
He et al. Cell Commun Signal           (2021) 19:73  
https://doi.org/10.1186/s12964-021-00754-7

RESEARCH

Single‑cell analysis reveals cell 
communication triggered by macrophages 
associated with the reduction and exhaustion 
of CD8+ T cells in COVID‑19
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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-Cov-2) has become an ongoing pandemic. Understanding the respiratory immune microenvironment 
which is composed of multiple cell types, together with cell communication based on ligand–receptor interactions is 
important for developing vaccines, probing COVID-19 pathogenesis, and improving pandemic control measures.

Methods:  A total of 102 consecutive hospitalized patients with confirmed COVID-19 were enrolled in this study. Clin-
ical information, routine laboratory tests, and flow cytometry analysis data with different conditions were collected 
and assessed for predictive value in COVID-19 patients. Next, we analyzed public single-cell RNA-sequencing (scRNA-
seq) data from bronchoalveolar lavage fluid, which offers the closest available view of immune cell heterogeneity 
as encountered in patients with varying severity of COVID-19. A weighting algorithm was used to calculate ligand–
receptor interactions, revealing the communication potentially associated with outcomes across cell types. Finally, 
serum cytokines including IL6, IL1β, IL10, CXCL10, TNFα, GALECTIN-1, and IGF1 derived from patients were measured.

Results:  Of the 102 COVID-19 patients, 42 cases (41.2%) were categorized as severe. Multivariate logistic regression 
analysis demonstrated that AST, D-dimer, BUN, and WBC were considered as independent risk factors for the severity 
of COVID-19. T cell numbers including total T cells, CD4+ and CD8+ T cells in the severe disease group were signifi-
cantly lower than those in the moderate disease group. The risk model containing the above mentioned inflam-
matory damage parameters, and the counts of T cells, with AUROCs ranged from 0.78 to 0.87. To investigate the 
molecular mechanism at the cellular level, we analyzed the published scRNA-seq data and found that macrophages 
displayed specific functional diversity after SARS-Cov-2 infection, and the metabolic pathway activities in the identi-
fied macrophage subtypes were influenced by hypoxia status. Importantly, we described ligand–receptor interactions 
that are related to COVID-19 serverity involving macrophages and T cell subsets by communication analysis.
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Background
Coronavirus disease 2019 (COVID-19), a newly emerged 
respiratory disease that involves multiple organ damage, 
has already become an ongoing pandemic. Most patients 
with COVID-19 exhibit mild to moderate symptoms, 
but approximately 15% showing severe symptoms, and 
approximately 5% eventually develop acute respiratory 
distress syndrome with high mortality risk [1, 2]. The 
reasons why certain individuals are more prone to devel-
oping the severe forms of COVID-19 are also unclear. 
Furthermore, advanced age and comorbidities including 
diabetes and cardiovascular diseases, especially patho-
logical inflammation have been observed to be the pri-
mary risk factors for severe COVID-19 symptoms [3, 4], 
however, the underlying immune responses at the molec-
ular and cellular levels remain elusive.

Previous evidence suggests that SARS-CoV-2 infec-
tion and the destruction of lung cells trigger a local 
immune response, recruiting macrophages and mono-
cytes that respond to the infection, release cytokines, 
and prime adaptive T and B cell immune responses [5]. 
In most individuals, the recruited cells clear the infection 
in the lung, the immune response recedes and patients 
recover. However, persistent viral infections are related to 
increased PD-1 expression, a marker of T cell exhaustion, 
leading to low circulating lymphocyte counts in severe 
COVID-19 cases [6]. In addition, an imbalanced immune 
response also triggers the development of the illness as 
severity does not seem to be solely related to viral load 
and could involve a dysregulated macrophage response 
associated with a cytokine storm [7, 8], and uncontrolled 
activation of inflammatory macrophages may trigger sys-
temic inflammatory response syndrome (SIRS) [9, 10]. 
Therefore, precise regulation of cell-mediated inflamma-
tory responses is of paramount importance in guarantee-
ing microbial clearance, injury limitation, and avoidance 
of serious side effects [11].

In the present study, we firstly retrospectively evalu-
ated the clinical data of 102 cases of COVID-19 patients 
admitted to Hubei Provincial Hospital of Integrated Chi-
nese and Western Medicine in Wuhan from February to 
April 2020. Consistent with the previous report [6], T cell 
numbers including total T cells, CD4+ and CD8+ T cells 

in the severe group were significantly lower than those 
in moderate group. To investigate potential molecular 
mechanisms at the cellular level using recent public sin-
gle-cell RNA sequencing (scRNA-seq) data [12], we ana-
lyzed the gene expression profiles of more than 17,000 
bronchoalveolar lavage fluid (BALF) immune cells from 
patients with COVID-19. We found that macrophages 
displayed specific functional diversity after SARS-Cov-2 
infection, and metabolic pathway activities in the iden-
tified macrophage subtypes were influenced by hypoxia 
status. Importantly, we provide evidence that cell com-
munication triggered by macrophage subtypes plays a 
potential roles in the reduction and exhaustion of CD8+ 
T cells.

Methods
Clinical data collection
We performed this retrospective study at the Hubei 
Provincial Hospital of Integrated Chinese and Western 
Medicine in Wuhan. The study involved 102 patients 
diagnosed with COVID-19 and hospitalized between 
February 3, 2020, and April 15, 2020. All cases were con-
firmed as COVID-19 infection by nasal and pharyngeal 
swab specimens and chest CT scans. The diagnosis and 
severity of the patients were based on the diagnosis and 
treatment scheme for COVID-19 (trial version 6) issued 
by the National Health Commission of the People’s 
Republic of China.

After hospitalization, the patients’ serum specimens 
were collected for laboratory examination including flow 
cytometric analysis. Once the endpoints (discharge or 
death) were reached, we collected patient clinical data. 
In this study, epidemiological, clinical, laboratory, and 
radiological characteristics and treatments, as well as 
outcome data were obtained from electronic medical 
records. Data collection forms were reviewed indepen-
dently by two researchers.

Laboratory examination
Throat-swab specimens from the upper respiratory tract 
that were obtained from patients at admission were 
maintained in the viral transport medium. SARS-CoV-2 
was confirmed by using TaqMan One-Step RT-qPCR Kits 

Conclusions:  Our study showed that macrophages driving ligand–receptor crosstalk contributed to the reduc-
tion and exhaustion of CD8+ T cells. The identified crucial cytokine panel, including IL6, IL1β, IL10, CXCL10, IGF1, and 
GALECTIN-1, may offer the selective targets to improve the efficacy of COVID-19 therapy.

Trial registration: This is a retrospective observational study without a trial registration number.
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from Shanghai Huirui Biotechnology Co. Ltd and Shang-
hai BioGerm Medical Biotechnology Co. Ltd, both of 
which have been approved by the China Food and Drug 
Administration. The specific PCR primers, probes, and 
the determination of results for the detection of SARS-
CoV-2 followed the recommendations of the National 
Institute for Viral Disease Control and Prevention, Chi-
nese Center for Disease Control and Prevention.

Routine blood tests were performed using an XS-
1000i hematology analyzer (Sysemx, Japan). Biochemical 
indicators were tested using the ADVIA2400 chemis-
try system (Siemens, Germany). Coagulation tests were 
performed using an ACLTOP750 automatic coagulation 
analyzer (Instrumentation Laboratory, USA).

Flow cytometry analysis (FACs) was performed using a 
BriCyte E6 flow cytometer (Mindray, Shenzhen, China). 
Briefly, heparinized peripheral blood was collected from 
study participants. After collection, Fluorescently-labeled 
monoclonal antibodys (Abs) were added to label the sur-
face markers of stimulated or unstimulated cells. To label 
intracellular antigens, the cells were fixed and permea-
bilized with Fixation/Permeabilization Buffer (BD Bio-
sciences) and then stained with Abs derived from FACS 
test kit (Mindray) as follows: anti-CD3-FITC (clone: 
SK7), anti-CD4-APC (clone: SK3), anti-CD8-PE (clone: 
SK), and anti-CD45-PerCP (clone: 2D1). In addition, 
anti–PD-1 was purchased from (BD Biosciences, catalog 
557860). Isotype ontrols with irrelevant specificities were 
included as negative controls. The percentages and abso-
lute numbers of total T cells, CD4+ T cells, and CD8+ 
T cells were determined by using the the microfluidic 
detector of BriCyte E6.

Single‑cell RNA‑seq data preprocessing
The scRNA-seq data for most of the analyses in this study 
were downloaded from the GEO database (GSE145926). 
These data were published by Liao et  al. [12], wherein 
BALF cells were extracted from nine COVID-19 patients 
and three healthy controls. We excluded low-quality cells 
based on two quality measures: the number of aligned 
reads < 2e5 or the number of genes detected < 200. In the 
subsequent analysis, we downsampled cells and normal-
ized the gene expression profiles to reduce the influence 
of technical noise as previously published study [13].

Functional and pathway enrichment analysis
Normalized gene expression data were used for path-
way analysis. Gene Ontology (GO) and Gene Set 
Enrichment Analysis (GSEA) using the ClusterPro-
filer [14] or Gene Set Variation Analysis  (GSVA) [15] 
R packages were performed on differentially expressed 
genes (DEGs). GO terms were identified with a strict 
cutoff of P < 0.01 and a false discovery rate (FDR) < 0.05.

Single‑cell trajectory reconstruction and analysis
Single-cell pseudotime trajectories were constructed 
using MONOCLE (version 2.6.4) [16]. Briefly, we first 
selected a set of ordering genes that showed differential 
expression between the clusters. Then, Monocle then 
uses reversed graph embedding, a machine learning 
technique to generate a parsimonious principal graph, 
and then reduces the given high-dimensional expres-
sion profiles to a low-dimensional space. Single cells 
were projected onto this space and ordered into a tra-
jectory with branch points. As called in Monocle, cells 
in the same segment of the trajectory have the same 
‘state’. Branched expression analysis modeling was used 
to further test for branch-dependent gene expression.

Classification of hypoxia status across different samples
We selected a 15 gene expression signatures (ACOT7, 
ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, MRPS17, 
NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6, and 
VEGFA) that has been shown to perform optimally 
when classifying hypoxia status in the previous study 
[17]. Hypoxia scores for each cell were calculated by 
using GSVA based on 15 mRNA-based hypoxia signa-
tures. The Wilcoxon rank-sum test was used to assess 
the statistical difference with hypoxic status in different 
cell subpopulations.

Ligand–receptor networks
First, to represent cell–cell communication networks 
via ligand–receptor interactions, we implemented a 
directed, weighted network as previously described 
[18]. Briefly, we initially considered all ligand–receptor 
pairs expressed in at least 10% of the cells in a popula-
tion. We then built a network using six subpopulations 
identified in the BALF immune (BAI) cells dataset. To 
filter out downregulated ligand–receptor connections, 
we set a minimum path weight of 1.5. An overall weight 
describing the strength of the connection between a 
source and target population, the total weight can then 
be calculated by summing all path weights between the 
source and target. Finally, we further re-verified cell–
cell communications among all macrophage and T cell 
sub-populations using the CellChat R package [19].

Quantification of cytokine serum levels
The serum levels of cytokines, including IL6, IL10, IL1β, 
GALECTIN-1, IGF1, CXCL10, and TNFα, were quanti-
fied using the IMMULITE®  2000 immunoassay system 
(Siemens, Los Angeles, California, USA) according to the 
manufacturer’s instructions.
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Statistical analyses
All statistical analyses were performed using R (3.6.2). 
Continuous variables are expressed as mean ± standard 
deviation (SD). Categorical variables are summarized as 
the counts and percentages (%). χ2 test was performed to 
compare the frequencies to categorical variables. Fisher’s 
exact test was used to evaluate permutation-based differ-
ential proportion analysis (DPA). The differences of Cate-
gorical variables between two groups were analyzed using 
Student’s t test (parametric) and Wilcoxon rank-sum test 
(non-parametric). The univariate and multivariate logis-
tic regression analyses were performed to evaluate risk 
factors for the disease. Statistical significance was defined 
as p value < 0.05.

Results
Laboratory characteristics of patients with moderate 
and severe COVID‑19
From February to April 2020, 102 moderately to severely 
ill patients with confirmed COVID-19 were transferred 
or admitted to the Hubei Provincial Hospital of Inte-
grated Chinese and Western Medicine. Of these patients, 
the mean age was 63.8  years, 44 (43.1%) were women 
and 58 (56.9%) were men. Fever (89.1%), cough (72.3%), 
fatigue (84.5%), anorexia (46.46%) and diarrhea (22.1%) 
were the most common symptoms.

According to China’s National Health Commission 
Guidelines for COVID-19 Treatment (6th edition) pub-
lished by the National Health Commission of China, 60 
(58.8%) cases were classified into the moderate group, 
and 42 cases (41.2%) were categorized into the severe 
group. As shown in Table  1, white blood cell count 
(WBC), neutrophil %, neutrophil to lymphocyte ratio 
(NLR), aspartate aminotransferase (AST), total bilirubin 
(TBIL), blood urea nitrogen (BUN), C-reactive protein 
(CRP), prothrombin time (PT), and D-dimer levels were 
significantly higher in the severe cases than in the moder-
ate cases (p < 0.05). Inversely, lymphocyte % and platelet 
counts were significantly lower in the severe group than 
in the moderate group (p < 0.05). These laboratory find-
ings concurred with those of several previous studies 
reported [20, 21].

Thereafter, we performed univariate and multivari-
ate logistic regression analyses to evaluate risk factors 
for the progression of COVID-19. A forest plot (Fig. 1a) 
showed that a significant association between COVID-19 
progression and age (≤ 65 vs. > 65 years, odds ratio (OR), 
0.29), WBC count (OR, 1.16), neutrophil % (OR, 1.08), 
lymphocyte % (OR, 0.94), PLT (OR, 0.91), AST (OR, 
1.04), TBIL (OR, 1.07), BUN (OR, 1.23), PT (OR, 1.41) 
and D-dimer (OR, 1.23). Multivariate logistic regres-
sion analysis demonstrated that AST, D-dimer, BUN, 
and WBC were considered as independent predictive 

variables for COVID-19 deterioration (Additional file 1: 
Table  S1). As shown in Fig.  1b, c, the regression model 
including these four variables was suitable for predicting 
COVID-19 patient deterioration.

CD4+ and CD8+ T cell numbers were extremely despressed 
with the severity of COVID‑19 patients
T lymphocytes, especially CD8+ cytotoxic T cells, are the 
most important immune cells that protect against viral 
infection [22]. In line with this, we next detected total T 
lymphocyte counts and CD4+ and CD8+ T cell counts 
by FACS. The absolute numbers of total T lymphocytes, 
CD4+ T cells, and CD8+ T cells in severe patients were 
all significantly lower than those in patients with mod-
erate disease (Fig.  2a–d). The mean values of total T 
lymphocytes, CD4+ and CD8+ T cell counts were 521 
(SD = 188), 330 (SD = 194), and 209 (SD = 147), respec-
tively in moderate cases, and the mean value decreased 
to 273 (SD = 142), 163 (SD = 93), and 96 (SD = 57), 
respectively in severe cases. Next, we determined area 
under the receiver operating characteristic curve crite-
rion (AUROC) to calculate the sensitivity and specificity 
of the multivariate logistic regression model, total counts 
of T cell, CD8+ T cells, and CD4+ T cells. The ROC curve 
indicates the probability that the model predicted for a 
randomly chosen positive case will exceed the result for 
a randomly chosen negative case (Fig.  2e), which indi-
cates that the absolute numbers of total T cells and CD8+ 
T cells indicated good prognostic prediction efficacy for 
COVID-19 severity.

Single‑cell RNA‑seq of total COVID‑19 BALF cell population
The number of total T cells and CD4+ and CD8+ T cells 
was dramatically reduced in COVID-19 patients, espe-
cially, which was strongly correlated with patient deterio-
ration. To further elucidate the molecular mechanisms of 
the above-mentioned clinical features, we analyzed tran-
scriptome profiles at the single-cell level, which is one of 
the first available datasets to demonstrate the landscape 
of BALF immune (BAI) cells in patients with COVID-19 
[12]. The dataset was selected because it covered three 
patients with moderate COVID-19, six patients with 
severe infection, and three healthy controls. Further-
more, the samples derived from BALF contained micro-
environment information regarding bronchioles and lung 
alveoli.

Here, we first applied data downsampling and normali-
zation to gene expression profiles to reduce the influ-
ence of technical noise. Transcriptional profiles of 17778 
cells were captured after quality control filtering (con-
trol: 6583; moderate: 4233; severe: 6962) (Fig. 3a, b, and 
Additional file 2: Figure S1). BAI cells were identified by 
a total of six distinct major cell lineages. The cell types 
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comprised macrophages (Mac; CD68+CCL2+), mono-
cytes/dendritic cells (Mons/DC; FCER1G+AXL+), T 
cells (CD3D+), natural killer cells (NK; KLRD1−GNLY+), 
plasma cells (JCHAIN+MZB1+) and epithelial cells 
(EPCs; KRT8+KRT19+) (Fig.  3d). Next, we performed 
the DPA [18] to analyze whether changes in the propor-
tion of populations were greater than expected by chance 
alone. DPA identified six subtypes of BAI cells showing 
significant (p < 0.05) differences compared to the control 
samples. As shown in Fig. 3c, T cell numbers decreased 
markedly in the proportion of severe samples compared 
to control and moderate samples, whereas NK cells were 
expanded in severe samples, the results of which were in 
accordance with FACS data. To further validate the func-
tion of these cell clusters, we mapped the gene expres-
sion profiles of well-defined cell-type-specific markers in 
the subtypes of BAI cells, and then analyzed the biologi-
cal function of each cell cluster by using Gene Ontology 
(GO) analysis of differentially expressed genes (DEGs) 
(Fig.  3e), revealing the unique characteristics of these 

BAI immune cells. For example, GO terms specific to 
macrophages included ‘‘macrophage activation,’’ ‘‘anti-
gen processing and presentation,’’ and “Mononuclear cell 
migration”. GO terms including ‘‘type I interferon sign-
aling,’’ “T cell activation” and ‘‘response to virus,’’ were 
enriched for T cells. Collectively, we identified six differ-
ent BAI immune cell types and annotated the biological 
functions of each.

scRNA‑seq analysis highlights macrophages heterogeneity 
in responding to SARS‑CoV‑2 infection
It is known that inflammatory macrophages play a 
crucial role in phagocytosis and microbial clearance; 
however, uncontrolled activation of inflammatory mac-
rophages may trigger systemic inflammatory response 
syndrome (SIRS) or even sepsis [9, 23]. Accordingly, we 
next focused on exploring the transcriptional hetero-
geneity of macrophages in responding to SARS-Cov-2 
infection. In this study, we showed that enriched popu-
lations of Res-like Mac (HLA-DR+ITGAM−CD68low), 
M1 Mac (CD68+ITGAM+CCL2+), and pro-inflam-
matory Mac (CD68+ITGAM−CSF1R−CCL2+) in 
patients with severe COVID-19 (Fig.  4a–c). The 
prominent M2 Mac (C1QA+CCL18+), and M0 Mac 
(CD68+CD163lowITGAM+) were enriched in normal 
controls compared to COVID-19 patients (Additional 
file  2: Figure S2a). Particularly about TREM2high, which 
showed the greatest percentage elevation in moder-
ate group (Fig.  4b), also overexpressed genes involving 
complement activation and immune cell differentiation, 
including C1QA, CSF1R, and TNFSF13 (Fig.  4c). Next, 
We further observed that severe  COVID-19 patients 
showed  upregulation of cytokines  and  chemokines 
compared to moderate ones, suggesting the func-
tional diversity  between each  of  the  macrophage 
subpopulations  analyzed. For example, proinflamma-
tory cytokines including IL6, IL1β, and TNF are thought 
to be produced by M1 Mac, whereas M2 Mac can secrete 
anti-inflammatory cytokines, such as IL10. Furthermore, 
previous evidence indicated that differential modulation 
of the chemokines including CXCL8 and CXCL10, inte-
grates polarized macrophages in pathways of resistance 
to microbial pathogens (Fig.  4d). Importantly, several 
cytokines are expressed in a TREM2-dependent manner 
in macrophages. Among these, genes such as GALEN-
TIN-1 could be a modulator of inflammatory response 
involving T cell exclusion [24, 25]. In accordance with 
the clinical symptoms of patients with COVID-19, the 
hypoxia gene signature was enriched in the severe groups 
compared to the moderate cohort (Fig. 4e). Indeed, based 
on this 15-gene signature, polarized macrophages exhib-
ited significantly higher hypoxia scores than M0 (Fig. 4f ), 
suggesting that functional heterogeneity between 

Table 1  Lab characteristics

p values comparing severe cases and moderate cases are from χ2, or unpaired 
2-sided Student’s t test

Characteristic Moderate (n = 60)
(Mean ± SD)

Severe (n = 42)
(Mean ± SD)

P value

Age (year)

 ≤ 65 38 14 0.005

 > 65 22 28

Gender

Female 27 17 0.802

Male 33 25

WBC (109/L) 6.55 ± 2.82 9.15 ± 5.95 0.011

Neutrophil % 71.51 ± 12.6 82.15 ± 10.98 < 0.001

Lymphocyte % 20.31 ± 10.72 13.27 ± 14.21 0.008

Neu/Lym 8.21 ± 2.8 22.5 ± 5.32 < 0.001

RBC (1012/L) 4.07 ± 0.67 4.12 ± 0.73 0.708

HB (g/L) 124 ± 19.2 125.31 ± 21.37 0.752

PLT (109/L) 249.7 ± 89.47 196.26 ± 100.61 0.007

ALT (U/L) 29.38 ± 32.33 46.93 ± 52.79 0.060

AST (U/L) 27.27 ± 13.61 63.55 ± 64.47 0.001

TBIL (umol/L) 12.95 ± 6.75 18.27 ± 13 0.018

BUN (mmol/L) 5.51 ± 3.27 10.34 ± 8.79 0.001

Cr (umol/L) 84.6 ± 129.76 121.17 ± 138.32 0.181

CK (U/L) 119.14 ± 145.11 342.92 ± 581.34 0.024

CRP (mg/L) 26.49 ± 37.28 42.11 ± 35.22 0.044

PCT (ng/mL) 0.89 ± 6.12 5.63 ± 18.19 0.119

BNP (pg/mL) 105.27 ± 200.91 359.35 ± 100.5 0.123

PT (seconds) 12.48 ± 1.75 13.48 ± 1.73 0.006

APTT (seconds) 30.05 ± 3.46 30.63 ± 4.26 0.468

D-dimer (ug/mL) 1.34 ± 2.25 13.24 ± 17 < 0.001

FIB (g/L) 3.31 ± 1.09 3.55 ± 1.49 0.365
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identified macrophage subtypes may be influenced by 
hypoxic status.

Next, we performed enrichment analysis of hallmark 
pathway activities scored per cell by GSVA, and con-
ducted direct comparisons of the control group versus the 
moderate or severe groups, respectively. We found that 
the signal activity of inflammatory responses, cytokine 
receptor interactions, and antigen processing, and pres-
entation were enriched in macrophages derived from 
COVID-19 patients, which are the hallmarks of the M1 
and pro-inflammatory Mac described in previous stud-
ies (Fig.  5a–c) [26–28]. Unsupervised hierarchical cluster 
analysis was based on the normalized activity scores of 
the 30 representative hallmark pathways, and macrophage 
populations were separated into three groups, impor-
tantly, which almost matched to the control, moderate 
and severe types of patients (Fig. 5d). This result suggested 
that macrophages display specific functional diversity after 

SARS-CoV-2 infection. Importantly, the activity of meta-
bolic pathways across macrophage subtypes was influenced 
by hypoxia status (Additional file 2: Figure S2b). For exam-
ple, glycolysis and oxidative phosphorylation were deter-
mined by cell type-specific manner (Fig. 5e, f ), suggesting 
that the metabolism of macrophages is more sensitive to 
environmental factors, especially hypoxia.

Pseudo‑time trajectory reconstruction with macrophage 
subpopulation
Although cell clustering is useful for identifying sub-
types, reconstructing cell states in continuous processes 
is difficult. Pseudo-time  trajectory  analysis  was per-
formed  to  infer lineage relationships among the mac-
rophage subsets.  The trajectory  constitutes two decision 
points and five states, which were derived to capture dif-
ferent sample groups in an orderly manner (Fig. 6a, Addi-
tional file  2: Figure S3). Based on the above findings, we 

Fig. 1  Logistic regression model performance and clinical usefulness of selected laboratory characteristics nomogram. a Forest plot showing 
the odds ratio of clinical parameters analyzed by univariate logistic regression in patients with moderate or severe COVID-19. The length of the 
horizontal line represents the 95% confidence interval for each indicator. The vertical dotted line represents the odds ratio (OR) = 1, OR > 1.0 implies 
a positive relationship. (i.e. odds ratio for gender had been above 1, this means that being male would correspond with higher odds of being the 
severe outcome.) b The nomogram was built by the multivariate logistic regression model, with the laboratory characteristics including WBC, AST, 
BUN, and D-dimer. c Calibration curve with Hosmer–Lemeshow test of the nomogram. The calibration curve depicts the calibration of the fitted 
model in terms of the agreement between the predicted risk of severe COVID-19 and real observed outcomes
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considered that the cells traveled from state 1 through 
branch point 1, state 2, and then to branch point 2, repre-
senting clinical outcome progression of the disease, from 
early infection with SARS-CoV-2 to severe or recovery, 
during which the expression of representative marker genes 
including C1QA, CXCL2, and TREM2 in macrophages 
was changed following pseudo-time (Fig. 6b).

Next, we calculated the cell-specific pathway activity, 
which may reflect the functional status of the cell trajec-
tory. The trend of the hypoxic signal first increased and 
then decreased with the pseudo-time (Fig.  6c). Along 
with this trend, the glycolytic activity gradually decreased, 

suggesting that cellular glycolysis metabolism was 
dependent on hypoxia status. Similarly, with fluctuating 
hypoxia, the senescence status within the cell trajectory 
was changed accordingly, which is consistent with previ-
ous studies involving the regulation of microenvironment 
and the increased production of mitochondrial reactive 
oxygen species [28, 29]. To further explore the functional 
enrichment of the cell states, we next identified DEGs with 
branch-dependent expression (FDR < 0.01) for branch 
points 1 and 2. GO analysis revealed that cells traveling 
from state 1 to state 2 exhibited highly expressed genes 
involved in glycogen, fatty acid metabolic process, and 

Fig. 2  The phenotypes and counts of T cell subtypes. a, b Fluorescence-activated cell sorting (FACS) dot plot examples, gated on total CD45+ cells 
(left), the expression of CD4 and/ or CD3 on CD45+ cells (middle), and the expression of CD8 and/ or CD3 on CD45+ cells (right). Case A indicates 
one of the moderate patients with COVID-19 (a). Case B, one representative case of severe patients (b). c, d The violin graph showing the counts of 
CD4+ T cells (c) and CD8+ T cells (d) in patients with different groups. *** p < 0.001 (Student’s t-test). e ROCs are created by plotting the true positive 
rate (TPR) against the false positive rate (FPR) at various threshold settings with corresponding AUCs labeled around the curves
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oxidative phosphorylation, which was in accordance with 
their sample types derived from severe and moderate cases 
(Fig.  6d). Notably, the genes were enriched in chemokine 
receptor binding and regulation of innate immune response 
pathways when cells traveled to state 3 and 4 from state 2 
(Fig.  6e). These results suggested that macrophages may 
undergo glucose and fatty acid metabolic reprograming in 
the acute infectious stage, and then trigger signal transduc-
tion involving the regulation of immune responses.

Assessing cell–cell interactions occurring in patients 
with COVID‑19
To identify potential cell–cell interactions that are con-
served across the progression of COVID-19, we modeled 
cases in which both members of a given ligand–receptor 
interaction are expressed by cell types present within the 
BALF immune microenvironment. Based on permuta-
tion testing of randomized network connections that 
were constructed with weighted edges reflecting expres-
sion fold changes of ligands and receptors in source and 
target populations as previously described [30], mac-
rophages exhibited the highest number of outbound 
connections, with having the greatest weight. Accord-
ingly, T cells showed the largest number and weighting 
of significant inbound connections (Fig. 7a, b). Next, we 
scored interactions by calculating the average expression 
of receptors and ligands in the respective cell types men-
tioned above. We assessed the statistical significance of 
each interaction score using the Wilcoxon rank-sum test 
and performed Benjamini–Hochberg multiple hypoth-
esis correction. Compared to Mons/DCs and EPC, NK, 
and plasma cells, many of the high-scoring interactions 
were detected with the part of the chemokine family in 
macrophages-related cell crosstalk, especially when com-
municating with T cells (Fig. 7c–e, Additional file 2: Fig-
ure S4a and b). Chemokine interactions involved in T cell 
perturbations in COVID-19, including CCR and CXCR, 
were verified in a recently published report [31].

To further explore the detailed interactions involving 
macrophage and T cell subpopulations, we first annotated 
T cell subtypes with markers, such as cytotoxic CD8+ 
T cells upregulated with CD8A, CD8B, and GZMK. In 
addition, CTLA4, PD-1, and TIGIT were overexpressed 

in exhausted CD8+ T cells (Additional file 2: Figure S5). 
Next, we further inferred all possible communications in 
cell sub-populations with CellChat [19]. Accordingly, 45 
cell–cell relationships with weighted paths higher than 
expected by chance (p adj < 0.01) were identified. Hier-
archical clustering indicated that the sub-populations of 
macrophages and T cells were completely separated into 
different groups, similar to the five interactional patterns 
(Fig. 7f, g, Additional file 2: Figure S4c).

We next wanted to address whether observing a 
ligand–receptor pair correlated with functionally 
exhausted CD8+ T cells during progression after SARS-
CoV-2 infection. Firstly, we studied the detailed changes 
in the outgoing signaling using pattern recognition analy-
sis. We found that TREM2high macrophages dominated 
the major outgoing signaling, whereas M0 captured the 
minor component (Fig.  8a). In contrast, at the incom-
ing end of signaling, T cell subpopulations are driven by 
communication patterns involving pathways including 
IGF and CXCL (Fig.  8b, c). In particular, CXCL10 and 
IGF1 derived from TREM2high macrophages were the 
dominant contributors to this crosstalk (Fig. 8d–f), which 
is consistent with the previous researches indicating that 
IGF1 and CXCL signaling influences T cell differentiation 
[32, 33]. In addition, to quantify the similarity between 
all significant signaling pathways, we grouped them 
based on their cellular communication network similar-
ity (Additional file 2: Figure S4d). For instance, IL10 and 
GALECTIN-1 displayed analogous structure or function 
with the IGF pathway, suggesting that crosstalk from 
TREM2high macrophage to T cell subtypes may be medi-
ated by these patterns.

Finally, to further validate the impact of the above-
mentioned cytokines on functional exhaustion of CD8+ 
T cells in  vivo, we first analyzed the expression of 
marker related to exhausted T cell (such as PD-1) from 
24 patients and seven controls. The expression of PD-1 
by CD8+ T cells was significantly increased in patients 
compared to that in control group (Fig. 8g), whereas no 
significant difference was found between the moder-
ate and severe groups (Fig.  8h). In particular, the levels 
of IL6, IL10, GALECTIN-1, and IGF1 in severe patients 
were significantly higher than those in moderate cases, 
however, there were no differences of IL1β, TNFα, and 

Fig. 3  Single-cell RNA-seq of total bronchoalveolar lavage fluid immune (BAI) cells population. a t-SNE plots showing detected lineages and 
sub-populations in BAI cells across conditions (e.g. Control means the cells derived from healthy donors). b t-SNE plot of aggregate BAI cells with 
identified sub-populations. c Cell population percentages across conditions determined to be significantly modulated according to Differential 
proportion Analysis (DPA). *p < 0.05, **p < 0.01 (Fisher’s exact test). Abbreviation: C, M, S indicate Control, Moderate, and Severe, respectively; Mac, 
Macrophage; Mons /DC, Monocytes/Dendritic cells; PMC, Plasma cells; EPC, Epithelial cells; NK, natural kill cells. d Expression of select marker 
genes across BAI cells as visualized on t-SNE plots. e Left: bubble plot showing representative GO terms according to cell types. Right: heatmap 
characterizing the expression signatures of top 50 specifically expressed genes in each cell type; the value for each gene is row-scaled Z score

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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CXCL10 within the progression of the illness. These data 
suggested that the exhaustion of CD8+ T cells together 
with several cytokines including IL6, IL10, GALEC-
TIN-1, and IGF1, was associated with the pathogenesis of 
severe SARS-CoV-2 infection.

Discussion
In the present study, we first conducted a  retrospec-
tive analysis  of 102 patients with COVID-19, the clini-
cal laboratory findings of which were collected to build a 
model to support patient diagnosis. We found significant 
increases in neutrophil%, NLR, AST, D-dimer, and BUN, 

Fig. 4  BAI macrophage subpopulations. a t-SNE plot showing macrophage subpopulations. b Percentage of the subpopulation of macrophages 
derived from patients with COVID-19 across different conditions. c Expression of marker genes across macrophage subtypes as visualized on t-SNE 
(upper) and violin plots. d The difference of cytokine expression levels between moderate and severe groups. e Hypoxia scores of macrophages 
derived from moderate and severe samples. f Hypoxia score enriched in each of macrophage subpopulation, the score of subpopulations were 
respectively compared to M0. * p < 0.05, ** p < 0.01, *** p < 0.001 (Student’s t test)

Fig. 5  Functional heterogeneity of macrophage subpopulations after SARS-CoV-2 infection. a–c Differences in pathway activities scored per 
macrophages by GSVA with Moderate vs. Control (a), Severe vs. Control (b), Severe vs. Moderate (c). d Heatmap of GSVA score of top 25 signal 
pathway for each macrophage across conditions. the value for each GSVA score is row-scaled. e, f Signal pathway activity of glycolysis (e) and 
oxidative phosphorylation (f) under hypoxia status across macrophage subtypes. * p < 0.05, ** p < 0.01 (Student’s t test)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  Reconstruction of a trajectory with Macrophage Subpopulation. a The single-cell trajectory reconstructed by Monocle contains five main 
branches and two decision points. Cells are colored based on pseudotime (upper) and sample types. Abbreviation: Con, MO, SE indicate Control, 
Moderate, and Severe, respectively. b Dot plot showing the variability of gene expressions, such as C1QA (upper), CXCL2 (middle), and TREM2, 
following pseudotime based on cell states. A natural spline was used to model gene expression as a smooth, nonlinear function over pseudotime. c 
Dot plot showing the variability of pathway activity, such as hypoxia (upper), glycolysis (middle), and senescence, following pseudotime in the path 
that contains cells of states 1, 2, 3, 4, and 5. d, e Each heatmap presents genes differentially expressed between two branch comparisons, and each 
row represents the expression level of a gene along the branch trajectory. Enriched pathways are summarized for each gene cluster. From root to 
state 1 and state 2 branches (d), from root to state 2, and combined state 3 with 4 branches (e)

Fig. 7  Cell–cell ligand–receptor network analysis. a Comparison of total incoming path weights vs total outgoing path weights across BAI cell 
populations. b Circle network diagram of significant cell–cell interaction pathways. Arrows and edge color indicate direction (ligand: receptor) 
and edge thickness indicates the sum of weighted paths between populations. c–e Heatmap showing the interaction weights calculated as the 
product of the average ligand expression from the source cell type including monocyte/ DC (c), epithelial cell (d) macrophages (e), to the average 
receptor expression of the target cell types. Grey boxes indicate interactions that are not significantly present across all cell types (one-sided 
Wilcoxon rank-sum test and Benjamini Hochberg false discovery rate [FDR] > 0.05). f Heatmap showing the global five communication patterns 
calculated by the key signals for subpopulations between macrophage and T cells.  g Hierarchical network diagram of significant cell-cell 
communication patterns. Edge thickness indicates the sum of weight key signals between populations (from outgoing to incoming)

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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and decreased platelet counts, lymphocyte %, and lym-
phocyte count in the severe group (p < 0.01). This result 
was consistent with accumulated evidence, which was 
focused on these peripheral blood inflammatory dam-
age parameters for assessing disease severity [1, 21]. For 
example, the increase in AST, D-dimer, CRP, and BUN 
abundance indicated a higher level of systemic inflam-
mation and multiple organ damage risks in severe cases 
than in moderate ones, whereas the inverse proportion 
of WBC and lymphocyte counts also suggested the dis-
orders involving the immune system [34, 35]. In line with 
this, our study again confirmed for the predictive models 
containing the above-mentioned inflammatory damage 
parameters, with AUROCs ranging from 0.78 to 0.87.

Next, to further explain whether uncontrolled inflam-
matory innate responses and impaired adaptive immune 
responses are responsible for the severity of COVID-19, 
we took advantage of the published scRNA-seq data, 
derived from the BALF samples of the lower respiratory 
tract of COVID-19 patients [12] to provide a detailed 
analysis of intercellular communications. First, when 
comparing between patients, immune cell clusters were 
highly patient-specific. T cells mostly consisted of the 
cells from moderate patients, whereas the proportion of 
Mons/ DCs in COVID-19 patients was very low. Overall, 
the macrophages accounted for the highest proportion in 
all cell clusters, and no significant bias was observed in 
macrophages from patients. This result is in agreement 
with other studies, which showed that macrophages 
are the most enriched immune cell types in the lungs of 
COVID-19 patients and play a major role in the dysregu-
lated innate immune responses with exaggerated inflam-
matory cytokine production [3, 4].

Macrophages are morphologically and phenotypi-
cally diverse cells [36], which promoted us to presume 
the existence of cells with high inflammatory potential, 
combining the crucial role in mediating acute immune 
responses that cause pathological tissue damage and T 
cell dysfunction in patients with severe disease. We found 
that a group of macrophages contributed by COVID-19 
cases showed higher hypoxia scores, and there seems to 

be a mutually collaborative pattern between metabolic 
activity and inflammatory signaling pathways, includ-
ing glycolysis, fatty acid biosynthesis, tyrosine metabo-
lism, cytokine receptor interaction, and NF-κB signaling. 
Macrophages with high metabolic activity tend to have 
inflammatory potential, which is supported by the recent 
reports that remodeled metabolism is known to be vital 
for a macrophage-mediated inflammatory responses 
[37–39]. Next, we introduced the pseudotime method 
to capture and dissect transcriptional changes in cells 
along with the disease progression. Pseudotime analysis 
ordered the macrophages into five states with a branched 
structures. One branch represents the root of the tra-
jectory, which showed relatively high C1QA expression, 
indicating an early stage of acute inflammation. Branch-
dependent expression analysis also revealed that many 
known adaptive immune response-associated genes, 
such as CXCL2 and IL10, exhibited a gradual increase 
in expression. Importantly, a continuous and heteroge-
neous process involving hypoxic status, glycolysis, and 
senescence pathway activity declined along the trajec-
tory. Notably, TREM2high macrophages were enriched to 
the root and state1 of trajectory, and could contribute to 
a major viral infection-induced immune signaling hub. 
TREM2 activation in macrophages has been shown to 
lead to the adjustments in their phenotype in response 
to changing conditions in tissues, including cell matu-
ration under physiological conditions and phenotypic 
transformation of macrophages upon inflammation [40, 
41]. Moreover, cytokine storm is a serious life-threat-
ening condition characterized by uncontrolled activa-
tion of macrophages, which accumulate in the lungs 
and are the likely source of pro-inflammatory cytokines 
and chemokines, including IL6, IL1β, and CXCL8 [42]. 
In addition, macrophages can regulate T cell inhibition 
through direct cell-to-cell contact as well as through the 
secretion of cytokines and metabolic byproducts [43]. For 
example, the TREM2high macrophage population which 
has an activated complement system could be the source 
or consequence of complement activation contributing to 
the blockade of CD8+ T cell activation [44].

(See figure on next page.)
Fig. 8  The key communications between macrophage (M) and T cell subpopulation. a The dot plot showing the key ligands in the outgoing 
signaling pattern of subpopulation as secreting cells. b Circle plot showing the inferred intercellular communication network for CXCL signaling. 
Arrows and edge color indicate direction ((source: target). Edge thickness indicates the sum of weight key signals between populations. c 
Hierarchical network diagram of significantly inferred intercellular communication network for IGF signaling based on above-mentioned cell-cell 
communication pattern (from macrophage to T cell). d Heatmap shows the relative importance of each cell subtype based on the computed four 
network centrality measures of CXCL signaling (upper) and relative contribution of each ligand–receptor pair to the overall communication network 
of CXCL signaling. e Heatmap shows the relative importance of each cell subtype based on the computed four network centrality measures of IGF 
signaling and the relative contribution of each ligand–receptor pair to the overall communication network of IGF signaling. f Significant ligand–
receptor pairs involving CXCL and IGF pathway sending signals from TREM2high M to four T cell states. g FACS dot plots showing the expression of 
PD-1 on CD8+ T cells. h The percentages of PD-1+ in CD8+ T cells (the first panel). The serum levels of IL6, IL1β, IL-10, TNF-α, CXCL10, GALECTIN-1, 
and IGF1 in different groups are shown in boxplot (mean ± SD). Statistical analysis by Student’s t-test
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Fig. 8  (See legend on previous page.)
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In accord with this, a recent report has demonstrated 
that the abundance and interactions within epithelium-
immune cells at the single-cell level are predictive of 
COVID-19 severity [45]. Accordingly, we also used cor-
relative and predictive models to identify cell–cell inter-
actions involving subtypes of macrophages and T cells 
that may be related to the clinical features of functional 
exhaustion of T cells in the disease. Based on the ligand–
receptor (L-R) enrichment analysis, macrophages and T 
cells could be segregated into 12 major sub-populations, 
among which, TREM2high macrophages showed a dis-
tinct secretory (outgoing) link to CD8+ T cells, highlight-
ing the likely functional communication between them. 
Indeed, the similarity of signaling network topological 
analysis inferred that a subtype of macrophages may be 
the primary ligand source, which acts in a paracrine man-
ner to CD8+ T cells, especially exhaustion CD8+ T cells. 
Notably, CXCL10, IGF1, and GALECTIN-1 were the 
dominant contributors to this communication signaling, 
which is supported by previous reports that cytokines, 
such as GALECTIN-1, mediate immune evasion by pre-
venting T cell migration, and blocking CD8+ T cell acti-
vation [25, 46, 47].

In line with this, we also observed gradually elevated 
levels of serum proinflammatory cytokines, including 
IL6, IL1β, CXCL10, and IGF1, which are known to con-
tribute to the increased severity of disease caused by 
certain strains of coronavirus. In addition, a significant 
increase in suppressive cytokines, such as IL10 plays a 
vital role in limiting excessive inflammation, the results 
of which suggest that the balance between cytokines 
involving immunoactivation and immunosuppression 
may be associated with the pathogenesis of SARS-CoV-2 
infection.

We are aware of three limitations of our study. Firstly, 
the number of patients in this study is relatively small. 
The results should be validated in another prospective 
study. Second, due to fact that technical limitation, the 
experiments involving animal or cellular model were not 
performed to verify the interaction of macrophage and 
T cell after SARS-Cov-2 infection, the direct evidence 
of which should be further elucidated in assays. Third, 
we only analyzed peripheral blood lymphocytes. A fur-
ther analysis of lymphocytes from alveolar lavage fluid is 
needed.

Taken together, our study used scRNA-seq to iden-
tify a subtle communication between BAI sub-popu-
lations during COVID-19 progression, which revealed 
that TREM2high macrophages driving ligand–receptor 
crosstalk at a high resolution contributed to the exhaus-
tion of CD8+ T cells. These new insights into COVID-
19 progression may be useful for a better understanding 

of the differences in the clinical symptoms after SARS-
CoV-2 infection, and the identified serum cytokine panel, 
including IL6, IL1β, IL10, CXCL10, IGF1, and GALEC-
TIN-1, may represent a selective targets to improve clini-
cal therapeutic effects.

Conclusions
Decreased counts of total T Cells, CD4+, and CD8+ subsets 
in COVID‑19 patients with severity
Currently, the world is experiencing a severe new pan-
demic, health workers have gone the extra mile to fight 
against COVID-19. In this paper, we focus on the poten-
tial molecular mechanism of clinical severity-dependent 
reduction in T  cell numbers, which is the hallmark of 
severe COVID-19 cases. Firstly, we found the number 
of T cells such as total T cells, CD4 + and CD8 + T cells 
in the severe disease group were significantly lower than 
in the moderate disease group. Furthermore, the ROC 
curve indicates the absolute numbers of total T cells and 
CD8 + T cells are the good factors for the prediction of 
COVID-19 severity. There is an urgent need for founda-
tional information about T cell responses to this virus 
because such knowledge can guide the selection of vac-
cine strategies most likely to elicit protective immunity 
against SARS-CoV-2.

Single‑cell RNA‑seq reveals the increased clonal expansion 
of macrophages was found in severe COVID‑19 cases
To further elucidate the molecular mechanism of above-
mentioned clinical features, we analyses transcriptome 
profiles at the single cell level, which was one of the first 
available datasets to demonstrate the landscape of BALF 
immune  cells in patients with COVID-19.

It is known that inflammatory macrophages played a 
crucial role in phagocytosis and eliminating bacterial, 
uncontrolled activation of inflammatory macrophages 
my trigged systemic inflammatory response syndrome. 
Importantly, remodeled metabolism is known to be vital 
for a macrophage-mediated inflammatory response. In 
line with this, we detected whether macrophages heter-
ogeneity was responded to SARS-CoV-2 infection. We 
indeed found a group of macrophages, which upregu-
lated TREM2 expression level showed higher hypoxia 
score, importantly, there seem to be mutually collabo-
rative pattern between metabolic activity and inflam-
matory signaling pathway, including glycolysis, fatty 
acid biosynthesis, tyrosine metabolism, cytokine recep-
tor interaction and NF-κB signaling. Therefore, precise 
regulation of TREM2high macrophages is of paramount 
importance in guaranteeing microbial clearance, injury 
limitation, and avoidance of serious side effects.
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Cell communication analysis based on ligand–receptor 
pattern could provide clues to explain reduction 
and exhaustion of CD8+ T cells in COVID‑19
Using the scRNA-seq data derived from BALF  sam-
ples, we demonstrated that macrophages and T cells 
could be segregated into 12 major sub-populations, 
among which, TREM2high macrophages showed a dis-
tinct secretory (outgoing) link to exhaustion CD8+ T 
cells, highlighting the likely functional communica-
tions between them. To further validate the findings, 
as disease severity progresses in patients with COVID-
19, we detected a concomitant rise in serum cytokine 
levels associating immune cell communication, such as 
IL6, IL10, IGF1, and GALECTIN-1, may play roles on 
reduction and exhaustion of T cell populations.

In conclusion, the ability to examine cell type-spe-
cific communication provided by scRNA-seq enables a 
broad range of applications, which identify interactions 
that are predictive biomarkers of response to therapy 
for use in patient with COVID-19.
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