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Abstract
Lots of similarity-based algorithms have been designed to deal with the problem of link pre-

diction in the past decade. In order to improve prediction accuracy, a novel cosine similarity

index CD based on distance between nodes and cosine value between vectors is proposed

in this paper. Firstly, node coordinate matrix can be obtained by node distances which are

different from distance matrix and row vectors of the matrix are regarded as coordinates of

nodes. Then, cosine value between node coordinates is used as their similarity index. A

local community density index LD is also proposed. Then, a series of CD-based indices

include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks.

Experimental results demonstrate the effectiveness of CD-based indices. The effects of net-

work clustering coefficient and assortative coefficient on prediction accuracy of indices are

analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the

assortative coefficient of network is negative or positive. According to analysis of relative

precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent

average performance and robustness. CD and CD-k indices perform better on positive

assortative networks than on negative assortative networks. For negative assortative net-

works, we improve and refine CD index, referred as CDI index, combining the advantages

of CD index and evolutionary mechanism of the network model BA. Experimental results

reveal that CDI index can increase prediction accuracy of CD on negative assortative

networks.

Introduction
In our real world, many complex systems including social, biological, information and technol-
ogy can be well described by networks where nodes represent individuals or agents, and links
denote relations or interactions between nodes. In some networks, such as in protein-protein
interaction networks [1,2], electrical power grid [3] and air transportation networks [4], how
can we find out which pair of entities likely generate new links in the near future? These ques-
tions can be formed into the problem of link prediction, which attempts to estimate the likeli-
hood of the existence of a link between two nodes, based on observed links or the attributes of
nodes [3,5–7]. Instead of blindly checking all possible interactions, link prediction can sharply
reduce the experimental costs if the predictions are accurate enough. In protein-protein
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interaction networks of biological systems, predicting possible interactions between proteins
can help us to predict non-experimentally-observed interactions using the network of the
known interactions for a certain organism [3,8,9]. Besides, in social networks, link prediction
can be used for predicting potential consumers in on-line shopping network [10] and predict-
ing potential friends for people based on current connections in on-line friendship networks
[11]. In addition, in order to prevent social crimes or terrorist activities, link prediction also
can be used to mine hidden connections between criminals [5].These above mentioned are
social positive connections, while negative links, such as distrust links and foe links, also have
important significance in our society and some meaningful researches have been done success-
fully[12,13]. Positive connections are concerned in this paper. More applications of link predic-
tion, please reference to [5,6,14].

In recent years, lots of link prediction algorithms have been proposed. These algorithms can
be broadly classified into three categories: node similarity-based algorithms [3,15,16], maxi-
mum likelihood algorithms [17] and probabilistic models [18,19]. Among them, similarity-
based algorithms are the most intuitionistic and popular. Main assumption of this method is
that the greater similarity indices are, the greater connection possibilities are. Prediction accu-
racy is a critical factor for measuring quality of a similarity index, so researchers have success-
fully proposed many methods based on similarity indices including neighbor-based methods
[6,14]and distance-based methods [14,20]. Neighbor-based methods are based on the idea that
two nodes are more likely to generate a link in the near future if they have more common
neighbors, such as Salton [14], Sorensen [5], LHN [15], CN[21] etc. Low computational com-
plexity is the greatest strength of these methods. For many networks with high clustering coef-
ficient, neighbor-based methods can obtain satisfactory prediction accuracy. However, in some
sparse networks with low clustering coefficient, it is difficult for neighbor-based methods to
achieve high prediction accuracy [16,22,23]. This may be because such neighbor-based indices
have underestimate and cannot calculate similarity between nodes without common neighbors
[24]. Distance-based methods suppose that link probability is determined by distance or num-
ber of the shortest path between nodes, such as LP [20], Katz [14]and LHN-II [15]. Some of
these methods can successfully resolve the weaknesses of lower prediction accuracy in low clus-
tering coefficient networks [14]. However, some distance-based similarity indices are sensitive
to the proportion of observed edges [21]. It means that their prediction accuracies will reduce
obviously if the proportion of observed edges decreases in algorithm training set. As a matter
of fact, under the effect of small world phenomenon [25], most of distances between nodes are
equal and very small. So, distance-based algorithms sometimes do not work well [26–28]. In
addition, most of distance-based similarity indices such as Katz and LHN-II are based on
global information of network and have high time complexity as O(n3). Note that, there is a
latent assumption that neighbor-based indices can be regarded as distance-based indices when
the shortest path as 2 between nodes is only taken into account.

Besides, some indices based on node degrees are also proposed, such as PA [29] and RA
[16] indices, and they can obtain satisfactory prediction accuracy on some networks. In 2013,
in view of local communities, Carlo Vittorio Cannistraci proposed a series of LCP-based
(Local-community-paradigm-based) indices including CAR, CPA, CAA, CRA and CJC which
are proven as particularly effective algorithms by plenty of experiments [3]. While some of
these algorithms are less robust [30], i.e., some algorithms can perform satisfactorily on a part
of networks with specific properties but not universal methods. For example, PA index per-
forms better on negative assortative coefficient networks but worse on positive assortative coef-
ficient networks [16]. We will show you in the following that RA and LCP-based indices
perform far from satisfactory on low clustering coefficient network. Actually, an evolving net-
work model corresponds to a link prediction method [6,24,30–32]. PA index is the evolution
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mechanism of BA model [29] and BA networks are negative assortative [33], so such networks
with negative assortative coefficient can be modeled as BA networks and the link prediction
results of PA index on these networks are usually satisfactory. Fenhua Li [4] expanded PA
index and analyzed social networks with it. In addition, Cui Ai-Xiang [34] studied an evolving
model based on evolutionary mechanism CN index. More link prediction algorithms please
reference to [6,26,35,36].

There are three big challenges in link prediction: prediction accuracy [6], complexity [14]
and robustness [30]. In this paper, a series of distance-based similarity indices and a modified
index are proposed for link prediction in order to overcome these problems mentioned above.
Moreover, for improving the complexity of traditional shortest path algorithms, we propose a
new method to calculate all shortest paths of un-weighted and undirected connected networks
with time complexity as O(n2) at most, where n is the number of network nodes. All proposed
similarity indices and improved index are termed as CD-based including CD-k, CD-LD-k,
CD�LD-k and CDI for short. After compared with fifteen famous traditional similarity indices,
experimental results on some real-world networks demonstrate the feasibility and effectiveness
of the proposed CD-based similarity indices. CD-LD-k and CD�LD-k can effectively improve
prediction accuracy, and CD-k index performs better on positive assortative coefficient net-
works. For negative assortative coefficient networks, improved CDI index can improve predic-
tion accuracy of CD and PA index.

Materials and Methods

Definition
Let G = (V, E) be an un-weighted and undirected connected network, where V is a set of nodes
in network G, number of nodes is |V| = n, E is a set of links(or edges), and number of links is
|E| =m. Self-connection and multiple links are un-allowed. Connection of the network G can
be represented as an adjacency matrix A, and its element ai,j is 1 when a link between nodes vi
and vj exists and 0 otherwise. If there is a link between nodes vi and vj, one of the two nodes is a
neighbor of the other one. In matrix A, sum of elements in line i is the degree of node vi and
denoted as ki. As a matter of fact, ki is the number of neighbors of node vi. The similarity index
of nodes vi and vj is defined as si,j which is supposed to be symmetry in undirected network,
that is, si,j = sj,i. The higher the similarity index si,j is, the more likely the link between nodes vi
and vj exists, so si,j is regarded as score of link between nodes vi and vj.

Cosine Distance Index (CD). For overcoming weakness of underestimate [24], a novel
Cosine Distance Index (CD) based on distance between nodes is proposed in this paper. Firstly,
for an un-weighted and undirected connected network G, k-distance matrix L is defined as

li;j ¼
(
di;j di;j � k

1 di;j > k
ð1Þ

where di,j is the shortest path between nodes vi 2 V and vj 2 V. Free threshold value k is a posi-
tive integer and k 2 [1, dmax], where dmax is the diameter of G, i.e., the maximum value of all
shortest paths of G. It is clearly that L is equal to distance matrix of network G when k = dmax.
In the following, we set k = dmax unless give a special instruction.

Then network node coordinate matrix C is defined and its element

ci;j ¼

(
1

li;j
; ði 6¼ jÞ

1; ði ¼ jÞ
ð2Þ
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It is clearly that ci,j = cj,i and C = A + I for k = 1, where I is an identity matrix. Also, C = (L + I)
�α

and α = −1, where D
�α is the αth entrywise power[37,38] of D. Actually, ci,j can be regarded as

similarity of nodes vi and vj. The higher the value of ci,j, the higher the similarity of nodes vi
and vj. In order to analyze transportation networks, Liu H K [31] used inverse of geographical
distance as the similarity index between two cities. But using ci,j as node similarity, there will
be vast number of identical similarities and this is not compatible with reality in complex
networks.

So Cosine Distance Index (CD) is defined as

sCDi;j ¼ ðCi;CjÞ
kCik � kCjk

ð3Þ

where Ci is the ith row vector of coordinate matrix C and also denotes coordinate of node vi in
a n-dimensional Euclidean space, kCik is module of Ci. It can be found clearly that the higher
the value of sCDi;j , the smaller the angle between vectors Ci and Cj, and the higher the similarity

measure between vi and vj, so Ci is close to parallel with Cj. Any two nodes have limited shortest
path in a connected network, and there is non-zero similarity measure between them, namely,
CD index of any two nodes can be calculated in a connected network and sCDi;j 2 ½0; 1�, so CD
can conquer underestimate problem of other algorithms obviously. In a realistic network,
using CD index, it is difficult to get identical similarities for different pair of nodes. Note that
(vi, vj) and (vj, vi) are the same pair of nodes, where vi 6¼ vj. Actually, for node pairs (vi, vj) and
(vh, vj) where vi 6¼ vj 6¼ vh, only when nodes vi and vh are structurally equivalent [39,40], i.e.,
nodes vi and vh link up exactly the same set of other nodes, sCDi;j ¼ sCDh;j . However, structural

equivalence is an extremely strict definition and it is unlikely to be met, so CD index can over-
come the disadvantage that too many equal similarity values of other indices to some extent.
It's worth mentioning that, if ci,j = 0 for i = j in Eq 2, some elements of node coordinate are
futile when calculating CD index. For example, given two node coordinates v1 = (1,0.2,0.4) and
v2 = (0.2,1,0.5), according to Eq 3, then sCD1;2 ¼ 0:4822. If cij = 0 for i = j, then v1 = (0,0.2,0.4)

and v2 = (0.2,0,0.5), so sCD1;2 ¼ 0:8305 and the element 0.2 is futile. So we define ci,j = 1 for i = j in

Eq 2.
Local Community Density index (LD). A series of LCP-based (Local-community-para-

digm-based) indices were proposed in reference [3], but only number of links between neigh-
bor nodes is considered. Inspired by the idea of reference [3], we universalize LCP as LD

sLDi;j ¼
X

p;q2GðiÞ\GðjÞ
s�p;q ð4Þ

where s
�
is a kind of node similarity index. Then we can define CD-LD index as

sCD�LD
i;j ¼

X
p;q2GðiÞ\GðjÞ

sCDp;q ð5Þ

and CD � LD as

sCD�LDi;j ¼ sCDi;j � sCD�LD
i;j ð6Þ

For different threshold value k, we can get corresponding CD-k, CD-LD-k and CD�LD-k indi-
ces. The threshold k of CD, CD-LD and CD�LD is diameter of network.

CD-Based Indices for Link Prediction in Complex Network

PLOS ONE | DOI:10.1371/journal.pone.0146727 January 11, 2016 4 / 13



Data
In this paper, 10 representative networks from different fields are analyzed: (1) USAir [4]. The
USAir transportation network contains 332 airports and 2126 airlines. (2) PB [4]. The pol-blog
network is extracted from a set of weblogs about US politics. (3) INT [16]. The router network
has 5022 nodes and 6258 links. (4) Neural [22,41]. A network represents the connection of
frontal ganglia of nematode worm C. elegans. (5) Word [42]. This is an adjacency network of
common adjectives and nouns in the novel David Copperfield by Charles Dickens. (6) NS [42].
In this network, nodes and links represent scientists and coauthor-ships between them respec-
tively. (7) Grid [3]. This is an electrical power grid in western US, nodes representing genera-
tors, substations and transformers, edges representing high tension lines between them. (8) FT
[43]. American college football team network, collected by Girvan and Newman, contains 115
nodes and 613 edges where nodes represent college football teams and edges represent schedule
of competition between teams. (9) Email [44]. This is the giant component of email network
which contains 1133 users of University at URV in Tarragona, Spain. (10) Jazz [4]. This is a
network of jazz bands, and a link between two bands is established if they had common musi-
cian. In this paper, isolated nodes of networks are not considered. Table 1 shows the basic topo-
logical features of eleven example networks.

Methods
To test the accuracy of an algorithm, all existing links, E, are divided into two sections ran-
domly: training set ET, as known information, is used for calculating similarity index and con-
tains 90% of E, while probe set EP, as unknown information, is used for testing algorithmic
accuracy and contains 10% of E. Clearly, E = ET[EP and ET\EP = ;.

Two main metrics, which emphasize different aspects, can be used to evaluate the perfor-
mance of link prediction algorithms: AUC (area under the receiver operating characteristic
curve) [45, 46] and Precision [6, 47, 48]. According to the analysis and comparison in reference
[47], AUC value can be deceptive and Precision is more suitable choice for evaluating the per-
formance of link prediction algorithms. So the Precision value is considered in this paper.

For calculating Precision values [47, 48], all the nonexistent links need to be ranked in
decreasing order according to their scores. Then in top-L links, if there are l links successfully

Table 1. Basic topological features of example networks. Where, e is the efficiency of a network and defined as e ¼ 2
nðn�1Þ

X
i;j2V ;i 6¼j

l�1
ij [51], c is clustering

coefficient [4], r is assortative coefficient [33], h is degree heterogeneity and defined as h ¼ hk2i
hki2, where hki is average degree of a network [16]. d is the diame-

ter of a network. lcp is the correlation between LCP and CN indices presented in [3]. For more definitions and details of the mentioned topological measures,
please reference to [51–53].

n m e c r h d lcp

USAir 332 2126 0.406 0.749 -0.208 3.46 6 0.9799

PB 1224 19090 0.397 0.361 -0.079 3.13 8 0.9286

INT 5022 6258 0.167 0.033 -0.138 5.05 15 0.8067

Neural 297 2148 0.308 0.2924 -0.1632 1.8008 5 0.9056

Word 112 425 0.442 0.1728 -0.1293 1.8149 5 0.8528

NS 1461 2742 0.016 0.878 0.462 1.85 17 0.9474

Grid 4941 6594 0.063 0.107 0.003 1.45 46 0.8456

FT 115 613 0.4504 0.4032 0.1624 1.01 4 0.8931

Email 1133 5451 0.2999 0.254 0.0782 1.94 8 0.8538

Jazz 198 2742 0.5132 0.633 0.0202 1.3951 6 0.9484

doi:10.1371/journal.pone.0146727.t001
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predicted, then

Precision ¼ l
L

ð7Þ

where L is the number of links in E\EP. Clearly, higher precision values mean higher predic-
tion accuracy of index.

To ensure that the comparison is fair, in this paper, all Precision values in Table 2 are the
average values computed on 100 iterations. For each iteration, a set of 90% randomly selected

Table 2. Precision values of link prediction indices on example networks. The order of the networks is organized according to their increasing assorta-
tive coefficient (from negative to positive), and values in brackets under the network names are the coefficient of each network.

1 2 3 4 5 6 7 8 9 10

USAir Neural INT Word PB Grid Jazz E-mail FT NS

(-0.208) (-0.1632) (-0.138) (-0.1293) (-0.079) (0.003) (0.0202) (0.0782) (0.1624) (0.462)

CN 0.3862 0.0943 0.0566 0.0744 0.1764 0.0568 0.5062 0.1421 0.2894 0.5098

Salton 0.0554 0.0233 0 0 0.0099 0.0152 0.5404 0.044 0.3484 0.5913

PA 0.3313 0.0579 0.0192 0.1023 0.0671 0.0008 0.1305 0.0173 0.0003 0.04

Sorensen 0.0742 0.0288 0 0 0.0196 0.0147 0.5287 0.0648 0.3452 0.5905

LHN 0.0103 0 0 0 0.0005 0.0121 0.1018 0.0018 0.3903 0.2429

RA 0.4712 0.0994 0.0195 0.0614 0.1562 0.0326 0.5397 0.1447 0.2826 0.7454

LP-3 0.3822 0.0993 0.0577 0.0812 0.1828 0.0614 0.4727 0.1368 0.2631 0.4982

LP-4 0.3728 0.0958 0.0511 0.107 0.1821 0.0648 0.448 0.133 0.271 0.4982

LRW 0.1191 0.1415 0.0397 0.067 0.095 0.0094 0.3569 0.0667 0.2531 0.3927

LB 0.3697 0.0862 0.207 0.1019 0.1462 0.0579 0.2753 0.0852 0.1865 0.3655

CAR 0.3771 0.0921 0.062 0.0549 0.1729 0.035 0.5187 0.1402 0.3366 0.5062

CPA 0.3778 0.098 0.0208 0.0695 0.173 0.005 0.5168 0.1293 0.3323 0.3193

CAA 0.3792 0.1001 0.0617 0.047 0.1731 0.0314 0.5338 0.1434 0.3576 0.584

CRA 0.4028 0.115 0.0617 0.0491 0.1796 0.0314 0.5592 0.1567 0.3581 0.6269

CJC 0.3587 0.0701 0.0607 0.0249 0.1616 0.0314 0.5568 0.1523 0.3563 0.5585

CD-LD 0.3841 0.0977 0.0515 0.0298 0.1765 0.0562 0.5128 0.1478 0.3111 0.5331

CD-LD-2 0.4178 0.0837 0.0655 0.106 0.1758 0.0621 0.5164 0.1381 0.3387 0.54

CD-LD-3 0.4178 0.0837 0.0687 0.1023 0.1764 0.0621 0.5236 0.1344 0.3548 0.5436

CD-LD-4 0.4178 0.0977 0.0703 0.098 0.1758 0.0621 0.5236 0.141 0.3468 0.5418

CD-LD-5 0.4178 0.0977 0.0687 0.0977 0.1755 0.0621 0.5236 0.1447 0.3468 0.5418

CD-LD-6 0.4178 0.0977 0.0703 0.0977 0.1755 0.0621 0.5236 0.1458 0.3468 0.54

CD*LD 0.3839 0.0915 0.0475 0.0395 0.1768 0.0562 0.5186 0.1465 0.3192 0.5076

CD*LD-2 0.4131 0.0814 0.0495 0.0447 0.1755 0.0621 0.5236 0.1341 0.3306 0.54

CD*LD-3 0.4178 0.0744 0.0607 0.0726 0.1767 0.0621 0.5345 0.1337 0.3629 0.54

CD*LD-4 0.4178 0.0837 0.0527 0.0726 0.1764 0.0621 0.5345 0.141 0.3629 0.5327

CD*LD-5 0.4178 0.0837 0.0591 0.0726 0.1764 0.0621 0.5345 0.1443 0.3629 0.5255

CD*LD-6 0.4178 0.0837 0.0607 0.0781 0.1767 0.0621 0.5345 0.1454 0.3629 0.5236

CD 0.0085 0.0051 0.0002 0.0058 0.001 0.0106 0.2589 0.012 0.3477 0.12

CD-2 0.0188 0.0093 0 0.0078 0.003 0.0152 0.36 0.0308 0.2419 0.3945

CD-3 0.0188 0.0047 0 0.0078 0.0015 0.0136 0.36 0.0484 0.371 0.2709

CD-4 0.0141 0.0047 0 0.0078 0.0012 0.0152 0.3055 0.0319 0.379 0.2073

CD-5 0.0141 0.0047 0 0.0078 0.0018 0.0121 0.2945 0.0117 0.379 0.1855

CD-6 0.0141 0.0047 0 0.0078 0.0018 0.0106 0.2945 0.0099 0.379 0.1527

CDI 0.3352 0.0558 0.0272 0.0744 0.0726 0.0083 0.1404 0.0257 0.0032 0.0938

RP 0.0047 0.0047 0 0.0065 0.0025 0 0.0161 0.0018 0.0102 0

doi:10.1371/journal.pone.0146727.t002
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network interactions was used as training set for the algorithms and the remaining 10% inter-
actions were used for the test set.

In this paper, prediction accuracies of fifteen existing similarity indices including Common
Neighbors Index (CN) [21,49], Salton index (Salton) [14], Sorensen Index (Sorensen) [5],
Leicht-Holme-Newman Index (LHN) [15], Local Path Index(LP) [20], Local RandomWalk
(LRW) [21,41], LB(local blocking) index [50], Preferential Attachment (PA) [29], Resource
Allocation Index (RA) [16], and LCP-based indices[3] were compared with the proposed CD-
based similarity indices. CN is based on the hypothesis that two nodes are more likely to gener-
ate a link in the near future if they have more common neighbors. On networks with high clus-
tering coefficient, CN can provide competitively accurate prediction results compared with
other indices [22]. Salton, Sorensen and LHN are expanded from CN and they are neighbor-
based methods. LP is a popular distance-based method and it can give more accurate predic-
tions than other distance-based methods such as Katz and LHN-II on some networks with
small average shortest distance [6]. LP-3 and LP-4 represent SLP = A2 + εA3 and SLP = A2 +
εA3 + ε2A4 respectively. LRW is a famous index based on local random walk[21,41]. LB index
is based on the idea of local blocking and link density between them [50]. PA is the well-known
preferential attachment mechanism proposed by BARABASI A-L to generate scale-free net-
works. RA is a high-precise and low-complexity similarity index based on resource allocation
process. LCP-based indices including CAR, CPA, CAA, CRA and CJC are a series of marvelous
indices based on local communities.

For LP index, ε is a free parameter and ε = 0.01 in this paper. For LRW index, the step of
random walk is set as 3. Table 3 shows affiliations of CD-based, CD-k, CD-LD-k, CD�LD-k
and CDI indices, where k is the threshold in Eq 1. In addition, the performance of a random
predictor was also compared with the proposed similarity indices and the random predictor is
computed considering a ranking obtained as the random permutation of the 10% test-links [3].

Results and Discussion
The proposed CD-based algorithms and fifteen existing methods were compared on ten real
networks, and their Precision values are shown in Table 2 and the best value of each network is
emphasized by boldface. The definitions of fifteen existing methods are introduced in Methods
section and the basic topological features of ten example networks are shown in Table 1.

We can clearly see from Table 2, CD-based indices can improve prediction accuracy of
some existing indices such as CN, Salton, PA and Sorensen on all experimental networks, LHN
on all networks except FT, RA on INT, Word, PB, Grid, E-mail and FT, LP-k on USAir, INT,
Jazz, E-mail, FT and NS, LRW on all networks except Neural, LB on all networks except INT,
all LCP-based indices on USAir, INT, Word, Grid and FT.

From another point of view, RA performs best on networks USAir and NS with Precision
values as 0.4712 and 0.7454 respectively, and the performance of CD-based indices takes sec-
ond place on network USAir with Precision value as 0.4178. On network Neural, CD-based
indices can obtain greater Precision values than other indices except LRW and LCP-based indi-
ces. On network INT, the Precision value of CD-based indices is greater than values of other
indices while less than the greatest value 0.207 of LB index.

Table 3. Affiliations of the proposed indices. CD-based indices represent four proposed indices as
CD-LD-k, CD*LD-k, CD-k and CDI, where k is the value of threshold in Eq 1.

CD-based

CD-LD-k CD*LD-k CD-k CDI

doi:10.1371/journal.pone.0146727.t003
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LP-k indices perform best on networks Word, PB and Grid, and CD-based indices take sec-
ond place on networks Word and Grid. LCP-based indices perform best on network Jazz with
Precision value as 0.5592 and on network E-mail with 0.1567, while CD-based indices have
0.1478 on network E-mail which is less than that of LCP-based indices. On network FT, LHN
index performs best and CD-based indices perform better than LCP-based indices satisfacto-
rily. On the whole, CD-based and LCP-based always perform well on all networks although
CD-based indices have not the greatest Precision values. Therefore, CD-based and LCP-based
indices are more robust than other indices.

For Precision values in Table 2, all existing indices except PA, LP-k and LB obtain predic-
tion accuracies less than 0.1 on networks INT, Grid and Word with low clustering coefficient,
even Salton, Sorensen and LHN get 0 on INT andWord. But these indices can obtain satisfac-
tory prediction accuracy on high clustering coefficient networks FT, Jazz, and NS. As a matter
of fact, most of existing indices which are considered in this paper as well as CD-LD-k and
CD�LD-k indices are based on local information of networks, so their prediction accuracy will
be inevitably influenced by clustering coefficient and these indices perform better on networks
with high clustering coefficient. While we can find from Table 2 that CD-LD-k and CD�LD-k
indices can improve prediction accuracy of existing indices on networks with low clustering
coefficient on the whole.

In addition, relative precision of each method on each network is utilized to discuss average
performance and robustness of link prediction indices. The relative precision is computed as
the precision of a method on a network divided by the precision of the random predictor on
the same network and whose precision values on each network are shown in the bottom line of
Table 2. The relative precision of each index on each network is calculated and shown in
Table 4. Mean and minimum relative precision values of each index are also calculated and
mean value is used as an indicator of average performance, whereas the minimum value is used
as an indicator of robustness. From Table 4, CRA index of LCP-based indices has the best aver-
age performance and LP4 has the best robustness. On the whole, the average performance and
robustness of CD-LD-k and CD�LD-k indices are satisfactory with mean relative precision val-
ues more than 45 and minimum relative precision values more than 10. As a matter of fact,
from a statistical point, CN, RA, LP-k, LB, LCP-based, CD-LD-k and CD�LD-k indices provide
a very similar performance.

Considering global networks information, CD may get poor prediction accuracy on rela-
tively higher clustering coefficient networks. So threshold k in Eq 1 is set smaller as 2, 3, 4, 5
and 6 according to vast experiments, and their corresponding CD indices are denoted as CD-2,
CD-3, CD-4, CD-5, CD-6 in Tables 2 and 4. Compared with other indices in Table 2, CD and
CD-k indices perform far from satisfactory. Moreover, we find out that the performance of CD
and CD-4 indices on networks Neural, INT, Word, and PB with negative assortative coefficient
is worse than the performance on networks Grid, Jazz, Email, FT and NS with positive assorta-
tive coefficient. In spite of Precision values of CD-2 and CD-3 on negative assortative network
USAir are greater than the values on positive assortative network Grid, the performance of CD
and CD-k indices on network USAir is worse than on positive assortative networks Jazz, FT
and NS. From Table 4 on Relative precision, more clearly, the performance of CD and CD-k
indices on negative assortative networks USAir, Neural, Word and PB is worse than on positive
assortative networks Jazz, Email and FT. On the whole, CD and CD-k indices are more appro-
priate for link prediction on positive assortative networks.

On the contrary, from Table 2, prediction accuracies of PA index on negative assortative
networks USAir, Neural, INT, Word and PB are greater than those on positive assortative net-
works Grid, Email, FT and NS. From Table 4, more obviously, the Relative precision values of
PA index on negative assortative networks USAir, Neural, Word and PB are greater than those
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on positive assortative networks Jazz, Email and FT. Furthermore, its mean value of Precision
values on all networks with negative assortative coefficient is 0.1156 which is much higher than
such value on all positive assortative coefficient networks as 0.0378. So we think PA index is
suitable for networks with negative assortative coefficient and it is different from the idea in
reference [6] that the poor performance of PA index on Grid network is caused by influence of
rare long geographical distance.

Table 4. Relative precision of each index. The order of the networks is organized according to their increasing assortative coefficient (from negative to
positive), and values in brackets under the network names are the coefficient of each network. Mean and minimum relative precision values of each index are
shown in last two columns. The mean value is used as an indicator of average performance and minimum value is used as a measure of robustness
performance.

1 2 3 4 5 6 7 Mean Minimum

USAir Neural Word PB Jazz Email FT

(-0.208) (-0.1632) (-0.1293) (-0.079) (0.0202) (0.0782) (0.1624)

CN 82.26059 20.2745 11.44615 70.56 31.44099 77.58659 28.37255 45.99163 11.44615

Salton 11.8002 5.0095 0 3.96 33.56522 24.024 34.15686 16.07368 0

PA 70.5669 12.4485 15.73846 26.84 8.10559 9.445799 0.029412 20.45352 0.029412

Sorensen 15.8046 6.192 0 7.84 32.83851 35.3808 33.84314 18.84272 0

LHN 2.1939 0 0 0.2 6.322981 0.9828 38.26471 6.852055 0

RA 100.3656 21.371 9.446154 62.48 33.52174 79.00619 27.70588 47.69951 9.446154

LP3 81.40859 21.3495 12.49231 73.12 29.36025 74.69279 25.79412 45.45965 12.49231

LP4 79.40639 20.597 16.46154 72.84 27.82609 72.61799 26.56863 45.18823 16.46154

LRW 25.3683 30.4225 10.30769 38 22.1677 36.4182 24.81373 26.78544 10.30769

LB 78.65957 18.34043 15.67692 58.48 17.09938 47.33333 18.28431 36.2677 15.67692

CAR 80.32229 19.8015 8.446154 69.16 32.21739 76.54919 33 45.64236 8.446154

CPA 80.47139 21.07 10.69231 69.2 32.09938 70.59779 32.57843 45.24419 10.69231

CAA 80.76959 21.5215 7.230769 69.24 33.15528 78.29639 35.05882 46.46748 7.230769

CRA 85.79639 24.725 7.553846 71.84 34.73292 85.55819 35.10784 49.3306 7.553846

CJC 76.40309 15.0715 3.830769 64.64 34.58385 83.15579 34.93137 44.65948 3.830769

CD-LD 81.81329 21.0055 4.584615 70.6 31.85093 80.69879 30.5 45.86473 4.584615

CD-LD-2 88.99139 17.9955 16.30769 70.32 32.07453 75.40259 33.20588 47.7568 16.30769

CD-LD-3 88.99139 17.9955 15.73846 70.56 32.52174 73.38239 34.78431 47.71054 15.73846

CD-LD-4 88.99139 21.0055 15.07692 70.32 32.52174 76.98599 34 48.41451 15.07692

CD-LD-5 88.99139 21.0055 15.03077 70.2 32.52174 79.00619 34 48.67937 15.03077

CD-LD-6 88.99139 21.0055 15.03077 70.2 32.52174 79.60679 34 48.76517 15.03077

CD*LD 81.77069 19.6725 6.076923 70.72 32.21118 79.98899 31.29412 45.96206 6.076923

CD*LD-2 87.99029 17.501 6.876923 70.2 32.52174 73.21859 32.41176 45.81719 6.876923

CD*LD-3 88.99139 15.996 11.16923 70.68 33.19876 73.00019 35.57843 46.94486 11.16923

CD*LD-4 88.99139 17.9955 11.16923 70.56 33.19876 76.98599 35.57843 47.78276 11.16923

CD*LD-5 88.99139 17.9955 11.16923 70.56 33.19876 78.78779 35.57843 48.04016 11.16923

CD*LD-6 88.99139 17.9955 12.01538 70.68 33.19876 79.38839 35.57843 48.26398 12.01538

CD 1.8105 1.0965 0.892308 0.4 16.08075 6.551999 34.08824 8.702898 0.4

CD-2 4.0044 1.9995 1.2 1.2 22.36025 16.8168 23.71569 10.18523 1.2

CD-3 4.0044 1.0105 1.2 0.6 22.36025 26.4264 36.37255 13.13916 0.6

CD-4 3.0033 1.0105 1.2 0.48 18.97516 17.4174 37.15686 11.32046 0.48

CD-5 3.0033 1.0105 1.2 0.72 18.29193 6.388199 37.15686 9.681541 0.72

CD-6 3.0033 1.0105 1.2 0.72 18.29193 5.4054 37.15686 9.541141 0.72

CDI 71.3976 11.997 11.44615 29.04 8.720497 14.0322 0.313725 20.99245 0.313725

doi:10.1371/journal.pone.0146727.t004

CD-Based Indices for Link Prediction in Complex Network

PLOS ONE | DOI:10.1371/journal.pone.0146727 January 11, 2016 9 / 13



Improvement
According to the discussion in above section and results of CD and CD-k indices, a conclusion
was reached that the proposed CD and CD-k indices perform better on networks with positive
assortative coefficient than on networks with negative assortative coefficient. For the networks
with negative assortative coefficient, improvements of CD and CD-k indices are based on the
following consideration. In reference [33], for a network, Newman thought that the assortative
coefficient is positive or negative corresponding to assortative or disassortative mixing respec-
tively. Assortative mixing means that high degree nodes tend to connect with high degree
nodes and vice versa. Disassortative mixing means that high degree nodes tend to connect with
low degree nodes and vice versa. Newman applied assortative coefficient to the network model
of Barabasi and Albert (BA) [29] and found out that these kinds of network are disassortative
mixing. In other words, the assortative coefficient of BA network is negative. Because an evolv-
ing network model corresponds to a link prediction method [16], an algorithm can perform
better on the networks corresponding to its evolutionary mechanism. As we can see from
Table 2, PA index, as the preferential attachment mechanism, performs better on most negative
assortative networks compared with its performance on positive assortative networks. So we
think that the network growth by CD or CD-k mechanism will have positive assortative coeffi-
cient. In order to improve CD and CD-k indices on negative assortative networks, the advan-
tages of CD and PA indices are taken into account and improvement denoted as CDI is made
as follows

sCDIij ¼ ðCi;CjÞ
kCik � kCjk

� ðki � kjÞ ð8Þ

Improved index CDI was also applied to the ten real networks, and its Precision values and
Relative precision values are shown in Table 2 and Table 4 respectively. Apparently, from
Table 2, on networks USAir, Neural, INT, Word and PB with negative assortative coefficient,
Precision values obtained by CDI have been improved compared with CD and CD-k indices.
However, on networks Grid, Jazz, FT and NS with positive assortative coefficient, Precision val-
ues obtained by CDI are reduced compared with CD and CD-k indices. In brief, CDI index can
improve prediction accuracy of CD and CD-k indices on negative assortative coefficient net-
works. From Table 2, we can also draw a conclusion that CDI index can improve prediction
accuracy of PA index both on negative and positive assortative networks except networks Neu-
ral and Word. What’s more, from Table 4, CDI has greater average performance and robust-
ness than PA index.

In addition, the complexity of the proposed link prediction method is O(n2) at most. In Eq
1, all the shortest paths between nodes in a network should be calculated. But the traditional
shortest path algorithms are time-consuming such as Dijkstra and Floyd with complexity as
high as O(n3). For improving algorithm complexity, we applied breadth-first search to network
adjacent matrix and proposed a new method to calculate all the shortest paths between nodes
in un-weighted and undirected connected networks with time complexity as O(n2) at most.
The proposed shortest path algorithm is described as follows:

Input: adjacency matrix A of an un-weighted and undirected connected network G = (V, E).
Output: distance matrix D of G.
Step 1: Set integer variables k = 1, i = 1 and distance matrix D = A.
Step 2: Find coordinates of element k in ith row of D as Vi

k ¼ ðv1k ; v2k ; v3k ; � � �Þ.
Step 3: Find coordinate of element 1 in vjkth row of A as Ui;j

k , where v
j
k 2 Vi

k.

Step 4: Set Ui
k ¼ Ui;1

k \ Ui;2
k \ Ui;3

k \ � � � ¼ ðui;1
k ; u

i;2
k ; u

i;3
k ; � � � ; ui;y

k Þ.
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Step 5: Set ui;x
k th element as k + 1 in ith row of D, where ui;x

k 2 Ui
k.

Step 6: Increase k as k = k + 1 and repeat from Step 2 to Step 5 until Vi
k is empty.

Step 7: Increase i as i = i + 1, let k = 1 and repeat from Step 2 to Step 6 until i = n.
Because calculating CD index in Eq 3 needs complexity at most O(n2) and calculating LD

index in Eq 4 needs complexity at most O(n3), so the complexity of CD, CD-k and CDI are
O(n2) and the complexity of CD-LD-k and CD�LD-k are O(n3). Table 5 shows time complexi-
ties of link prediction algorithms.

Conclusions
In this paper, a series of new CD-based indices based on cosine similarity for link prediction are
proposed. Fifteen existing similarity indices are compared with the proposed indices and experi-
mental results demonstrate the effectiveness of CD-based indices. Through detailed analysis and
comparison according to Precision values, four important points were found out: (i) In spite of
influenced by clustering coefficient, the Precision values of CD-LD-k and CD�LD-k indices are
obviously superior to the values of some other indices. (ii) CD-LD-k and CD�LD-k indices are
robust and they have satisfactory average performance and robustness. (iii) CD and CD-k indices
are more appropriate for link prediction on positive assortative networks. (iv) CDI performs bet-
ter on negative assortative coefficient networks and can improve prediction accuracy of PA index.

Further investigation and improvements will focus on the following aspects. Firstly, the con-
clusion that CD is suitable for positive assortative coefficient networks and CDI is suitable for
negative assortative coefficient networks needs more practical verification. Secondly, the influ-
ence of other topological features such as network efficiency and degree heterogeneity on link
prediction accuracy should be studied in depth. Thirdly, abundant information can be
extracted from k-distance matrix L, such as connections between its eigenvectors and network
topological features. Fourthly, according to the conclusion that CD is suitable for positive
assortative networks and CDI is suitable for negative assortative networks, we guess that evolv-
ing networks of CD and CDI should be assortative mixing and disassortative mixing respec-
tively. Fifthly, LD index can be expanded using different similarity indices to calculate the local
density. Sixthly, a theoretical strategy is required to tune the threshold k in Eq 1. Finally, we
hope the link prediction methods presented here can be expanded to other types of networks,
such as weighted network, directed network, bipartite network and dynamic network. We
hope such improvements and more applications of CD-based methods in the future.
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Table 5. Index complexity. All complexities of indices in this table are estimated by the worst condition of networks. CP represents the complexity of an
index.

Index CN Salton PA Sorensen LHN RA LP LRW LB LCP-based CD-LD-k CD*LD-k CD-k CDI

CP o(n2) o(n2) o(n2) o(n2) o(n2) o(n3) o(n3) o(n3) o(n2) o(n3) o(n3) o(n3) o(n2) o(n2)

doi:10.1371/journal.pone.0146727.t005
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