time, our
navigation is more global than a very simple steering angle prediction (which is the main
estimation task for autonomous driving in the current vision literature). In Section 6.1
we explain in more detail how the evaluation of the trajectory prediction is performed,
in terms of both lower level error distances as well as the higher level of navigation.
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For a better understanding of the functioning of our localization and navigation
system we provide several video demos on our Driven by Vision project website: https:
//sites.google.com/view/drivenbyvision/home). The demos offer a clearer picture of
how our Driven by Vision system works.

6. Experimental Analysis

In the next section we discuss and motivate the methodology we chose for our experi-
mental analysis and the scope of the experiments.

6.1. Methodology of Experimental Analysis

We organize the experiments in three main categories, along different tasks.

Planned experimental analysis of localization: First we plan to test the capabilities of the
visual localization module (Section 6.2) and compare it to published top methods in the
field, which rely on the exact same type of visual information (Table 2). Most methods in
computer vision on visual localization treat the task as a regression problem, with the pose
being predicted as a set of real numbers. Our extensive tests show that the approach in
which we treat localization as image segmentation (initially introduced in our previous
work [12]), is superior to regression-based approaches. Therefore, one of our goals here
is to compare the case of treating localization as regression vs. the case of posing it as a
segmentation task.

Table 2. Results for 3-DOF pose prediction. Note how the segmentation formulation (Seg) is superior to the regression one
(Reg) for both position and orientation learning. The best performances are shown in bold.

Position Orientation

Method Type Response Mean Median Type Response Mean Median

[14] Reg 100% 58.09 m 17.75 m Reg 100% 7.81◦ 2.41◦

[15] Reg 100% 50.84 m 15.39 m Reg 100% 7.33◦ 1.88◦

[12] Seg 91.00% 27.36 m 11.44 m - - - -
LOVis-2DOF Seg 94.72% 17.31 m 11.55 m - - - -

LOVis-reg Seg 92.62% 26.95 m 13.95 m Reg 100% 9.92◦ 4.41◦

LOVis Seg 96.35% 16.89 m 11.18 m Seg 96.08% 3.65◦ 1.43◦

LOVis-F Seg 100% 16.05 m 10.90 m Seg 100% 3.73◦ 0.67◦

While segmentation is in general more accurate than regression, one of its weaknesses
could be that the localization response rate (the rate at which an actual dot appears on the
localization map) might not always be 100%—which means that an actual localization is
not always given. This could happen especially when the input is not of good quality and
the localization deep net has low confidence in the accuracy of prediction. On the contrary,
the regression case always provides an output, even when such output could be completely
wrong. Thus, another key aspect to analyse is the response rate of the different methods
compared, where the regression case will always have a response rate of 100% (Table 2).

Next, once a location prediction response is given, we look at two types of errors,
the mean (average) and the median errors in meters. The median error is very relevant
since the presence of outliers strongly affects the mean error. However, outliers could
be, in principle, detected, using various robust techniques, including RANSAC (Random
Sample Consensus) algorithm (for line or curve fitting) or temporal smoothing at a post-
processing step. Therefore we consider the median error as a very relevant measure of
accuracy, besides the common mean error (Table 2).

For the task of localization, we also consider evaluating the accuracy of the vehi-
cle’s orientation angle prediction (Table 2). Note that in our case, such orientation is also
computed using an image segmentation approach. In particular, the vehicle’s heading is

https://sites.google.com/view/drivenbyvision/home
https://sites.google.com/view/drivenbyvision/home
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predicted using a half-dot output (the half-dot is in essence a half-circle), such that the
real-valued orientation of the half-circle, gives the continuous angle of the pose. More
specifically, the angle is computed as the orientation of the vector joining the center of mass
of the localization dot (circle), with the center of mass of the half-dot (half-circle). Therefore
the orientation could be arbitrarily precise.

Planned experimental analysis of navigation: Next, we perform experiments on visual
navigation (Section 6.3). One of the key goals of these experiments is to show that our
system is at least as accurate as top methods in the literature on the task of steering angle
prediction in autonomous driving—which is one of the main tasks in such literature.

Note that the top published methods are usually not trained to predict steering angle
for several seconds in advance. They are all focusing on instantaneous steering angle
estimation. Our approach is unique, in the sense that we predict trajectories for the next
seven seconds, which gives us an advantage in being able to plan ahead the vehicle’s next
movements. Therefore, in order to have a fair comparison to other competing methods
we have used their published code and trained them to predict for different intervals of
time, up to seven seconds in the future. Then we compared their accuracy in steering angle
prediction to ours for different future time intervals, up to seven seconds (Table 3).

Table 3. Mean errors for speed and steering angle (lower is better). The best performances are shown in bold.

MAE Speed (m/s) MAE Steering Angle (◦)

Method 1 s 2 s 3 s 4 s 5 s 6 s 7 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s

[4] 1.9 1.91 1.99 1.94 1.96 1.95 2.33 1.01 1.61 2.09 2.65 3.14 3.9 5.48
[7] 1.76 1.7 1.68 1.68 1.69 1.72 1.76 0.91 1.32 1.74 2.05 2.39 2.95 4.3

NAVis 0.94 0.92 0.91 0.92 0.94 0.98 1.03 0.84 1.26 1.68 2 2.36 2.91 4.24

Trajectories also give us speed information since they are functions of time. Therefore,
once predictions are made for different moments in time in the future, we can also estimate
the vehicle’s speed and acceleration. This fact is important, since we could better plan
in advance, when driving, the speed of the vehicle, acceleration and braking, not just its
steering angle. Consequently, we compared all the methods on speed prediction as well,
after training them separately for each time interval ahead, up to seven seconds (Table 3).

Going further, trajectories also offer us a vehicle 2D path, which is a function of
distance (not time), so we could also estimate the correctness of the trajectory with respect
to this future 2D path. We provide two ways of evaluation the path of the trajectory
(Figure 6). One is from a pure spatio-temporal point of view, in which we estimate the
distance between the predicted point on the trajectory at a certain moment in time and
the corresponding real point on the true (ground-truth) trajectory that should be taken.
Note that we have access to the real driver trajectory recorded on the test set for evaluation,
which is considered as ground truth.

The other way of evaluating a trajectory is relative to how correct it is in terms of the
higher-level task of navigation: how many times the predicted trajectory is close to the
correct route in an intersection with several potential trajectories along different exit and
entrance routes. This evaluation is harder to perform and we do it as follows: for a given
predicted point on the trajectory, we consider it correct if the closest point to it, on a real
road on the analytical map, is on the correct route that follows the correct directions (as
computed using the analtical map and Dijkstra’s algorithm). This means that out of all
directions, the predicted point on a trajectory indicates the correct direction if and only if
the closest route on the actual road is the correct one (Figure 6).
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Figure 6. (A) Mean average error in seconds (sec) of time-trajectories points (lower is better). (B) the
accuracy of direction in intersections for trajectory points (higher is better). The percentage of
positions predicted on the correct route, is mostly higher for our models.

For Sections 6.2 and 6.3, we train our models on 89.72% of the first-phase dataset and
test it on the remaining videos of approx. 2h total length. There are 12 continuous video
sequences in the test set, distributed uniformly on the map.

Planned experimental analysis of changing environmental conditions: A very important
dimension of experimental analysis in visual based localization and navigation must
be the effect of environment changes, which could be short-term (due to weather and
other temporary conditions) or long-term (changes in scene structure, road structure, city
architecture etc.). While there are not many published works that study this aspect, we
want to make sure that our system is able to adapt to such changes and perform well
in terms of both localization and navigation in such cases of significant environmental
changes. We present these experiments, considering different kinds of long-term and short-
term changes in the third part of the experimental analysis (Section 6.4. We study and adapt
the system for severe environmental changes on the data collected in the second stage,
70.1% of it being used for further training and the remaining 29.9% for testing. The first
analyzed factor is the passing of a long time (of 14 months) between the two data collection
phases. The other conditions, such as luminosity variations, sun flare, rain, and fog, are
generated using realistic, good quality vision techniques (Table 4).

Table 4. Results for 3-DOF pose prediction on various environmental conditions. The best performances are shown in bold.

Position: response (%), mean (meters), median (meters)

None Luminosity Sun Flare Fog Rain

LOVis 97.9 14.7 11.2 87.8 26.9 12.3 86.5 27.1 12.6 78.5 31 12.3 74.2 22.7 14
LOVis-W 98.3 13.6 11.2 97.7 14.3 11.6 97.5 14.9 11.4 97.6 14.6 11.8 97.8 14.2 11.5

LOVis-WF 100 13 11.2 100 13.2 11.5 100 13.2 11.3 100 13.4 11.7 100 13.3 11.3

Orientation: response (%), mean (degrees), median (degrees)

None Luminosity Sun Flare Fog Rain

LOVis 97.3 2.59 1.15 87.1 3.81 1.52 85.5 4.48 1.47 77.5 5.08 1.57 73.3 3.86 1.66
LOVis-W 98.2 2.23 1.06 97.5 2.44 1.18 97.2 2.58 1.26 97.5 2.52 1.21 97.6 2.41 1.24

LOVis-WF 100 2.28 1.07 100 2.51 1.19 100 2.68 1.27 100 2.56 1.22 100 2.46 1.25
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6.2. Experimental Results on Localization

We evaluate the response rate of the network (how often it outputs a dot), as well as the
mean and the median errors of location and orientation (see Table 2). For the segmentation
approach, we only take into consideration predicted dots with an area between 25% and
175% of the perfect’s dot area of 15px radius.

We compare several recent state of the art methods with different variants of our
approach. In particular we considered the very influential state of the art methods [14,15]
by Kendall et al. Both treat localization as a regression problem. The seminal Posenet
paper [14] introduced localization as regression using a convolutional neural net for real-
time 6-DOF pose estimation, while the method in [15] introduced a novel geometric loss
in combination with deep learning for improved performance. We also compared to
the recent work of Marcu et al, which is the first to formulate the localization task as
segmentation and various versions of the current system (LOVis-2DOF, LOVis, LOVis-reg
and LOVis-F) , as follows: LOVis-2DOF is the basic localization as segmentation system
presented here, without the orientation predicted as the half-circle segmentation; LOVis
is the full deep net architecture with both localization (as full circle/dot) and orientation
(as half circle/dot) prediction; LOVis-reg has almost the same deep net architecture as
LOVis, with the only difference being that the orientation output (not the localization) is
considered as a regression problem, instead of the initial half-dot segmentation; LOVis-F is
the most advanced version of our system, in which we first project a predicted location onto
every analytical path segment on the map, then replace it with its projection on the closest
segment. In this step, we also interpolate predicted poses, when there is no prediction dot.
Thus we obtain results for all examples in the test set. Afterwards, we perform additional
time smoothing (using a very small temporal window of 5 frames) of the position by locally
fitting time polynomials.

Segmentation approaches for location prediction [12], LOVis-2DOF, LOVis-reg, LOVis,
LOVis-F perform better than the regression ones [14,15] in terms of precision, evincing that
segmentation formulation is superior. Also, the PoseNet method proposed in 2017 [15]
outperforms the earlier one from 2015 [14], as expected. The proposed data augmentation
(LOVis-2DOF) raises the response percentage of [12] setup with 3.72% and decreases the
mean error with about 10 m (indicating a significantly lower number of outliers), as the
median error remains the same. Predicting the orientation by regression together with
the position by segmentation (LOVis-reg) is not a successful approach, as it decreases the
performances of LOVis-2DOF for position, and the results for orientation are worse than in
the case of the full regression methods.

By contrast, when the network is modified to perform both position and orientation
prediction by segmentation (LOVis), the results for the position task alone rise, so the re-
sponse rate is 1.33 higher, and the errors are slightly lower. The performance also improves
when we project the predicted locations on the analytical map segments (LOVis-F).

6.3. Experimental Results on Navigation

From the prediction of trajectories, we can evaluate the network’s performances
at both steering and following route directions. Since long-time movement prediction
is an unexplored subject in current autonomous driving research, we cannot evaluate
our method directly against other solutions. In the following experiments, we modify
a baseline [4] end-to-end steering model (by Nvidia) and the state-of-the-art one [7] to
output steering commands for seven time-steps instead of just one. As the model in [7]
has a separate branch for visual navigational information, we provide it the same two
concatenated map images, like in the case of our model. The baseline model form Nvidia,
however, learns only from single frames, according to its design.

First, we evaluate the steering performances like in the related literature, but over
multiple time steps in the future (Table 3). The average control commands of speed
and angle on seven time intervals of one-second length are derived from the trajectories
outputted by our navigation net. In Table 3 we present experimental comparisons with the
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steering methods w.r.t. steering angle and speed performances. For the speed prediction,
our model achieves significantly lower errors than both steering ones. The angle errors of
our method and the one in [7] evolve tightly together over time, whereas the ones for [4]
are higher.

To better evaluate the navigation capabilities of the competing models, we introduce a
direction performance metric, for when the vehicle is an intersection, and different paths
may be correct depending on the destination. At a given moment in time, each approach
(either based on trajectory prediction or direct multi-step steering and speed prediction)
estimates the location of the vehicle for each of the next time steps. We are interested in
evaluating if the locations are close to the road segment that belongs to the correct route.
By projecting every predicted position on the map segments, we can immediately estimate
how often the right path is the closest to the evaluated location among several possible ones.
In Figure 6B, we show the accuracy rates of directions (the percentage of times the paths are
correct when in an intersection), at each second, for our approach vs. the steering ones. We
notice a drop in performance as the time step increases, with our net having the lowest rate
of decrease compared to [4,7]. (which has by far the worst performances). We also compare
setups similar to NAVis, to better understand the impact of using the analytical map and
the pose prediction (vs. true GPS signal) in the navigation performance. As expected,
the accuracy drops a bit when navigation is learned without using the analytical map at
the input. Also, the performance improves when using the GPS signal. All variants of our
models (with trajectory output) have results similar or better than the ones of the steering
models. In Figure 7, we present a few qualitative trajectory results during test time, which
illustrate the ability of our model to handle relatively complex situations, agreeing with
the ground truth.

Figure 7. The trajectory predicted by the model in various traffic situations: stopping before a crosswalk (top left),
accelerating when the road is clear (bottom left), before entering a roundabout (top middle), beginning to turn right (bottom
middle), just before turning left (top right) and keeping left steer in a roundabout (bottom right). Notice how the trajectory,
as a function of time also provides speed and acceleration information, not just spatial directions along a path. More
specifically, the length of the trajectory indicates distance travelled per time. Thus, the spacing between the predicted
locations in the next seven seconds are directly proportional to speed at those moments in time. The more distant the points,
the faster the vehicle moves. Also, the variations in such spacing is directly related to acceleration, as the first derivative of
speed with respect to time.

6.4. Experimental Results on Changing Environmental Conditions

The conditions in our first-phase dataset vary considerably due to rain, bad traffic,
motion blur, and bad weather. However, some of these changes only occur on a small set of
frames, having a low impact on networks’ training and performances. We study and adapt
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the system for severe environmental changes on the data collected in the second stage,
70.1% of it being used for further training and the remaining 29.9% for testing. The first
analyzed factor is the passing of a long time (of 14 months) between the two data collection
phases. The other conditions, namely luminosity variations, sun flare, rain, and fog, are
generated using vision techniques (Figure 8B).

Figure 8. Examples of changes in environmental conditions. (A) Long-term structural changes.
(B) Short-term changes in weather (artificially simulated).

Time is a critical factor affecting the robustness of visual localization systems, as shown
in [29]. In the long-term, both humans and nature change the environment’s appearance,
such that visual cues learned by the network are no longer present (Figure 8A). For this
reason, we firstly fine-tuned the network’s weights on the new raw training data. We
did not start the training from the best-performing weights, as the LOVis net could not
exit its local minimum, but from the ones in an earlier moment of the training. By re-
ceiving a significantly lower percentage of training examples, the network was able to
slightly exceed its previous performances on the new test data (Table 4 row LOVis, column
None). Moreover, LOVis seems reasonably robust to the high variations introduced by the
generated conditions.

We fine-tune LOVis-W in the same way as LOVis, but its training data is augmented
by applying all four environmental changes to the frames, resulting in a five-time larger
training set. It raises the performances on all studied conditions, making them constant,
at values very close to the ones on the noiseless data. Training with noise, acts as a
regularization factor of the objective function [42], increasing generalization, to achieves
slightly better results on the raw data (for the response rate and the mean error metrics; the
median error remains constant).

As the correct trajectory depends mostly on the traffic and the infrastructure (factors
independent of long-time), the navigation net matches its first performances on the new test
set with no additional training (NAVis—None, Figure 9). However, its performances drop
severely on unfavorable conditions such as sun flare effect, rain, and especially fog (NAVis—
Sun Flare, Fog, Rain, Figure 9B–D). So, its robustness to the studied factors is opposite
than in the case of the localization net. NAVis-W’s weights are fine-tuned on the data
augmented with the environment-specific noise. Its errors on the changing conditions are
significantly lower than the ones of NAVis (cyan vs. magenta lines, Figure 9). The fact that
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the performances are very close to the ones on the raw data demonstrates the robustness of
NAVis-W to the simulated environmental conditions.

Figure 9. MAE (Mean Average Error) measured in seconds (sec) of predicted trajectories on changing
environmental conditions.

7. Open Research Questions and Future Work

Starting from our Driven by Vision system presented here, there are still a number
of important open research questions remaining. They open the door for exciting new
research directions, which we will consider in our future work. Below we enumerate and
discuss such questions in detail, as next steps of study following our proposed approach:

1. Probably the first research question that should be addressed next is how to best
combine the visual localization and navigation approach with the more traditional
GPS-based one? While the GPS-based navigation is more robust and works in almost
any driving condition, it also has limitations and can often fail or have delays, espe-
cially in scenes cluttered with tall buildings, trees and other large structures. On the
other hand, the visual system can fail when the scenes are not distinctive enough,
very similar to other scenes from other places, when the driver view is obstructed by
traffic, or when a completely new scene is visited (by the system) for the first time.
In such cases, the GPS could still be working fine. At the same time, the visual-based
navigation system, when it works well, it is expected to be real-time and faster than
the GPS-based one. The two approaches, visual and GPS-based, are definitely com-
plementary and can help each other for a more robust and accurate prediction. Thus,
they offer an excellent open research question and next topic of work.

2. The second open research question is related to the scalability of the learning-based,
visual navigation system. What is the best way to collect training data from many
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users and integrate it into a single coherent database, in order to learn efficiently
a single unified system. The scalability problem becomes interesting from many
reasons, including aspects of speed, computation and memory requirements, but also
the aspect of reusing resources and data. We expect that many users will often pass
through the same common streets and scenes, while other more secluded scenes
will be less covered by drivers. In such cases, an intelligent and efficient balancing
system is needed in order to give different priorities to data covering new territory vs
data covering well-known, already mapped areas. Such a novel intelligent system,
for handling scalability of learning, is needed in order to integrate all these cases in
the most optimal way for robust and well-balanced training.

3. The third important research question we propose, is how to best provide visual
navigation information to drivers, since, in the visual approach to navigation, vision
and navigation are tightly connected. What is the best way to offer visual assistance to
a driver for optimal results and how can this aspect be best evaluated and improved?
While the topic falls in the realm of human-computer interaction (HCI), it is definitely
an important one for future research, in order to get the most out of visual navigation.

4. Another important research question comes from the ability of the system to adapt
to structural and weather changes. We have proved in our experiments that this
adaptation can work well. However, we have tested only over a period of 14 months,
not longer. Over much longer periods, the structural and environmental changes at
a given location are expected to be much more significant. It would be interesting
to see what is the best way for the system to start forgetting the old road structures
and scenes and adapt to the new ones as they change over time. One particularly
interesting aspect here is the fact that some streets and scenes change more than
others, over time.

5. Other interesting open research questions, relevant for visual-based navigation, in-
clude the following: what are the regions, categories of objects or features in the scene
that are best for localization. How about the features, objects and classes in the scene
that are best for navigation? Is there a real advantage in using some other high-level
auxiliary tasks (e.g., semantic segmentation of the scene, prediction of depth and
3D structure, detection of moving objects and other object categories in the scene) in
order to improve localization and navigation? Also, is there a better way of using
spatio-temporal processing? So far we have used only a relatively small temporal
window of frames around the current time. It is not yet clear how much temporal
processing is required, what is the optimal period of past time to be considered and
what deep network models (e.g., recurrent in space and time) are most appropriate
for visual navigation. In our experiments, the localization task seems to work fine
without having to consider significant time processing. At the same time, we do ex-
pect the higher-level problem of navigation to be better suited for more sophisticated
temporal processing and combination with higher-level auxiliary tasks.

8. Conclusions

We present the first deep-learning, end-to-end system that learns to self-locate and
to navigate towards a planned destination by relying only on visual information. The
system is low-cost and requires only a regular car and smartphone during the automatic
data acquisition, annotation, and testing. We also present a mathematical method for
automatically constructing an analytical road map from the collected data and introduce a
relatively large dataset, collected and mapped in this manner. We present novel solutions
to robust localization by image segmentation and trajectory prediction and demonstrate
state of the art performance in all our tests. We further show how our approach can adapt
to short and long term changes in weather and the environment over time. We put it all
together into a complete high-performance system that can perform all necessary steps,
with minimal human intervention for learning visual navigation. Our approach is scalable
and competitive, and for these reasons, it has the potential to be a solid contribution to
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research in autonomous driving and navigation assistance. We conclude our work by
presenting a list of relevant open research questions and future directions, which follow
naturally from the proposed approach, opening the door for our next steps of research.
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