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Assessing the solar variability 
signature in climate variables 
by information theory and wavelet 
coherence
Ileana Mares*, Venera Dobrica, Constantin Mares & Crisan Demetrescu

The present study aims to investigate the possible influence of solar/geomagnetic forcing on climate 
variables, such as the drought index, Danube discharge and large-scale atmospheric indices. Our 
analysis was performed separately for each season for two time periods, 1901–2000 and 1948–2000. 
The relationship between terrestrial variables and external indices was established based on the 
application of (1) information theory elements, namely, synergy, redundancy, total correlation, 
transfer entropy and (2) wavelet coherence analysis. Bandpass filtering has also been applied. The 
most significant signature of the solar/geomagnetic forcing in the climate variables was obtained for 
the data smoothed by the bandpass filter. According to our results, significant solar/geomagnetic 
forcing appears in the terrestrial variables with a delay of 2–3 years.

Although great efforts have been made to identify a robust link between solar/geomagnetic activity and ter-
restrial variables, the results are controversial because inadequate statistics and inappropriate procedures were 
applied. Several studies1–12 have taken into account the signature of solar activity according to its manifestations 
on terrestrial variables. However, Lockwood (2012)8 critically points out that if the increase in temperature due 
to solar activity is difficult to determine on a global scale, then such work can be performed on a regional scale 
by neglecting certain factors, such as greenhouse effects, and explaining the physical mechanisms; for example, 
winter temperatures in the Eurasian area are influenced by solar activity. The physical mechanisms that favour 
the impact of stronger solar activity in the Eurasian area relative to other regions are explained by several 
authors5,7,13,14. These mechanisms mainly refer to the high solar-atmosphere interaction through the so-called 
“top-down” mechanism, whereby stratospheric changes influence the underlying troposphere, and the influ-
ences of thermal advection and land-sea thermal contrast are added. In Barriopedro et al. (2008)15 it is shown 
the modulatory role that the Quasi-Biennial Oscillation (QBO) has on the solar influence in the occurrence of 
atmospheric blocking events.

Due to the multiple approximations that need to be introduced, relatively little progress has been achieved 
via ocean–atmosphere coupled climate models3,16.

Among the terrestrial variables, the air temperature is most often considered to be susceptible to solar/
geomagnetic activity6,8,17–20. However, the responses of other terrestrial variables in addition to temperature to 
solar/geomagnetic activity have also been considered4,11,12,21–26.

The physical mechanisms that govern the behaviour of the terrestrial climate system are not yet sufficiently 
known. The main causes are the internal instability of the atmosphere and the response of the atmosphere to 
external factors. The ratio of these two causes remains unknown, despite the increasingly sophisticated model-
ling in recent studies.

In the present investigation, we use elements of information theory (IT) to test the possible nonlinear influ-
ence of external factors, expressed by solar/geomagnetic indices, on terrestrial variables, such as the drought 
index, discharge in the lower Danube basin, atmospheric circulation indices (Greenland-Balkan Oscillation 
index (GBOI), North Atlantic Oscillation index (NAOI)), and blocking-type circulation indices over the Atlantic-
European region. The influence of the abovementioned terrestrial variables on the discharge in the lower Danube 
basin was discussed in previous investigations11,27–29. Details in the time–frequency domain are obtained by 
analysing the wavelet transform.

Few works have focused on applying IT to the influence of solar/geomagnetic activity on the earth’s climate. 
Among the most recent, we mention30–34. The IT application in general and especially transfer entropy (TE) is 
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very suitable even in elucidating open problems such as the physical mechanism capable of explaining the con-
nection between the geomagnetic field and climate30.

Reviews of wavelet analysis in geoscience and, in particular, for correlations between solar activity and 
hydrological variables have been published by Labat (2005)35 and Fu et al. (2012)36. The problem of the signal 
resolution in the time–frequency domain of the nonstationary processes is assessed by using wavelet analysis37.

Details on the wavelet transform method applied to highlight the solar signal quantified by the sunspot 
number are found in many papers38–41.

In several investigations42–45 significant solar signals in terrestrial variables have been obtained by applying 
bandpass filters (BPFs) to isolate certain frequency bands.

The main objective of the present study is to improve our knowledge of the solar/geomagnetic signature in 
the climate variables that are good predictors of discharge in the lower Danube basin.

The novelty of this study is that we test the influence of two external factors (solar and geomagnetic) by two 
types of nonlinear methods. First, we consider the influence of the two sources (predictors) on the terrestrial 
variables (predictands, target) simultaneously and take into account the redundancy due to the connection 
between the sources by estimating the difference between synergy and redundancy using mutual information. 
Second, the transfer entropy between each of the predictors and the considered predictands is estimated. The 
details in the time–frequency domain are explored by using wavelet coherences. We first present the data and 
methods used and then discuss the results obtained from two simultaneous sources and a target. Because the 
two sources considered simultaneously produce high redundancy in some cases, we finally separately analyze 
the signature of each external factor on the terrestrial variables.

Material and methods
Datasets.  The datasets used in this study consist of variables that characterize terrestrial climate, on one 
hand, and solar/geomagnetic indices used to describe solar/geomagnetic activity as external factors for the cli-
mate system, on the other. The analysis was performed for two time intervals, 1948–2000 (Period I) and 1901–
2000 (Period II), taking into account the availability of certain investigated parameters.

Terrestrial variables.  The influence of solar/geomagnetic activity on climate depends on the spatial scale. We 
considered the climate variables defined to describe atmospheric circulation from a large scale to a local scale. 
Thus, for the planetary scale, we use the NAO and GBO indices, and at the Atlantic-European scale, we use 
blocking indices. For the regional scale, we take into account the drought index for the upper and middle Dan-
ube basins; for the local scale, we take into account the Danube discharge at Orsova.

The planetary scale. The NAO index, the difference in the normalized sea level pressure (SLP) between Lis-
bon (Portugal) and Stykkisholmur/Reykjavik (Iceland) was downloaded from http://​www.​ldeo.​colum​bia.​edu/​
res/​pi/​NAO/. The GBO index is calculated as the difference in normalized SLP at Nuuk and Novi Sad46. The 
monthly SLP data were obtained from http://​rda.​ucar.​edu/​datas​ets/​ds010.1, maintained by the National Center 
for Atmospheric Research (NCAR). The blocking indices were calculated at the 500 hPa geopotential field (Period 
I), provided by the British Atmospheric Data Centre (BADC) (https://​badc.​nerc.​ac.​uk/​home/​index.​html).

Atmospheric blocking circulation is characterized by anticyclonic circulation at high latitudes with cyclonic 
circulation at low latitudes. Similar to previous investigations25,29, the Atlantic-European blocking index (AEBI) 
is defined on the domain (50°W–40°E; 35°N–65°N). The blocking index for the Atlantic-European region is 
calculated as the difference between the mean longitudes at 57.5° and 37.5°N. Therefore, a positive value of this 
index highlights a blocking type circulation and a negative value highlights an atmospheric zonal circulation.

The regional scale, Period II. The precipitation and mean temperature in the upper and middle Danube basins 
from 15 meteorological stations upstream of Orsova were considered. The monthly values of the above variables 
were downloaded from http://​clime​xp.​knmi.​nl. The difference between the standardized first principal compo-
nent of the temperature and precipitation defines a drought index (TPPI).

The local scale. The Danube discharge recorded at Orsova station (Q_ORS) is taken as a terrestrial variable. 
Located between the middle and lower Danube (in Romania), this station represents an integrator of precipita-
tion from the upper and middle basins11,29. Data were provided by the National Institute of Hydrology and Water 
Management, Bucharest, Romania.

Solar/geomagnetic data.  Solar activity is quantified by solar indices, that represent various solar outputs, such 
as electromagnetic radiation, solar wind, and interplanetary magnetic fields. Solar indices can be directly related 
to the sun (direct indices) or related to indirect effects produced by solar activity (indirect indices). Among the 
direct solar indices, we mention the radio flux at 10.7 cm, F10.7, a physical-based index, and the Wolf sunspot 
number, a calculated index from the observed sunspot number. The latter is the longest and most commonly 
used solar activity proxy. Among the effects of solar activity, the geomagnetic activity, which arises from the 
interaction between the solar wind and the interplanetary magnetic field and the Earth’s magnetosphere, is com-
monly used. Geomagnetic activity is characterized by geomagnetic indices, which are also considered indirect 
indices of solar activity.

In the following, external predictors include the Wolf sunspot number (WDC-SILSO, Royal Observatory 
of Belgium, Brussels, http://​www.​sidc.​be/​silso/​dataf​iles) for Period I and the F10.7 index (ftp://​ftp.​ngdc.​noaa.​
gov/​STP/​SOLAR_​DATA/)) for Period II, together with the aa geomagnetic index (http://​isgi.​unist​ra.​fr/​indic​
es_​aa.​php). Details on the solar radio flux at 10.7 cm are given in Tapping (2013)47. The advantages of the F10.7 
index over other solar indices are due in part to the fact that it is closely linked to the solar effects on the Earth’s 
atmosphere (Balogh et al. 2014)48.

http://www.ldeo.columbia.edu/res/pi/NAO/
http://www.ldeo.columbia.edu/res/pi/NAO/
http://rda.ucar.edu/datasets/ds010.1
https://badc.nerc.ac.uk/home/index.html
http://climexp.knmi.nl
http://www.sidc.be/silso/datafiles
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/
http://isgi.unistra.fr/indices_aa.php
http://isgi.unistra.fr/indices_aa.php
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Methods.  Information theory elements.  Mutual information (MI) is defined as follows:

where H(X) and H(Y) represent the information entropies of discrete random variables X and Y, respectively, 
and H(X, Y) is the joint entropy (Shannon, 1948)49.

Synergy and redundancy was considered according to Timme et al. (2014)50 as follows:
S-R = Synergy (Y; X1,X2)−Redundancy (Y; X1,X2)

The contribution of predictors (X1, X2) to predictand (Y), which includes a reduction in redundancy, is 
obtained by simultaneous analysis of synergy and redundancy, given by Eq. (2). A negative value implies that 
the redundant contribution is greater in magnitude than the synergetic contribution.

The total correlation (TC) in the mutual information terms for three variables (Timme et al., 2014)50 is as 
follows:

where TC is a measure of the total information between all variables.
As shown in Bennett et al. (2019)51, a method for quantifying the transfer of information from one variable 

to another was developed by Schreiber (2000)52 and has been applied in many investigations53–55. According to 
Timme and Lapish (2018)56, the transfer entropy (TE) using conditional mutual information is given as follows52:

Useful examples and discussions on both the theoretical and practical applications of IT can be found in56. 
For simplicity, if we note Y=Yfuture, X1= Xpast and X2= Ypast, Eq. (4) is written in terms of entropy according to 
Kay et al. (2017)57 as:

Wavelet coherence.  In the present study, we applied wavelet analysis to highlight the repartition in the 
time–frequency domain of the coherence between two or more variables. Wavelet coherence (WTC) for two 
variables is a measure of the intensity of the covariance of the two series in time–frequency space. Coherence 
is defined as the square of the cross-spectrum normalized by the individual power spectra, which produces a 
quantity between 0 and 1 and measures the cross-correlation between two time series as a function of frequency. 
Details are found in papers by Jevrejeva et al. (2003)58 and Torrence and Webster (1999)59.

In the case of two variables, one of them is either the geomagnetic activity index or the solar flux/Wolf sunspot 
number. For the coherence of several variables, we consider the two predictors, solar and geomagnetic indices, 
simultaneously along with one of the terrestrial variables.

The wavelet analysis in this study assumes that the red noise characteristics are modelled as a first-order 
autoregressive process AR(1)36,60,61. The statistical significance level of the wavelet coherence in comparison with 
red AR(1) noise is estimated using Monte Carlo methods58,61. All parameters for WTC were calculated using the 
Matlab procedure (http://​www.​glaci​ology.​net/​wavel​et-​coher​ence) provided by Grinsted et al. (2004)61. Multiple 
wavelet coherence was performed based on the Hu and Si (2016)62 algorithm.

Results and discussion
One target and two simultaneous sources.  Here, the target is one of the terrestrial variables and the 
sources include the solar/geomagnetic indices. We assess the difference between synergy and redundancy (S-R) 
and the total correlation (TC) for the two time intervals. The terrestrial variables were the TPPI, Q_ORS, GBOI 
and AEBI for Period I and the TPPI, Q_ORS, GBOI and NAOI for Period II. We performed separate analyses 
on each season to highlight the simultaneous influence of the two sources on each of the predictands. A detailed 
interpretation of the relation between the synergy and redundancy for a system with 3 variables, i.e., one target 
and two predictor variables, is given by Ince (2017)63. A higher TC and S-R (positive) indicate that the informa-
tion provided by the two simultaneous predictors has a greater ability to reduce the uncertainty of the predictand.

Period I.  For the time interval 1948–2000, Fig. 1A shows the S-R values for the analysed predictand vari-
ables on the left side and the corresponding TC values on the right side for each season. The influence of the 
two sources (aa and F10.7) on terrestrial variables was calculated for lags from 0 (simultaneously) to 5 (years). 
In all these cases, the data are unfiltered. Bandpass filtering (BPF) in the frequency band of 9–15 years (details 
in Mares et al. (2016)25) for AEBI is also shown in the bottom panels of Fig. 1A. Although the TC is relatively 
high for the winter season, at lags 1 and 2, the difference between synergy and redundancy is negative, thereby 
negating the concomitant use of the two predictors.

Figure 2A represents the simultaneous multiple wavelet coherence (MWC) obtained by considering the two 
predictors together with one of the terrestrial variables, which corresponds to lag 0 (simultaneous connections), 
for the unfiltered data shown in the first 4 panels of Fig. 1A.

The analysis of the results from the two figures for lag 0 indicates that the relatively high positive values of 
S–R are associated with a significant MWC for multiple wavelengths in summer in the case of the TPPI, in sum-
mer and winter for GBOI, and in winter for AEBI. For lags from 1 to 5 (Fig. 1A), taking into account S-R and 

(1)MI(X,Y) = H(X)+H(Y)−H(X,Y)

(2)S − R = MI (X1,X2;Y)−MI (X1,Y)−MI (X2,Y)

(3)TC = MI(X1;X2)+MI(X1,X2;Y)

(4)TE(X → Y) = MI(Yfuture;Xpast/Ypast)

(5)MI(Y;X1/X2) = H(Y ,X2)+H(X1,X2)−H(X2)−H(Y ,X1,X2)

http://www.glaciology.net/wavelet-coherence
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Figure 1.   (A) The difference between synergy and redundancy (S-R) (left side) and the corresponding total 
correlations (TC) (right side), for Period I, in case of two predictors taken simultaneously (aa and solar flux) and 
climate variables. From top to bottom, TPPI, Q_ORS, GBOI and AEBI. The bottom panels represent (S-R) and 
TC for BPF data in case of two predictors and AEBI. (B) The difference between synergy and redundancy (S-R) 
(left side) and the corresponding total correlations (TC) (right side), for Period II, in case of two predictors 
taken simultaneously (aa and Wolf number) and climate variables. From top to bottom, TPPI, Q_ORS, GBOI 
and NAOI. The bottom panels represent (S-R) and TC for BPF data in case of two predictors and GBOI.
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then TC, there is an influence of the two sources in the case of the TPPI in winter at lag 1, for the discharge at 
Orsova in winter at lag 5 and for GBOI in autumn at lag 3. In the case of AEBI, the action of the two predictors 
is noticeable in spring at lag 1 and in summer at lag 3.

Figure 1.   (continued)
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Period II.  The S-R values and corresponding TC at lags from 0 to 5 years between the two predictors and 
a target from 1901 to 2000 are presented in Fig. 1B. The results differ depending on the season and the target 
variable. Taking into account both S-R and TC, for the TPPI drought index, the most significant contribution of 
the two sources is during summer at lag 1. However, for the Danube discharge at Orsova, the TC has the highest 
value at lag 0 during spring, and due to the higher S-R values during summer and autumn, we consider that the 
best contribution of the two predictors is in summer based on the TC. Zanchettin et al. (2019)64 analysed dis-
charge time series of major European rivers, including the Danube (at Bratislava), and found significant fluctua-
tions for the Po and Danube rivers during summer and winter. As shown in Zanchettin et al. (2008)65, summer 
fluctuations for some states of the hydrological regime in Europe can be attributed to solar activity. Regarding 
the NAOI, the analysis of both S-R and TC values indicates that the two sources have an effect during summer 
at lags 2 and 3.

In the case of GBOI, for this time interval, we use both unfiltered and filtered data by BPF (9–15). A com-
parison of the results shows that filtering greatly changes the information provided by the two predictors. Thus, 
for the case of the unfiltered data, the highest values of S-R accompanied by high TC are during summer at lag 
2, whereas for the filtered data, the situation is exactly the opposite regarding S-R. In this case, the S-R value is 
negative, even if the TC value is the highest. Therefore, the filtered data introduce spurious total correlations, 
such as in the case of linear correlations, which in turn lead to high redundancy, meaning that the considered 
predictors cannot be used together to help improve the estimation of the predictand. In this regard, we note that 
the study of Mares et al. (2016)25 focused on the linear correlations between filtered and unfiltered data.

The analysis of Fig. 2B, the multiple wavelet coherence between aa, Wolf number and terrestrial variables at 
lag 0, does not clearly show coherence for several wavelengths. It can be supposed that for GBOI during sum-
mer, significant coherence is observed in the band corresponding to periods 9–15, which can be associated with 
a positive S-R value of 0.10 in the case of filtered data. Additionally, for the winter season, significant coherence 
is observed among the aa, Wolf number and NAOI after the 1970s, for which the estimated S-R has a positive 
value of 0.10. These results are consistent with those obtained by Bochnícek et al. (2012)22, who considered the 
concomitant action of solar and geomagnetic forcings on winter atmospheric circulation using a nonlinear 
method, namely, that of composite maps.

Significant correlations between solar/geomagnetic activity and NAOI after the 1970s were also found by 
Thejll et al. (2003)27.

One source and one target.  As a complementary investigation to the one in the previous paragraph, 
when we considered two simultaneous sources that could influence a target, we separately considered either a 
geomagnetic index or solar index as a source for Period I and Wolf number as a source for Period II, which could 
produce a signal in one of the terrestrial variables. The testing of the connection between terrestrial variables and 
external factors was performed using the TE estimated according to Eq. (4) and detailed in Eq. (5). The results 
obtained in this way can improve situations in which the two predictors simultaneously produce a high redun-
dancy. For example, Fig. S1 in the Supplementary Information shows that for certain months and certain lags, the 
TE between aa and solar flux or between aa and Wolf number have high values, especially for the filtered data. 
In these cases, high connectivity is observed between these variables, which explains low or even negative values 
for the difference between synergy and redundancy when they are considered together as predictors.

Period I.  Figure 3A,B display the TE values between the solar flux and Q_ORS, GBOI and AEBI and between 
the geomagnetic index aa and the terrestrial variables, respectively. The highest values of TE are found for the 
filtered data (BPF) with delays of 2 or 3 years compared to the solar flux, which is more obvious in the summer 
and winter seasons.

In general, the TE values that represent the transfer of information from aa to the terrestrial variables are 
lower than those corresponding to the transfer from the solar flux to terrestrial variables. The exception is 
winter when the TE from aa =  > Q_ORS for the filtered data from lags 2 and 3 is higher than that from the flux 
to Q_ORS. The same situation is observed for filtered data in the case of TE from aa to AEBI at lags 1–3 during 
spring and fall.

Considering the importance of the Danube discharge at Orsova, during the spring, it can be observed 
(Fig. 3A) that for both unfiltered and filtered data, the TE values from the flux to discharge are relatively high, 
especially for the third lag.

In Fig. S2 (Supplementary Information), the WTC between unfiltered solar flux and discharge for spring 
(1948–2000) is shown. This figure shows that the two time series are coherent in the period of 10–12 years 
(1965–1975), with a 95% confidence level. Because the arrows are not horizontal, there is a lag between the two 
time series. Taking into account that the two series have a negative correlation, the arrows in Fig. S2 indicate 
that the solar flux leads to ¼ period discharge, namely, approximately 3 years. From the above results, we can 
expect that at approximately 3 years after a maximum (minimum) solar activity, the spring discharge will be 
lower (higher).

Peaks of some river discharge power spectra associated with solar variability were found in the 
investigations65–68. Although our results are obtained from relatively short time series, they are consistent with 
the results found by Peña et al. (2015)69. These authors investigated summer floods in Switzerland for more than 
300 years and concluded that a high frequency of flooding is related to the solar activity minimum and that a 
summer flood damage index shows a significant component with a frequency corresponding to 10–12 years.

Regarding the entropy transfer from solar flux to AEBI, the high values of TE in winter for the BPF data 
(Fig. 3A) can be explained by the results of the coherence obtained by applying the wavelet transform (Fig. 4). 
There is good coherence between the solar flux and AEBI in the band corresponding to periods of 9–15 years, 
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and at lag 3, the two variables are also in phase. From Fig. 4, we find from the WTC representation that this link 
between the solar activity quantified by the solar flux and the atmospheric circulation of blocking type over the 
Atlantic European region in winter is not stationary over time. Thus, in Fig. 4A, where the WTC between the two 
time series (unfiltered) and without any lag is represented, the two time series have a significant coherence for 
the 8–15 year period band between 1948 and 1983. However, taking into account that the area located outside 
the cone of influence must be regarded with caution, this coherence is significant between 1960 and 1983. The 
arrows in Fig. 4A are not horizontal; therefore, they indicate that there is a lag between the two series. Because 

Figure 2.   (A) Multiple wavelet coherence (MWC) between aa and solar flux for Period I. (B) Multiple wavelet 
coherence (MWC) between aa and Wolf number for Period II
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the two initial series have a positive correlation, the arrows indicate that the first series, which corresponds to the 
solar flux, drives the second AEBI series, with a quarter of a period meaning approximately 3 years. Figure 4B,C 
show WTCs for 2- and 3-year lags, respectively, between the solar flux and the blocking indices. These last figures 
show that the areas with significant coherence are similar, with a slight intensity of coherence if the lag between 
the solar flux and AEBI is 3 years.

Considering the results obtained by Mares et al. (2016)25, approximately 2–3 years after the maximum (mini-
mum) solar activity, the atmospheric circulation of the blocking type is enhanced (weakened) during winter 
over the Atlantic-European region. This result is also confirmed by composite maps at 500 hPa for the winter 
season, and when high solar flux (Fig. 5A) and low solar flux (Fig. 5A) are observed, the geopotential field that 
lags the solar flux by 3 years is considered. Here, we define high-flux cases as years in which the standardized 
values of the solar flux are greater than 1 and low-flux cases as years in which the standardized flux values were 
less than − 1. In the first case (Fig. 5A), the composite map defines a positive blocking index, and in the second 
case (Fig. 5B), the blocking index is negative.

The advantages of applying nonlinear and nonstationary techniques are also highlighted by comparing the 
results obtained here with those obtained by applying the analysis of linear correlations. For example, Fig. S3a in 
the Supplementary Information shows that for the unfiltered and filtered data, the Pearson correlation coefficient 
between the solar flux and the AEBI does not show results with different statistical significance because the con-
nection between the two variables is nonstationary and nonlinear. The graph in Fig. S3b indicates good coher-
ence between the solar flux and AEBI for the period 1965–1985, which is consistent with the WTC in Fig. 4B.

Figure 3.   (A) The transfer entropy (TE) from solar flux to Q_ORS, GBOI and AEBI, with lags from 1 to 5 years, 
in case of unfiltered (NEF) and filtered (BPF) time series, for each season in the Period I. (B) The TE from aa 
geomagnetic index to Q_ORS, GBOI and AEBI, with lags from 1 to 5 years, in case of NEF and BPF time series, 
for each season in the Period I.
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Figure 4.   Wavelet coherence (WTC) between solar flux and AEBI during winter, for Period I: (A) unfiltered 
time series; (B) 2 years lag; (C) 3 years lag.
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Figure 5.   Composite maps for winter anomalies at 500 hPa, corresponding to the solar flux leading with 3 years 
the geopotential for two cases: (A) high flux; (B) low flux.
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Figure 6.   (A). The transfer entropy (TE) from Wolf number to TPPI, Q_ORS, GBOI and NAOI, with lags from 
1 to 5 years, in case of unfiltered (NEF) and filtered (BPF) time series, for each season in the Period II. (B) The 
transfer entropy (TE) from aa geomagnetic index to TPPI, Q_ORS, GBOI and NAOI, with lags from 1 to 5 
years, in case of unfiltered (NEF) and filtered (BPF) time series, for each season in the Period II.
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Period II.  Figure 6A shows the TE values corresponding to the transfer entropy from solar activity, which 
is represented by the Wolf number, and four terrestrial variables, the TPPI, Q_ORS, GBOI and NAOI, for each 
season, with lags from 1 to 5, for both unfiltered and filtered data. Figure 6B shows the TE values from geomag-
netic index aa using the same terrestrial variables. The TE values are dependent on the season, the target variable 
and the lags. The highest TE value of 0.50 was found for the transfer entropy from the Wolf number to GBOI 
during summer at lag 2 using the filtered data. Additionally, the transfer from aa to the corresponding GBOI 
is relatively high, with a TE of 0.37; however, because the S-R value of the two sources is negative (Fig. 6B), we 
cannot consider the simultaneous influence. Therefore, we will focus on the influence of the solar signal on the 
GBOI during summer.

An explanation of the physical mechanism of correlations with certain lags between solar activity and climate 
variables can be found in previous studies70–72. A possible response of the atmospheric circulation GBO index to 
solar variability with a delay of 2–3 years is due to ocean–atmosphere interactions, as described by Thiéblemont 
et al. (2015)72, who analysed the solar signal in NAOI. The authors proposed a new synchronization mechanism 
that combines air–sea interaction processes and solar-induced stratospheric dynamics modulation to simulate 
the observed solar influences on the North Atlantic climate using a coupled ocean–atmosphere model under two 
versions. As shown in Chen et al. (2015)14, possible mechanisms have been proposed for this lagged response, 
including a delayed response based on the extended memory of ocean heat content71,73.

In the present investigation, we did not analyse the relationship between solar flux and the NAOI. According 
to the transfer entropy from solar activity, which is expressed as the Wolf number, to the NAOI, the TE has the 
highest values (winter) for filtered data (9–15) for delays from 2–3 years (Fig. 6A), which is consistent with the 
results obtained by Thiéblemont et al. (2015)72.

Bochníček and Hejda (2005)22 found that during winter, geomagnetic activity is more closely associated with 
the NAOI than solar activity, and they provided a possible physical mechanism for this result. The analysis of 
TE values in Fig. 6A,B shows that in winter with lags from 1 to 5 years, the values of the transfer entropy from 
the geomagnetic index aa to the NAOI are slightly higher than the TE from the Wolf number to the NAOI in 
the case of filtered data.

Additionally, the correlation analyses by linear correlation coefficients shown in Table S1 in the Supplementary 
Information indicate that for the NAOI, the most significant values of the link between the Wolf number and 
NAOI were obtained for delays of 2 and 3 years for winter.

In addition, for the other variables analysed in relation to solar or geomagnetic activity, the values of the 
Pearson or Kendall correlation coefficients can be compared with the TE values from Fig. 6. Thus, in the case of 
the drought index used in this study, good concordance exists between the results obtained by linear methods, 
i.e., the correlation coefficients between the TPPI and solar/geomagnetic activities (Table S1), and those obtained 
by the nonlinear TE method are represented in the graphs in Fig. 6A,B. Both the correlation coefficients and TE 
indicate a significant link during summer between the TPPI and Wolf number and between the TPPI and the 
geomagnetic index (for filtered data). The latter connection is slightly higher than the connection with the Wolf 
number at lag 2, which is highlighted by both methods and represents is an important result because European 
countries located in the Carpathian region are affected by drought episodes and present greater vulnerability 
to climate change74.

Therefore, the investigation of both internal (atmospheric circulation quantified by large-scale atmospheric 
indices) and external forcings on the earth’s climate system tested in this study led to an improvement in the 
estimation of drought/wet episodes in the Danube basin and the adjacent area.

Details on the methods for testing the nonlinear link between solar/geomagnetic indices and some terrestrial 
variables are given in the Supplementary Information (Section II).

Related to external forcing, the solar signal acts both directly on hydroclimatic variables and through modu-
lators, such as the quasi-biennial oscillation (QBO). Therefore, nonlinearities alone can produce noticeable 
climate extremes consistent with observations. However, even for quite strong solar modulation of the model 
climate, nonlinearities are capable of intermittently disrupting this modulation75. More recent studies76 lead us 
to postulate that the modulator of the solar signal for hydroclimatic phenomena is the anomalous QBO that 
amplifies the solar signal in the initial moments and days of phase changes from west to east. This phenomenon 
might be caused by the angular momentum related to the QBO, which has maximum action at long distances 
(for the lower troposphere) at the time of transition from one phase to another.

Details of the authors25 previous results on the role of QBO are given in Supplementary Information (Sec-
tion III-A).

Interesting results are also obtained by linear methods on certain dominant factors, such as NAO, which 
determine the large-scale atmospheric variability in Europe77. But this happens when there are no large devia-
tions from linearity in the connection of phenomena.

Conclusions
We have shown that the impact of solar/geomagnetic activity on the hydroclimate is significant and can be 
discriminated from cause to effect. The chosen method is a nonlinear method that quantifies the synergistic 
cumulative impact of several factors by removing possible redundancies, thus allowing for the discrimination 
at multiple spatiotemporal scales.

The impact of solar/geomagnetic activity on climate variables in the Danube basin was first tested using ele-
ments of information theory. Based on the difference between synergy and redundancy (S-R) calculated both 
simultaneously and with delays from 1 to 5 years in the terrestrial variables, the possibility of using both solar 
and geomagnetic indices as sources for reducing the uncertainty of one of the terrestrial variables has been 
highlighted. We also calculated the total correlation (TC) based on mutual information of three variables (two 
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sources and one target) associated with each case for both unfiltered and filtered data in the band corresponding 
to the periods of 9–15 years, which separate analyses for each season. Although the highest values of TC were 
generally obtained for the filtered data, because solar and geomagnetic indices are closely correlated and highly 
redundant (negative S-R), we analysed the case with one source and one target.

The nonlinear analysis of one source and one target was performed using the transfer entropy (TE). The 
obtained results differ depending on the time of year and the analysed variables. Mainly, the TE values from 
the aa to the terrestrial variables are lower than the TE values from solar indices. Moreover, we found cases in 
which the TE from the aa to TPPI, Q_ORS and NAOI is slightly higher than the TE from the Wolf number to 
the corresponding variables during the summer and winter seasons for Period II, 1901–2000.

For Period I, 1948–2000, where the solar activity was quantified by the solar radio flux, the most significant 
results are for the lower Danube discharge and the atmospheric circulation over the Atlantic-European region. 
In the first case, the signal of the solar flux in the Danube discharge is significant during the spring season with 
a delay of 3 years. For the AEBI, after 2–3 years, the wavelet coherence during the winter season is considered 
inconclusive after the 1980s. The impact of solar activity on the analysed climate variables is not readily apparent 
in recent decades, and the climate variability might be explained by the increase in the effect of greenhouse gas, 
which has been shown by many authors.

Our results suggest that significant solar signals occurred in the time intervals when the Wolf number was 
higher in solar cycles 18–22. However, the mechanisms by which these geomagnetic/solar signals influence ter-
restrial variables are still unclear.

The approach that connects solar activity and different hydroclimatic variables by nonlinear methods based on 
informational entropy highlights not only the connections from cause to effect but also the relevant mechanisms 
in the solar signal circuit to the Earth’s surface.

The present study has provided additional information on the signature of solar/geomagnetic variability in 
terrestrial variables in the Danube basin and in climate indices over the Atlantic-European region. Although 
some of the findings are not conclusive, the significant findings can be used for indicator purposes. Together 
with the climate predictors found in our previous papers25,27–29, these findings contribute to improving estimates 
of the effect of climate variability on lower Danube discharge.

Received: 30 October 2020; Accepted: 4 May 2021

References
	 1.	 Cubasch, U., Voss, R., Hegerl, G. C., Waszkewitz, J. & Crowley, T. J. Simulation of the influence of solar radiation variations on the 

global climate with an ocean-atmosphere general circulation model. Clim. Dyn. 13, 757–767 (1997).
	 2.	 Haigh, J. D. The effects of solar variability on the Earth’s climate. Philos. Trans. R. Soc Lond. Ser. A Math. Phys. Eng. Sci. 361, 95–111 

(2003).
	 3.	 Haigh, J. D. Solar influences on climate. Technical report. http://​www.​imper​ial.​ac.​uk/​people/​j.​haigh/ (2011).
	 4.	 Kodera, K. Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO. Geophys. Res. 

Lett. 29, 859-1-59–4 (2002).
	 5.	 Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, 4 (2010).
	 6.	 Dobrica, V., Demetrescu, C. & Maris, G. On the response of the European climate to solar/geomagnetic long-term activity. Ann. 

Geophys. 53, 39–48. https://​doi.​org/​10.​4401/​ag-​4552 (2010).
	 7.	 Lockwood, M. et al. Top-down solar modulation of climate: evidence for centennial-scale change. Environ. Res. Lett. 5, 3 (2010).
	 8.	 Lockwood, M. Solar influence on global and regional climates. Surv. Geophys. 33, 503–534. https://​doi.​org/​10.​1007/​s10712-​012-​

9181-3 (2012).
	 9.	 Ineson, S. et al. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci. 4, 753–757 (2011).
	10.	 Ineson, S. et al. Regional climate impacts of a possible future grand solar minimum. Nat. Commun. 6, 7535 (2015).
	11.	 Dobrica, V., Demetrescu, C., Mares, I. & Mares, C. Long-term evolution of the Lower Danube discharge and corresponding climate 

variations: solar signature imprint. Theor. Appl. Climatol. 133, 985–996. https://​doi.​org/​10.​1007/​s00704-​017-​2234-2 (2018).
	12.	 Le Mouël, J. L., Lopes, F. & Courtillot, V. A solar signature in many climate indices. J. Geophys. Res. Atmos. 124, 2600–2619 (2019).
	13.	 Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. 

Geophys. Res. Lett. 37, L20805. https://​doi.​org/​10.​1029/​2010G​L0446​01 (2010).
	14.	 Chen, H., Ma, H., Li, X. & Sun, S. Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general 

circulation anomalies. J. Geophys. Res. Atmos. 120, 8642–8657. https://​doi.​org/​10.​1002/​2015J​D0234​15 (2015).
	15.	 Barriopedro, D., García-Herrera, R. & Huth, R. Solar modulation of Northern Hemisphere winter blocking. J. Geophys. Res. Atmos. 

113, D14 (2008).
	16.	 Benestad, R. E. & Schmidt, G. A. Solar trends and global warming. J. Geophys. Res. Atmos. 114, D14101. https://​doi.​org/​10.​1029/​

2008J​D0116​39 (2009).
	17.	 Dobrica, V., Pirloaga, R., Stefan, C. & Demetrescu, C. Inferring geoeffective solar variability signature in stratospheric and tropo-

spheric Northern Hemisphere temperatures. J. Atmos. Solar Terr. Phys. 180, 137–147 (2018).
	18.	 El-Borie, M. A. & Al-Thoyaib, S. S. Can we use the aa geomagnetic activity index to predict partially the variability in global mean 

temperatures?. Int. J. Phys. Sci. 1, 67–74 (2006).
	19.	 Valev, D. Statistical relationships between the surface air temperature anomalies and the solar and geomagnetic activity indices. 

Phys. Chem. Earth Parts A/B/C 31, 109–112 (2006).
	20.	 Love, J. J., Mursula, K., Tsai, V. C. & Perkins, D. M. Are secular correlations between sunspots, geomagnetic activity, and global 

temperature significant. Geophys. Res. Lett. 38, L21703. https://​doi.​org/​10.​1029/​2011G​L0493​80 (2011).
	21.	 Bochníček, J., Hejda, P. & Pýcha, J. The effect of geomagnetic and solar activity on the distribution of controlling pressure forma-

tions in the Northern Hemisphere in winter. Stud. Geophys. Geod. 43, 390–398 (1999).
	22.	 Bochníček, J. & Hejda, P. The winter NAO pattern changes in association with solar and geomagnetic activity. J. Atmos. Solar Terr. 

Phys. 67(1–2), 17–32 (2005).
	23.	 Bochnícek, J., Davídkovová, H., Hejda, P., & Huth, R. Circulation changes in the winter lower atmosphere and long-lasting solar/

geomagnetic activity. Ann. Geophys.. 30, 1719–1726. https://​doi.​org/​10.​5194/​angeo-​30-​1719-​2012 (2012).
	24.	 Maliniemi, V., Asikainen, T., Salminen, A. & Mursula, K. Assessing North Atlantic winter climate response to geomagnetic activity 

and solar irradiance variability. . Q. J. R.Meteorol Soc. 145, 3780–3789. https://​doi.​org/​10.​1002/​qj.​3657 (2019).

http://www.imperial.ac.uk/people/j.haigh/
https://doi.org/10.4401/ag-4552
https://doi.org/10.1007/s10712-012-9181-3
https://doi.org/10.1007/s10712-012-9181-3
https://doi.org/10.1007/s00704-017-2234-2
https://doi.org/10.1029/2010GL044601
https://doi.org/10.1002/2015JD023415
https://doi.org/10.1029/2008JD011639
https://doi.org/10.1029/2008JD011639
https://doi.org/10.1029/2011GL049380
https://doi.org/10.5194/angeo-30-1719-2012
https://doi.org/10.1002/qj.3657


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11337  | https://doi.org/10.1038/s41598-021-90044-6

www.nature.com/scientificreports/

	25.	 Mares, I., Dobrica, V., Demetrescu, C. & Mares, C. Hydrological response in the Danube lower basin to some internal and external 
climate forcing factors. Hydrol. Earth Syst. Sci. Discuss. 1–24, 2016–2304. https://​doi.​org/​10.​5194/​hess (2016).

	26.	 Thejll, P., Christiansen, B. & Gleisner, H. On correlations between the North Atlantic Oscillation, geopotential heights, and geo-
magnetic activity. Geophys. Res. Lett. 30(6), 1347. https://​doi.​org/​10.​1029/​2002G​L0165​98 (2003).

	27.	 Mares, C., Adler, M. J., Mares, I., Chelcea, S. & Branescu, E. Discharge variability in Romania using Palmer indices and a simple 
atmospheric index of large-scale circulation. Hydrol. Sci. J. 61, 1010–1025 (2016).

	28.	 Mares, C., Mares, I. & Mihailescu, M. Identification of extreme events using drought indices and their impact on the Danube lower 
basin discharge. Hydrol. Proc. 30, 3839–3854 (2016).

	29.	 Mares, I., Mares, C., Dobrica, V. & Demetrescu, C. Comparative study of statistical methods to identify a predictor for discharge 
at Orsova in the Lower Danube Basin. Hydrol. Sci. J. 65, 371–386 (2020).

	30.	 Campuzano, S. A., De Santis, A., Pavón-Carrasco, F. J., Osete, M. L. & Qamili, E. New perspectives in the study of the Earth’s 
magnetic field and climate connection: the use of transfer entropy. PLoS ONE 13(11), e0207270 (2018).

	31.	 Wing, S., Johnson, J. & Vourlidas, A. Information theoretic approach to discovering causalities in the solar cycle. Astrophys. J. 
854(2), 85 (2018).

	32.	 Wing, S. & Johnson, J. R. Applications of information theory in solar and space physics. Entropy 21(2), 140 (2019).
	33.	 Goodwell, A. E., Jiang, P., Ruddell, B. L. & Kumar, P. Debates - Does information theory provide a new paradigm for Earth science? 

Causality, interaction, and feedback. Wat. Resour. Res. 56(2), e2019WR024940 (2020).
	34.	 Kumar, P. & Gupta, H. V. Debates—does information theory provide a new paradigm for earth science?. Water Resour. Res. 56(2), 

e2019WR026398 (2020).
	35.	 Labat, D. Recent advances in wavelet analyses: part 1. A review of concepts. J. Hydrol. 314, 275–288 (2005).
	36.	 Fu, C., James, A. L. & Wachowiak, M. P. Analyzing the combined influence of solar activity and El Nin˜o on streamflow across 

southern Canada. Wat. Resour. Res. 48, W05507. https://​doi.​org/​10.​1029/​2011W​R0115​07 (2012).
	37.	 Tary, J. B., Herrera, R. H., Han, J. & van der Baan, M. Spectral estimation—what is new? What is next ?. Rev. Geophis. 52, 723–749 

(2014).
	38.	 Sunkara, S. L. & Tiwari, R. K. Wavelet analysis of the singular spectral reconstructed time series to study the imprints of solar–

ENSO–geomagnetic activity on Indian climate. Nonlinear Process. Geophys. 23, 361–374. https://​doi.​org/​10.​5194/​npg-​23-​361-​2016 
(2016).

	39.	 Kristoufek, L. Has global warming modified the relationship between sunspot numbers and global temperatures?. Phys. A Stat. 
Mech. Appl. 468, 351–358 (2017).

	40.	 Fu, C., Ji, Z. & Wei, Z. Spatial patterns of ENSO’s interannual influences on lilacs vary with time and periodicity. Atmos. Res. 186, 
95–106 (2017).

	41.	 Laurenz, L., Lüdecke, H. J. & Lüning, S. Influence of solar activity on European rainfall. J. Atmos. Solar Terr. Phys. 185, 29–42. 
https://​doi.​org/​10.​1016/j.​jastp.​2019.​01.​012 (2019).

	42.	 Lohmann, G., Rimbu, N. & Dima, M. Climate signature of solar irradiance variations: analysis of long-term instrumental, histori-
cal, and proxy data. Int. J. Clim. 24, 1045–1056 (2004).

	43.	 Dima, M., Lohmann, G. & Dima, I. Solar-induced and internal climate variability at decadal time scales. Int. J. Clim. 25, 713–733 
(2005).

	44.	 Prestes, A. et al. Sun–earth relationship inferred by tree growth rings in conifers from Severiano De Almeida, Southern Brazil. J. 
Atmos. Solar Terr. Phys. 73, 1587–1593 (2011).

	45.	 Echer, M. S. et al. On the relationship between global, hemispheric and latitudinal averaged air surface temperature (GISS time 
series) and solar activity. J. Atmos. Solar Terr. Phys. 74, 87–89 (2012).

	46.	 Mares, I., Mares, C. & Mihailescu, M. Stochastic modeling of the connection between sea level pressure and discharge in the 
Danube lower basin by means of Hidden Markov Model. EGU Gen. Assem. Conf. Abstr. 15, 7606 (2013).

	47.	 Tapping, K. F. The 10.7 cm solar radio flux (F10.7). Space Weather 11(7), 394–406 (2013).
	48.	 Balogh, A. et al. Introduction to the solar activity cycle: overview of causes and consequences. Space Sci. Rev. 186(1–15), 0038–6308 

(2014).
	49.	 Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
	50.	 Timme, N., Alford, W., Flecker, B. & Beggs, J. M. Synergy, redundancy, and multivariate information measures: an experimentalist’s 

perspective. J. Comput. Neurosci. 36, 119–140. https://​doi.​org/​10.​1007/​s10827-​013-​0458-4 (2014).
	51.	 Bennett, A., Nijssen, B., Ou, G., Clark, M. & Nearing, G. Quantifying process connectivity with transfer entropy in hydrologic 

models. Water Resour. Res. 55, 4613–4629. https://​doi.​org/​10.​1029/​2018W​R0245​55 (2019).
	52.	 Schreiber, T. Measuring information transfer. Phys. Rev. Let. 85, 461–464 (2000).
	53.	 Ruddell, B. L. & Kumar, P. Ecohydrologic process networks: 1. Identification. Water Resour. Res. 45, 3 (2009).
	54.	 Hlinka, J. et al. Reliability of inference of directed climate networks using conditional mutual information. Entropy 15, 2023–2045. 

https://​doi.​org/​10.​3390/​e1506​2023 (2013).
	55.	 Goodwill, A. E. & Kumar, P. Temporal information partitioning: characterizing synergy, uniqueness, and redundancy in interacting 

environmental variables. Wat. Resour. Res. 53, 5920–5942. https://​doi.​org/​10.​1002/​2016W​R0202​16 (2017).
	56.	 Timme, N. M. & Lapish, C. A tutorial for information theory in neuroscience. Eneuro 5, 3 (2018).
	57.	 Kay, J. W., Ince, R. A., Dering, B. & Phillips, W. A. Partial and entropic information decompositions of a neuronal modulatory 

interaction. Entropy 19, 560 (2017).
	58.	 Jevrejeva, S., Moore, J. C. & Grinsted, A. Influence of the Arctic Oscillation and ElNiño -Southern Oscillation (ENSO) on ice 

conditions in the Baltic Sea: the wavelet approach. J. Geophys. Res. 108(D21), 4677. https://​doi.​org/​10.​1029/​2003J​D0034​17 (2003).
	59.	 Torrence, C. & Webster, P. J, Interdecadal changes in the ENSO–monsoon system. J. Clim. 12, 2679–2690 (1999).
	60.	 Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 79, 61–78 (1998).
	61.	 Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time 

series. Nonlinear Proc. Geophys. 11, 561–566 (2004).
	62.	 Hu, W. & Si, B. C. Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. 

Hydrol. Earth Syst. Sci. 20, 3183–3191 (2016).
	63.	 Ince, R. A. Measuring multivariate redundant information with pointwise common change in surprisal. Entropy 19(7), 318 (2017).
	64.	 Zanchettin, D. et al. Atlantic origin of asynchronous European interdecadal hydroclimate variability. Sci. Rep. 9, 1–7 (2019).
	65.	 Zanchettin, D., Rubino, A., Traverso, P. & Tomasino, M. Impact of variations in solar activity on hydrological decadal patterns in 

northern Italy. J. Geophys. Res. 113, D12102. https://​doi.​org/​10.​1029/​2007J​D0091​57 (2008).
	66.	 Tomasino, M. & Valle, F. D. Natural climatic changes and solar cycles: an analysis of hydrological time series. Hydrol. Sci. J. 45, 

477–489 (2000).
	67.	 Landscheidt, T. River Po discharges and cycles of solar activity. Hydrol. Sci. J. 45, 491–493 (2000).
	68.	 Compagnucci, R. H., Berman, A. L., Herrera, V. V. & Silvestri, G. Are southern South American Rivers linked to the solar vari-

ability?. Int. J. Clim. 34, 1706–1714 (2014).
	69.	 Peña, J. C., Schulte, L., Badoux, A., Barriendos, M. & Barrera-Escoda, A. Influence of solar forcing, climate variability and modes 

of low-frequency atmospheric variability on summer floods in Switzerland. Hydrol. Earth Syst. Sci. 19, 3807–3827 (2015).
	70.	 Gray, L. J. et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/Euro pean weather patterns. J. Geophys. 

Res. Atmos. 118, 405–413. https://​doi.​org/​10.​1002/​2013J​D0200​62 (2013).

https://doi.org/10.5194/hess
https://doi.org/10.1029/2002GL016598
https://doi.org/10.1029/2011WR011507
https://doi.org/10.5194/npg-23-361-2016
https://doi.org/10.1016/j.jastp.2019.01.012
https://doi.org/10.1007/s10827-013-0458-4
https://doi.org/10.1029/2018WR024555
https://doi.org/10.3390/e15062023
https://doi.org/10.1002/2016WR020216
https://doi.org/10.1029/2003JD003417
https://doi.org/10.1029/2007JD009157
https://doi.org/10.1002/2013JD020062


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11337  | https://doi.org/10.1038/s41598-021-90044-6

www.nature.com/scientificreports/

	71.	 Scaife, A. A. et al. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 40, 434–439. 
https://​doi.​org/​10.​1002/​grl.​50099 (2013).

	72.	 Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K. & Hansen, F. Solar forcing synchronizes decadal North Atlantic climate 
variability. Nat. Commun. 6, 1–8 (2015).

	73.	 Andrews, M. B., Knight, J. R. & Gray, L. J. A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the 
period 1960–2009. Environ. Res. Lett. https://​doi.​org/​10.​1088/​1748-​9326/​10/5/​054022 (2015).

	74.	 Alsafadi, K., Mohammed, S. A., Ayugi, B., Sharaf, M. & Harsányi, E. Spatial-Temporal evolution of drought characteristics over 
Hungary between 1961 and 2010. Pure Appl. Geophys. 177, 1–18 (2020).

	75.	 Hunt, B. G. Nonliniar influences—a key to short-term climatic perturbations. J. Atmos. Sci. 45, 387–395 (1988).
	76.	 Lu, H. et al. On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal 

winter. Q. J. R. Meteorol. Soc. 146(729), 1939–1959 (2020).
	77.	 Hernández, A. et al. A 2,000-year Bayesian NAO reconstruction from the Iberian Peninsula. Sci. Rep. 10, 14961. https://​doi.​org/​

10.​1038/​s41598-​020-​71372-5 (2020).

Author contributions
I.M. designed the research and contributed to robust application of the information theory elements, conducted 
the analysis and interpretation. C.M. participated to the software application, designed the figures, to the inter-
pretation of the physical mechanisms that govern the internal and external forcing of the atmosphere. V.D. & 
C.D were involved in the extensive discussion and designing the content, especially regarding the characteristics 
of solar / geomagnetic activity and the specificity of the influence on terrestrial variables as well contributed in 
data/ literature collection.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​90044-6.

Correspondence and requests for materials should be addressed to I.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1002/grl.50099
https://doi.org/10.1088/1748-9326/10/5/054022
https://doi.org/10.1038/s41598-020-71372-5
https://doi.org/10.1038/s41598-020-71372-5
https://doi.org/10.1038/s41598-021-90044-6
https://doi.org/10.1038/s41598-021-90044-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Assessing the solar variability signature in climate variables by information theory and wavelet coherence
	Material and methods
	Datasets. 
	Terrestrial variables. 
	Solargeomagnetic data. 

	Methods. 
	Information theory elements. 

	Wavelet coherence. 

	Results and discussion
	One target and two simultaneous sources. 
	Period I. 
	Period II. 
	One source and one target. 
	Period I. 
	Period II. 

	Conclusions
	References


