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The factors determining how attention is allocated
during visual tasks have been studied for decades, but
few studies have attempted to model the weighting of
several of these factors within and across tasks to better
understand their relative contributions. Here we
consider the roles of saliency, center bias, target
features, and object recognition uncertainty in
predicting the first nine changes in fixation made during
free viewing and visual search tasks in the OSIE and
COCO-Search18 datasets, respectively. We focus on the
latter-most and least familiar of these factors by
proposing a new method of quantifying uncertainty in
an image, one based on object recognition. We
hypothesize that the greater the number of object
categories competing for an object proposal, the greater
the uncertainty of how that object should be recognized
and, hence, the greater the need for attention to resolve
this uncertainty. As expected, we found that target
features best predicted target-present search, with their
dominance obscuring the use of other features.
Unexpectedly, we found that target features were only
weakly used during target-absent search. We also found
that object recognition uncertainty outperformed an
unsupervised saliency model in predicting free-viewing
fixations, although saliency was slightly more predictive
of search. We conclude that uncertainty in object
recognition, a measure that is image computable and
highly interpretable, is better than bottom–up saliency
in predicting attention during free viewing.

Introduction

People shift their attention as they perform different
visual tasks, with overtly measurable changes in eye
fixation numbering in the hundreds of thousands each
day. There is a sizeable literature aimed at identifying
factors affecting these ubiquitous movements of
attention. Two broad factors that are well known to
guide attention are target goals, as studied by visual
search tasks, and bottom–up visual salience, as studied
in the context of free-viewing tasks. Less studied
factors have also been identified, ranging from simple
center biases to uncertainty in the recognition of a
scene’s objects. The relative weighting of saliency
and target features in a visual search task has been
investigated (Chen & Zelinsky, 2006; Nothdurft, 2006;
Zelinsky, Zhang, Yu, Chen, & Samaras, 2006; Ehinger,
Hidalgo-Sotelo, Torralba, & Oliva, 2009; Henderson,
Malcolm, & Schandl, 2009; Lamy & Zoaris, 2009),
where the target features have been determined to be
significantly more important than saliency features in
visual search. Several other previous works have also
studied the relative importance of some of these factors
for free viewing (Mancas, 2009; Hayes & Henderson,
2019; Schütt, Rothkegel, Trukenbrod, Engbert, &
Wichmann, 2019). However, the relative importance
of all of these factors has not been considered in the
context of a single study, and this is the focus of our
work.

We briefly review the visual search and/or free
viewing studies that have considered each of four
factors (saliency, target features, center bias, and
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uncertainty), but we limit our discussion to studies
that used computationally mature methods that can be
applied to natural images. We do this to approximate
the visually complex contexts in which these shifts of
attention naturally occur and to promote fair model
comparison. We also present an extended discussion
of uncertainty, given that the study of this factor
in guiding attention has been relatively neglected
compared with the roles of saliency and target features.
We have formulated a new measure for quantifying the
uncertainty in the recognition of an object and present
a framework for combining this factor with the others
to show how each was differentially weighted across
the first nine fixations in both free-viewing and search
datasets. We end with some interpretation of what the
observed weightings might suggest, focusing again on
the role of object recognition uncertainty in guiding
overt visual attention.

Bottom–up saliency

There are several recent reviews detailing the
relationship between image saliency and the attraction
of attention, as well as large datasets of free-viewing
behavior that have been created to train and test models
of saliency (Judd, Ehinger, Durand, & Torralba, 2009a;
Xu, Jiang, Wang, Kankanhalli, & Zhao, 2014; Jiang,
Huang, Duan, & Zhao, 2015). Indeed, saliency models
that predict free-viewing fixations have become such
an active research topic that a managed benchmark
has emerged to compare all of the models on a level
playing field (Bylinskii, Judd, Borji, Itti, Durand,
Oliva, & Torralba, 2015). Rather than duplicating these
reviews, here our focus is on clarifying how we define
saliency in our study and the related concept of priority.
Different definitions of saliency produce different
levels of success in model predictions of free-viewing
fixations. The formulation of saliency that we use is one
proposed by Harel, Koch, and Perona (2007). Details
are provided in the Methods section, but it builds on the
method proposed by Itti and colleagues (Itti, Koch, &
Niebur, 1998; Itti & Koch, 2001) that computes saliency
in terms of local feature contrast in intensity, color,
and orientation in a visual input. This method is one
of the best in a class of methods that define saliency
purely as a bottom–up visual process, such that the
computation of the saliency map uses no knowledge
other than what is contained in the pixel input. We use
the term “saliency model” to refer to one that relies on
no top–down input, including any object categories
that were learned during training and can now serve as
a top–down bias signal.

A purely bottom–up saliencymodel can be contrasted
with a model that combines bottom–up pixel input with
top–down biases (e.g., faces, text, target-object goals).
We refer to these methods as computing “priority
maps,” a different term to underscore the critical

difference from bottom–up saliency in their use of
top–down information in the attention predictions.
Many types of top–down biases exist, and we confine
our discussion to only one of these—the biasing of
attention to target features in a search task. For even
greater specificity, we refer to priority maps in the
context of a search task as “target maps” (Zelinsky,
2008), a name that makes clear that the prioritization
is based on a comparison of a visual input to features
of a target goal. We adopted and consistently used this
terminology in several recent studies (Yang et al., 2020;
Zelinsky et al., 2020b), most clearly defined in Zelinsky
and Bisley (2015), and we believe that these distinctions
are particularly useful given our present goal of better
understanding how different attention biases are
weighted in the context of free-viewing and search
tasks. In our view, when an assumption of top–down
input is made, even in cases of simple text and face
detection (Liao, Shi, Bai, Wang, & Liu, 2017; Boyko,
Basystiuk, & Shakhovska, 2018; Long, Ruan, Zhang,
He, Wu, & Yao, 2018), a mixture of priority signals
occurs that makes it challenging to compare models,
with model performance often correlating with how
much top–down input can be added to the prediction.
Such mixing can be useful if the goal is to best predict
fixation behavior, but this was not our goal in this study.

Target features

Eclipsing in size even the robust literature on saliency,
the use of top–down goals and target features to guide
attention has been studied for decades in the context
of visual search (Horowitz & Wolfe, 1998; Weidner,
Krummenacher, Reimann, Müller, & Fink, 2009; Wolfe
& Horowitz, 2017). Overt movements of attention are
biased to the features of a target, so much so that a
target category can be decoded from the eye movements
made even during target-absent (TA) search (Zelinsky,
Peng, & Samaras, 2013). Moreover, this top–down bias
is known to be different from the bottom–up biasing
of attention captured by models of saliency (Chen &
Zelinsky, 2006; Henderson, Brockmole, Castelhano,
& Mack, 2007; Koehler, Guo, Zhang, & Eckstein,
2014), meaning that saliency model predictions do
not generalize to search tasks. Most theories of visual
search explain target guidance as a comparison process
between a representation of a target goal and a visual
input (Duncan & Humphreys, 1989; Wolfe, Cave, &
Franzel, 1989; Treisman, 1991). The hugely influential
guided search model made this comparison explicit in
the context of several simple search tasks and patterns
of button-press responses (Wolfe, 1994), and the target
acquisition model later extended this computational
approach by using target maps to predict search
fixations on complex images (Zelinsky, 2008).

Although early models of search guidance used
target features that were known to the searcher, an
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advance in search theory came with the demonstration
that search can be guided even to targets defined by
an object category (Malcolm & Henderson, 2009;
Schmidt & Zelinsky, 2009; Yang & Zelinsky, 2009).
Soon afterwards, models began to generate categorical
target maps to predict the fixation made in the search
for common object categories (Zelinsky, Adeli, Peng,
& Samaras, 2013; Adeli, Vitu, & Zelinsky, 2017; see
Zelinsky, Chen, Ahn, & Adeli, 2020a, for a recent review
of models of search-fixation prediction). This extension
of search theory to object classification was significant
in the bridge that it built to computer vision, where
powerful methods have been developed for extracting
and detecting objects in images by learning robust
object category representations. Using this bridge, the
recent models that predict search fixations are all deep
networks (Wei, Adeli, Nguyen, Zelinsky, & Samaras,
2016; Adeli & Zelinsky, 2018; Zhang, Feng, Ma, Lim,
Zhao, & Kreiman, 2018), with the current state of
the art being a model that predicts search fixations
using a prioritization policy learned through imitation
of previously observed search behavior (Yang et al.,
2020). The dataset of search fixations that we use in
the present study, COCO-Search18, was developed to
provide the observations of search behavior needed by
this model for training (Chen et al., 2020). However,
it is not our current goal to set a new benchmark by
outperforming these models or even to enter into the
arena of search-fixation prediction. Rather, here we use
a simpler modeling framework (He, Gkioxari, Dollar,
& Girshick, 2020), yet one still complex enough to
prioritize categories of objects in real- world images, to
obtain object and target maps that can be compared
with the other biases considered in our study.

Center bias

Center bias refers to a tendency to allocate attention
preferentially toward the center of an image. Part of
the center bias can be explained by the fact that much
of the imagery that we consume daily was created by
people who deliberately framed the image to place an
object of central interest at the center (Tatler, 2007;
Marat, Rahman, Pellerin, Guyader, & Houzet, 2013).
Consequently, viewers learn that the center of an image
should be biased for attention priority. Center bias
is a significant predictor of eye position in arbitrary
natural scenes, with simple center bias models even
outperforming more complex models that do not
include a center bias (Le Meur, Le Callet, & Barba,
2007; Judd, Ehinger, Durand, & Torralba, 2009b).

However, the center bias is likely itself a mixture
of many weak biases. Upon first viewing a scene
people tend to direct their initial saccades toward
locations closer to the center (Renninger, Verghese,
& Coughlan, 2007; Tatler, 2007; Zelinsky, 2012), with
further scene exploration then commencing from

this center location. A center bias might therefore be
functional in conveying an information processing
advantage by establishing an optimal starting position
for exploring a scene with a foveated retina. In addition
to such strategic factors, center bias might also include
low-level motor factors used to re-center the eye in its
orbit and higher level biases stemming from blurred
peripheral information competing less successfully for
attention than less blurred information in the nearer
periphery (Tseng, Carmi, Cameron, Munoz, & Itti,
2009; Zhao & Koch, 2011). Important for our study,
center fixation bias has also been shown to persist
irrespective of the distribution of image features, or the
observer’s task. This suggests a relatively simple image-
and task-independent bias to allocate attention to the
center of a scene (Tatler, 2007), one largely divorced
from the features of the image, and it is this simple
definition of a center bias that we adopt in our work.

Uncertainty of object recognition

The idea that attention is biased to regions in
an image having uncertain content dates back to
Renninger, Coughlan, Verghese, and Malik (2005), who
proposed that fixation selection during scene viewing
follows a principle of uncertainty minimization.
At about the same time, a different perspective on
uncertainty was proposed by Itti and Baldi (2006), who
defined uncertainty as a mismatch between prior and
posterior model probabilities, with greater mismatch
corresponding to higher uncertainty. In a later
extension of this work, Baldi and Itti (2010) introduced
a model of Bayesian surprise and formulated its
relationship to Shannon entropy. In another influential
and complementary study, Bruce and Tsotsos (2009)
also conceptualized uncertainty as surprise, but one
that is localized to a region based on a principle that
they referred to as self-information. If the content
of an image region can only be poorly predicted by
the surrounding contextual information in the image,
then there is higher uncertainty there and the greater
potential for surprise when attention moves to that
region. In more statistically oriented approaches,
Feldman and Friston (2010) argued that free energy
and the Fisher information of an image are useful
measures of the uncertainty associated with an image
region, and Sullivan, Johnson, Rothkopf, Ballard, and
Hayhoe (2012) treated uncertainty as the variance of
the probability distribution associated with a belief that
the world is in a particular state given a set of visual
observations over time. Relatedly, Standvoss, Quax,
and Van Gerven (2020) suggested that uncertainty
can be characterized by the variability in how well an
unsupervised method (a variational autoencoder) can
reconstruct an image, where they defined uncertainty
at each image location based on the variability among
five reconstruction samples. What these studies have
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in common is the belief that attention is allocated to
maximize a sort of surprise by minimizing uncertainty.
Here, we build on the idea that attention allocation
is prioritized to minimize uncertainty but extend it
by proposing an uncertainty metric more focused on
object recognition.

Our focus on objects is motivated by the large
literature suggesting that high-level vision is biased to
perceive objects and that objects are the unit of selection
by spatial attention (Mozer & Sitton, 1998; Scholl,
2001; Walther & Koch, 2006). Applying object-based
attention to fixation prediction, Einhaüser, Spain,
and Perona (2008) and Stoll, Thrun, Nuthmann, and
Einhaüser (2015) found that the object locations in
an image predicted where people fixate better than
low-level salience, and they showed this to be true in
artistic evaluation, content analysis, object naming,
and visual search tasks. Several other studies highlight
the importance of objects in scenes by incorporating
object representations into attention-prediction models
(’t Hart, Schmidt, Roth, & Einhaüser, 2013). Chang,
Liu, Chen, and Lai (2011) proposed a computational
exploration of the relationship between objectness
and saliency, and Ji, Zhang, Tseng, Chow, and Wu
(2019) considered both an objectness cue and saliency
detection in a graph-based bottom–up salient object
detection framework. Object representations are also
explicitly or implicitly assumed by many studies using
deep neural network models (Kümmerer, Wallis, &
Bethge, 2016; He, Tavakoli, Borji, Mi, & Pugeault,
2019; He et al., 2020), given that these networks are
often pretrained on large datasets that where labeled
for object classification. For example, DeepGaze
II (Kümmerer et al., 2016) is a model that predicts
free-viewing fixations using the features of a VGG-19
deep neural network that was trained on ImageNet
(Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009) to identify
objects in images. Also relevant is a study by Chen and
Zelinsky (2017, 2019), where free-viewing fixations were
predicted using a combination of saliency and mid-level
representations of shape referred to as proto-objects.
They showed that their model better predicted
free-viewing fixations than a bottom–up saliency model,
which they interpreted as attention selecting object-like
regions of space. These same authors (Chen & Zelinsky,
2018) challenged the assumption that free-viewing
fixations reflect bottom–up salience. They did this by
introducing an object-based model that used top–down
biases from learned object representations obtained
using a state-of-the-art convolutional neural network
pre-trained for object classification (using 1000 object
categories from ImageNet) (Krizhevsky, Sutskever, &
Hinton, 2012) to predict the fixations made during
free viewing. They hypothesized that the same visual
object representations learned and used to control
goal-directed search behavior might also be collectively
engaged to guide attention more generally to objects
(rather than targets) in the absence of a goal. Because

multiple object representations might simultaneously
exert a guidance signal, the contribution of any one is
diluted and a more generalized object-guidance signal
is obtained. Supporting their hypothesis, these authors
found that this object-based model outperformed
bottom–up saliency models in predicting free-viewing
fixations.

Building on this work, here we suggest that a factor
affecting attention guidance may be uncertainty in the
object-category label that should be assigned to a given
object in the visual input (from among those object
categories that have been learned). For intuition, if the
features at one peripherally viewed location of a scene
activate representations for a fork, knife, and spoon,
whereas the features at another location are plausibly
recognized as either a plate or a bowl, the former
pattern arguably has greater object uncertainty than
the latter given that viewing state. We treat this object
recognition uncertainty as a priority signal and use it to
predict free-viewing and search fixations.

Methods

Many factors are known to affect the allocation
of attention during free-viewing and visual search
tasks, and here we provide details regarding the
four factors that we consider in this study—namely,
object recognition uncertainty, center bias, bottom–up
saliency, and guidance from target features in the case
of search.

Object recognition uncertainty

It is possible to know that there is an object in an
image without knowing what that object is, particularly
for objects that have not yet been fixated. To make
this phenomenology computationally explicit, for
each yet-to-be- recognized object proposal in an image
we estimate the number of learned object categories
that compete for classification of that object-proposal
bounding box. We then compute from these competing
categories an object uncertainty score, where a larger
number of categories competing for an object proposal
reflects greater uncertainty in how that object should
be recognized. To obtain object proposals and object
detections, we used MaskRCNN (He et al., 2020), an
instance segmentation method popular in the computer
vision literature. We formulate the proposed uncertainty
measure as follows:

UC =
B∑

b=1

Gσ
Bcenter

(
fb

maxB fb

)
(1)

where B is the number of object proposals (bounding
boxes) in image I obtained using non-maximum
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Figure 1. Examples of MaskRCNN-generated object proposal bounding boxes, shown with the corresponding uncertainty maps and
the ground-truth fixation-density maps.

suppression (with value, ThNMS) on the object proposals
generated using the MaskRCNN method for instance
segmentation; fb is the number of competing objects
for a proposal b; and Gσ

Bcenter
is a Gaussian kernel, with

G centered at the proposal box center with standard
deviation (SD) σ . Here, maxBfb indicates the maximum
value that fb obtains across all object proposal bounding
boxes (B) in image I.

Equation 1 is used to compute an uncertainty
(UC) priority map. Specifically, we first computed
uncertainty values for every object proposal bounding
box in the image, as described above. Because these
bounding boxes can overlap extensively in an image,
we used non-maximum suppression to eliminate object
proposal boxes having high spatial overlap for the same
object instance. This creates a one-to-one mapping
between an object proposal and a unique object in
an image. However, object proposals from different
objects can also overlap. To deal with this eventuality,
we define the uncertainty value at pixel P to be the
summed uncertainty arising from all of the overlapping
bounding boxes that include pixel P. Figure 1 visualizes
the object bounding boxes generated usingMaskRCNN
along with the corresponding uncertainty priority map.
We used an object detection confidence threshold,
Thconf. = 0.02, and a non-maximum suppression
threshold, ThNMS = 0.30, for all analyses using the
UC model in this study. Our uncertainty prediction
algorithm can be summarized as follows:

Algorithm 1. Our uncertainty prediction algorithm

Our proposed measure of object recognition
uncertainty can also be interpreted from an information
theoretic perspective. We define, Punique(BI) to be the
probability that an object in proposal bounding box BI
is uniquely recognized as an object, which is equivalent
to the probability that fb = 1 in Equation 1. The
associated self-information can then be defined as
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SIunique(BI) = –log Punique(BI ). To make this clearer,
consider four proposal boxes, A, B, C, and D, in an
image with the number of competing objects for each
being 3, 2, 1, and 4, respectively. The corresponding
probabilities of these boxes containing a single
unique object are: 1 − 3

(3+2+1+4) = 0.70, 1 − 0.2 =
0.80, 1 − 0.1 = 0.90, 1 − 0.4 = 0.60, respectively,
after normalization. The self-information (SIunique)
associated with boxes A, B, C, and D would therefore
be SIunique(A) = 0.154, SIunique(B) = 0.096, SIunique(C) =
0.045, and SIunique(D) = 0.221, respectively. Therefore,
box D has the highest self-information, SIunique(D), as
Punique(D) has the lowest probability, Punique(D) = 0.6,
of containing a unique object, making object proposal
box D having the highest associated uncertainty. In
this sense, our method of quantifying uncertainty with
respect to object recognition can be understood as
a maximization of self-information associated with
object proposals.

Bottom–up saliency

For a model of bottom–up saliency (Sal) we used
graph-based visual saliency (GBVS) (Harel et al., 2007).
Like other formulations of bottom–up saliency, it seeks
to emulate the center-surround mechanism used by
early visual areas to code contrast in a visual input,
under the assumption that greater feature contrast leads
to a greater probability of attracting attention. We used
the MATLAB implementation of GBVS (Koch, 2012),
which computes feature maps using the Itti–Koch
saliency method (Itti et al., 1998) but normalizes these
maps using a graph-based approach to highlight the
conspicuous image regions and to permit combination
with other importance maps. Specifically, a graph
having feature vectors computed on image regions as its
nodes is constructed, and a Markov chain is defined
by normalizing the weights of the outbound node
edges to 1. The equilibrium distribution of this chain
reflects the fraction of time a random walker would
spend at each node/state if it were to walk forever. This
distribution naturally accumulates mass at nodes having
high dissimilarity with their surrounding nodes because
transitions among nodes corresponding to dissimilar
image features is more likely than among nodes with
similar features. This creates an activation measure
that is derived from pairwise contrast and results in
a biologically plausible model. As already discussed,
although more recent methods are more predictive of
free-viewing fixation locations than the GBVS model,
these methods blur the distinction between bottom–up
saliency and learned object categories by training on
class labels, thus confounding our effort to tease apart
the underlying factors affecting overt attention in our
tasks. Among the other purely bottom–up saliency
methods, there is adaptive whitening saliency (AWS)

(Garcia-Diaz, Leboran, Fdez-Vidal, & Pardo, 2012)
and Signature (Hou, Harel, & Koch, 2011), but we
found in pilot work that all of these recent saliency
models yield similar patterns of results that would not
affect any of our main conclusions.

Center bias

We implemented a center bias model (CB) by
computing a two-dimensional (2D) Gaussian map
centered on image Ic(x0, y0), with its size determined by
the image dimensions. More specifically,

CBp = 1
σc

√
2π

e−(P−Ic )2/2σ 2
c (2)

where CBp denotes the Gaussian map value at image
pixel P, and σ c is the standard deviation of the 2D
Gaussian function. This center bias formulation is
similar to what was used in previous studies (Marat et
al., 2013; Tong, Lu, Zhang, & Ruan, 2014).

Target-object features

Target-object guidance is believed to result when
image locations have features similar to those of the
target-object representation (Zelinsky et al., 2020a).
Target guidance is therefore strongest on target-present
(TP) trials where a target actually appears in the image,
but a similarly computed, albeit weaker target guidance
exists in TA search. To study how target guidance in a
search task compares to center bias, saliency, and object
recognition uncertainty, we need a method for obtaining
a target map that reflects a bias for target features in
a visual input. As already reviewed, there are many
methods for doing this, but in the interest of keeping
the state representations as comparable as possible in
our model comparison we used the same MaskRCNN
object proposal method (He et al., 2017) that we
used to obtain an object uncertainty map. However,
different thresholds on confidence were used depending
on whether the search was target present or target
absent. For TP search, we obtained the MaskRCNN
object proposal bounding box in the image that had
a confidence score greater than 0.9 that the object
was an exemplar of the target category. We chose this
high confidence threshold to ensure that the target
was the only object selected in the scene, which was
true most of the time. Moreover, the intersection over
the union of this bounding box with the ground truth
target-object labels from COCO-Search18 was 0.826,
thereby validating our use of the MaskRCNN method.
We then obtained a target map (Target) by applying a
2D Gaussian (σ = one-fourth of the box height, hb, as
done for the center bias map, and size = image height,



Journal of Vision (2022) 22(4):13, 1–17 Chakraborty, Samaras, & Zelinsky 7

him, resized to the box dimensions) at the center of this
bounding box. In the case of TA search, we simply
lowered the level of confidence for the MaskRCNN to
0.02, which was necessary because the confidence of a
non-target object being the target is usually much lower
compared with the confidence of actual target objects.
A target map was then obtained similar to TP search.
Specifically, we applied the same 2D Gaussian used
for the TP search at the center of every bounding box
(with recognition confidence value > 0.02) to obtain
the target map, again assuming that there are some
features at the bounding box locations that are guiding
attention in proportion to their target similarity. Note
that, whereas more sophisticated methods have been
developed for predicting search fixations (Yang et al.,
2020; Zelinsky et al., 2020a), we thought it best to err
on the side of interpretability when selecting a method
for obtaining a target map, which is often a problem
for more sophisticated deep-learning methods. Our
implementation of a target map is a simple bias much
like a center bias, only the bias is introduced at the
detected target locations. Given our goal of weighting
the contributions of different features in a comparison,
and not best predicting fixation locations, we believe
this interpretability of the MaskRCNN method is a
strength.

Fixation datasets

We used two benchmarked and publicly available
datasets of fixation behavior, one collected during a
free-viewing task and the other during a visual search
task. The OSIE dataset (Xu et al., 2014) consists of
700 images that were segmented into 5551 contoured
objects, each rated for 12 semantic attributes (e.g.,
color, motion, watchability). Critically for our purpose,
these images were also annotated with the fixations of
15 people freely viewing each of the depicted scenes
for 3 seconds. We excluded from this dataset images
that contained humans or animals in order to avoid
known biases to these categories that strongly attract
attention but are not among the biases that we consider
in this study. After filtering out these object categories,
which we did by using the corresponding MaskRCNN
channels to detect these categories in the images, we
were left with 145 images for analysis. Surprisingly few
datasets have been developed for visual search behavior,
but by far the largest is COCO-Search18 (Chen, Yang,
Ahn, Samaras, Hoai, & Zelinsky, 2021; Yang et al.,
2020). It consists of roughly 300,000 fixations from 10
people searching for each of 18 target-object categories
in 6202 images of natural scenes. Participants made a
TP or TA search decision for each image, and data were
grouped to obtain 3110 TP images and 3108 TA images
for analysis.

Results

To obtain a broad view of the results, in Figure 2 we
show visualizations of how center-bias maps, saliency
maps, uncertainty maps, and target maps predict
ground-truth fixation-density maps (FDMs) for several
representative input images. The three main panels
of the figure show data from three different tasks:
free viewing (top), TP search (middle), and TA search
(bottom). Note that priority in the uncertainty maps
is more focused on objects than in the corresponding
saliency maps and therefore better approximates the
free-viewing FDMs. Note also that this object bias
persisted in the context of a search task, although now
the target map does the best job in predicting fixation
behavior. This superiority of a target map was expected
in the context of TP search, but note the relatively weak
contribution of target features when a target does not
appear in a scene. This was not expected based on
existing literature (Zelinsky et al., 2013) and suggests
that object-recognition uncertainty or bottom–up
saliency may exert stronger attention control on TA
search. We will further elaborate on these observations
in separate sections devoted to the free- viewing, TP,
and TA search tasks.

Although several methods are available to conduct
more quantitative analyses, we focused on just two
for characterizing the importance of our factors in
predicting attention: generalized linear mixed models
(GLMMs) and normalized scanpath saliency (NSS).
We use GLMM as our main method of quantifying
the unique contribution of the different priority
maps in the selection of image locations (patches)
for fixation. GLMMs extend linear mixed models by
allowing response variables from different distributions
(e.g., binary responses), thereby enabling models to
incorporate both fixed effects (e.g., priority maps)
and random effects (e.g., subjects, image instances,
target objects) into the prediction of a linear response
variable (here, the selection or non-selection of an
image patch for fixation). For this reason, we believe
GLMM to be the analytical tool best suited to our
goal of better understanding the factors contributing
to attention prediction. We used the Statistics
and Machine Learning Toolbox from MATLAB
R2020a (MathWorks, Natick, MA) for our GLMM
implementation. In the Supplementary Material, we
also report a parallel set of analyses using NSS rather
than GLMM, for readers who may be more familiar
with that metric. The two analyses yielded highly
similar patterns, and our main conclusions do not
change depending on our use of one analytical tool or
the other.

Following Hayes and Henderson (2019), as a
pre-processing step we first histogram-matched the
priority maps to the ground-truth FDMs in order to
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Figure 2. The four priority maps (center bias, saliency, uncertainty, and target) shown with the original input image (leftmost) and the
ground-truth fixation-density map (rightmost) for three representative trials in free viewing (top), TP search (middle, where the target
objects are a clock, car, and bowl in rows 1–3, respectively), and TA search (bottom, where the target objects are a car, bottle, and cup
in rows 1–3, respectively).

make the distributions of intensities on these maps
more comparable. Following Nuthmann and Einhaüser
(2015), we then divided each image into an 8 × 6 grid
(yielding 48 scene patches) for our GLMM analyses.
For each image patch, we obtained the average priority
map value over the corresponding region on each of
the feature maps, and for each observer and image we
coded whether that patch was fixated (1) or not (0).
The priority maps were normalized within a range
of 0 to 1 by min–max normalization. The GLMM
observation matrix therefore was comprised of nimage
× nsubjects × 48 entries of zeros and ones, where nimage

and nsubjects are the number of image instances in
the dataset and the number of subjects viewing each
image. Finally, given that the data are binary, we
conducted a logit transformation before modeling the
probabilities. For both the free-viewing and search
tasks, we included scene type as a random variable.
Additionally, our models of TP and TA search include
object type as a random variable so as to capture
variance attributable to the search target. Figure 3
reports normalized z-statistics for GLMMs built for the
different feature priority maps. This statistic was shown
to vary proportionally to the success of a priority map
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Figure 3. Model predictions for the first nine new fixations
showing the relative importance (z-statistic of the priority map
in a GLMM analysis) of object recognition uncertainty, bottom–
up saliency, target features, and center bias in free viewing (A),
TP search (B), and TA search (C). Brightness codes greater
contribution. Instances show the proportion of images
contributing to each fixation prediction. Note that instances
sum to 1 over the column and that the factor weights sum to 1
over each row.

in predicting fixations in the images, enabling a direct
relative comparison between features (Nuthmann &
Einhaüser, 2015). Table 1 reports the actual z values and
standard errors (SEs), as well as p values indicating the

significance of the unique contribution of a feature to
the prediction.

Free viewing

Figure 3A shows normalized GLMM z-statistics
indicating the unique contribution of priority map
feature in predicting FDMs computed for each of
the first nine new fixations made during free viewing.
The rightmost column shows the relative number of
image “instances” over which the GLMM z-statistics
are estimated. Brightness codes a greater contribution
of a feature bias, or more instances. The nine rows
correspond to the first nine new fixations made during
the free-viewing task, with the weightings of values
for each row normalized to sum to 1. For example,
the most weighted feature for predicting attention was
object recognition uncertainty on fixation 7. Note
that instances are also normalized to sum to 1, only
this normalization is column-wise. Values from top to
bottom therefore indicate the proportion of images
having exactly one new fixation, exactly two new
fixations, etc.

The clear pattern from these data is that uncertainty
was better than both saliency and center bias in
predicting free-viewing fixations, and that this was
broadly true regardless of the order of the fixation in
the scanpath. The only exception to this pattern was
in the first fixation, where center bias was the best
predictor of attention. Feature weights were significant
for all fixations, except for center bias on fixation 7,
as indicated by an independent t-test analysis of our
GLMM model (Table 1, top). Note that these and all
subsequent statistical comparisons were Bonferroni
corrected to avoid inflated type I errors by multiple
testing.

Target-present search

Figure 3B shows the corresponding analyses for a
search task where an exemplar of the target category
appeared in the search scene. The most salient pattern
in these data is the superiority of target features in
predicting overt search behavior (Table 1, middle),
which was clear by even the first saccade and peaked
over fixations three to five. The slight decline in
target-feature weighting observed over fixations six to
nine should be interpreted with caution because the
mean number of fixations required to find the target
in the COCO-Search18 dataset was 1.85, meaning
that there were relatively few trials having five or more
fixations. Moreover, these trials likely represent the
more difficult searches where the target guidance signal
might be smaller. The dominance of a target bias in our
weighting came largely at the expense of a diminished
center bias, perhaps due in part to target objects
being prevented from appearing at center locations
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Free-viewing

Fixation Uncertainty Saliency Center Bias

1 SE = 0.151, z = 16.77, p < 0.01 SE = 0.171, z = 15.61, p < 0.01 SE = 0.142, z = 32.31, p < 0.01
2 SE = 0.151, z = 21.33, p < 0.01 SE = 0.166, z = 17.63, p < 0.01 SE = 0.152, z = 9.48, p < 0.01
3 SE = 0.154, z = 20.65, p < 0.01 SE = 0.169, z = 16.29, p < 0.01 SE = 0.161, z = 3.86, p < 0.01
4 SE = 0.155, z = 20.30, p < 0.01 SE = 0.172, z = 14.74, p < 0.01 SE = 0.163, z = 3.67, p < 0.01
5 SE = 0.157, z = 20.60, p < 0.01 SE = 0.175, z = 14.28, p < 0.01 SE = 0.167, z = 2.63, p < 0.01
6 SE = 0.161, z = 19.57, p < 0.01 SE = 0.181, z = 12.73, p < 0.01 SE = 0.169, z = 4.00, p < 0.01
7 SE = 0.171, z = 18.75, p < 0.01 SE = 0.190, z = 13.55, p < 0.01 SE = 0.185, z = 1.14, p = 0.25
8 SE = 0.198, z = 14.35, p < 0.01 SE = 0.222, z = 9.41, p < 0.01 SE = 0.203, z = 4.58, p < 0.01
9 SE = 0.257, z = 10.90, p < 0.01 SE = 0.289, z = 6.57, p < 0.01 SE = 0.264, z = 3.15, p < 0.01

Target-present search

Fixation Uncertainty Saliency Target Center Bias

1 SE = 0.161, z = 18.88, p < 0.01 SE = 0.130, z = 64.27, p < 0.01 SE = 0.097, z = 148.22, p < 0.01 SE = 0.161, z = 66.19, p < 0.01
2 SE = 0.192, z = 15.47, p < 0.01 SE = 0.157, z = 55.39, p < 0.01 SE = 0.103, z = 180.76, p < 0.01 SE = 0.288, z = −4.18, p < 0.01
3 SE = 0.263, z = 10.28, p < 0.01 SE = 0.232, z = 28.92, p < 0.01 SE = 0.139, z = 134.26, p < 0.01 SE = 0.410, z = −6.18, p < 0.01
4 SE = 0.381, z = 6.57, p < 0.01 SE = 0.345, z = 16.50, p < 0.01 SE = 0.201, z = 87.36, p < 0.01 SE = 0.572, z = −4.50, p < 0.01
5 SE = 0.509, z = 6.02, p < 0.01 SE = 0.491, z = 9.44, p < 0.01 SE = 0.282, z = 56.47, p < 0.01 SE = 0.731, z = −2.09, p = 0.036
6 SE = 0.608, z = 6.82, p < 0.01 SE = 0.626, z = 6.80, p < 0.01 SE = 0.374, z = 37.10, p < 0.01 SE = 0.866, z = −0.50, p = 0.612
7 SE = 0.766, z = 4.74, p < 0.01 SE = 0.824, z = 3.74, p < 0.01 SE = 0.473, z = 28.20, p < 0.01 SE = 1.023, z = 0.91, p = 0.357
8 SE = 0.894, z = 4.61, p < 0.01 SE = 1.070, z = 1.25, p = 0.210 SE = 0.586, z = 23.07, p < 0.01 SE = 1.147, z = 2.78, p = 0.005
9 SE = 1.150, z = 2.68, p = 0.007 SE = 1.126, z = 2.92, p = 0.003 SE = 0.690, z = 18.64, p < 0.01 SE = 1.392, z = 1.17, p = 0.238

Target-absent search

Fixation Uncertainty Saliency Target Center Bias

1 SE = 0.047, z = 46.15, p < 0.01 SE = 0.044, z = 78.05, p < 0.01 SE = 0.060, z = 39.53, p < 0.01 SE = 0.042, z = 65.85, p < 0.01
2 SE = 0.049, z = 52.12, p < 0.01 SE = 0.048, z = 74.95, p < 0.01 SE = 0.061, z = 43.10, p < 0.01 SE = 0.050, z = 4.96, p < 0.01
3 SE = 0.056, z = 45.72, p < 0.01 SE = 0.057, z = 51.96, p < 0.01 SE = 0.072, z = 31.97, p < 0.01 SE = 0.059, z = −0.463, p = 0.64
4 SE = 0.067, z = 37.09, p < 0.01 SE = 0.069, z = 38.48, p < 0.01 SE = 0.090, z = 21.760, p < 0.01 SE = 0.068, z = 3.59, p < 0.01
5 SE = 0.080, z = 28.41, p < 0.01 SE = 0.082, z = 30.78, p < 0.01 SE = 0.108, z = 18.45, p < 0.01 SE = 0.08, z = 4.08, p < 0.01
6 SE = 0.093, z = 23.50, p < 0.01 SE = 0.095, z = 25.82, p < 0.01 SE = 0.136, z = 11.50, p < 0.01 SE = 0.093, z = 5.17, p < 0.01
7 SE = 0.111, z = 16.90, p < 0.01 SE = 0.109, z = 23.89, p < 0.01 SE = 0.161, z = 10.84, p < 0.01 SE = 0.107, z = 4.96, p < 0.01
8 SE = 0.127, z = 14.23, p < 0.01 SE = 0.128, z = 17.80, p < 0.01 SE = 0.194, z = 7.94, p < 0.01 SE = 0.121, z = 7.196, p < 0.01
9 SE = 0.144, z = 13.18, p < 0.01 SE = 0.144, z = 17.14, p < 0.01 SE = 0.228, z = 5.87, p < 0.01 SE = 0.140, z = 3.76, p < 0.01

Table 1. Standard errors, z values, and p values for significance tests conducted on the different priority maps from our GLMM analysis.

in COCO-Search18. Target-feature dominance also
diminished the unique contributions of uncertainty
and saliency, rendering both small with saliency being
narrowly better.

Target-absent search

Figure 3C shows these analyses again for a search
task, except this time for trials when a target exemplar
did not appear in the search image. A notable pattern
here is the stark reversal found in the importance of the
target features. Whereas for TP search this factor easily
dominated the others throughout the scanpath, in TA
search this factor was weighted among the lowest over
all the scanpath fixations. This greatly diminished role
of target features corresponded to an increased role for
recognition uncertainty and saliency, with both factors
uniformly predicting TA search fixations better than
target features. Saliency and uncertainty were more
closely weighted, although saliency was generally more
predictive of fixations during TA search.

Alternative definitions of object recognition
uncertainty

We have shown that a model derived from object
recognition uncertainty better predicts free-viewing
fixations than a bottom–up model of saliency. Still
not clear, however, is whether this better prediction is
due to the specific formulation of object recognition
uncertainty used in that model or because it is more
simply object based and uses information about objects
to predict attention. Our model comparison focuses
on this distinction. Note that we do not compare our
method to deep-network models of “saliency” because
these models are trained on fixation behavior and are
therefore not strictly object based. Objects are just
one of many factors contributing to fixation selection
(with, for example, bottom–up saliency and center
bias being others), and this uninterpretable mixture
of factors introduces confounds with respect to our
goal of estimating the contributions of specific factors.
Relatedly, because these models are trained explicitly
on fixation behavior to predict fixation behavior, they
should be more predictive than a model built exclusively
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on object uncertainty. But, again, confirming this
expectation would not advance our goal of identifying
factors contributing to visual behavior. What we do
instead is to compare the free-viewing fixation behavior
predicted by the object recognition uncertainty model
to two other models that are comparable in architecture
but use different definitions of object-based uncertainty
to prioritize attention.

Object label entropy

Object uncertainty is a topic that has been studied
in computer vision, where methods commonly
characterize uncertainty in the detection (Jiang, Luo,
Mao, Xiao, & Jiang, 2018; He, Zhu, Wang, Savvides, &
Zhang, 2019; Wang et al., 2020) and recognition (Miller,
Nicholson, Dayoub, & Sünderhauf, 2018; Hall et al.,
2020; Meyer & Thakurdesai, 2020) of objects in images.
However, these approaches define object uncertainty
very differently than how we defined it in our study.
Object detection uncertainty refers to the uncertainty
in the location of a detected object, meaning the
preciseness of its segmentation or the location of its
detection bounding box. Object recognition uncertainty
refers to a confidence in the classification label of a
detected object, rather than our conceptualization of
recognition uncertainty in terms of the number of
objects competing for a given object proposal. A very
recent probabilistic object recognition approach (Hall
et al., 2020) quantified both spatial (detection) and
semantic (recognition) uncertainties of the detections,
but more related to our work is that of Miller et
al. (2018), who used the entropy of the object label
(category) probabilities as a measure of the uncertainty
in object recognition.

Building on the model from Miller et al. (2018)
and inspired by information theory (Bruce & Tsotsos,
2009), here we compute MaskRCNN object confidence
scores for proposal bounding boxes and use the entropy
in these scores as a measure of uncertainty. Greater
entropy in these scores for a given bounding box would
indicate more competition among object classes for this
box and, therefore, greater uncertainty. Uncertainty
scores for all overlapping boxes are summed to
obtain the final uncertainty map. This method can be
formalized as

UCE =
B∑

b=1

Gσ
Bcenter

⎛
⎝−

fb∑
p=1

wp log wp

⎞
⎠ (3)

where B is the number of object proposal bounding
boxes in image I, and fb is the number of objects
competing for object proposal b, having confidence
wp ≥ Thconf.. Gσ

Bcenter
is a Gaussian kernel with

G centered at the proposal box center (Bcenter)
with SD σ .

Figure 4. NSS prediction accuracy as a function of fixation
number for the label-entropy, pixel-wise, and object
recognition uncertainty models.

Pixel-wise uncertainty

The object recognition model from our GLMM
analyses defined recognition uncertainty in terms of
objects competing for an object proposal in a visual
input. The second alternative measure of uncertainty
that we consider is related but measures uncertainty
at the pixel level. For a given pixel P, a pixel-wise
uncertainty measure determines the number of object
categories seeking to claim it, with the goal being the
classification of every pixel with a category label. The
premise is that the degree of uncertainty in how a pixel
should be assigned to an object class increases with the
number of object bounding boxes seeking to claim that
pixel as part of a different object representation. Using
the same MaskRCNN method and parameter settings
reported in the Methods section, we implemented this
pixel-wise uncertainty metric by simply incrementing
by 1 an uncertainty value obtained for pixel P for every
bounding box (BI) that encloses P. An uncertainty map
is thus obtained by computing an uncertainty value for
each pixel reflecting an unweighted sum of overlapping
bounding boxes enclosing a given pixel. This method
can be formalized as

UCP (x, y) = Gσ
im

fb∑
p=1

Fp (x, y) (4)

where Fp(x, y) = 1 if the bounding box p encloses the
point P(x, y), and Gσ

im is a Gaussian kernel (size =
one-fourth of the image height, him) applied on the
resulting image for smoothing. The greater the number
of object bounding boxes enclosing a pixel, the greater
the uncertainty attributed to a pixel enclosed by the
boxes.

Model comparison

Figure 4 shows fixation-by-fixation predictions from
the two alternative uncertainty models (label-entropy
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Figure 5. Predictions from three object recognition uncertainty models (middle three columns) and ground-truth fixation-density
maps (right) superimposed over three representative images (left).

and pixel-wise) and the originally formulated object
recognition uncertainty model. To evaluate how well
the priority maps from each model could predict the
ground-truth FDMs, we used the NSS metric. NSS is
computed for a given image by taking the average of
the model predictions at each of the fixation locations,
where the model predictions were first normalized to
have zero mean and unit standard deviation. Thus,
when NSS = 1, the locations of the ground-truth
fixations are being predicted by a model 1 SD above
average, and when NSS = 0 a model is predicting
fixation locations no better than chance. NSS penalizes
false positives and false negatives symmetrically, and as
noted in Bylinskii, Judd, Oliva, Torralba, and Durand
(2018), is a discrete approximation of a simple Pearson’s
correlation between the priority map of a model and
an observed fixation-density map. We chose to use
NSS rather than the correlation method because NSS
is parameter free (the sigma of the Gaussian used to
create the FDM can be treated as a fit parameter),
although the metrics produce similar results (Li, Xia,
Song, Fang, & Chen, 2015).

Using this metric, and averaging NSS scores over
the first nine new fixations, we obtained scores of
0.74, 0.91, and 1.35 for the label-entropy, pixel-wise
uncertainty and for the originally formulated object
recognition uncertainty models, respectively. This
advantage for the object recognition uncertainty model
existed for each of the first nine new fixations. Figure 5
supports this finding with a visualization of model
predictions for representative images from the OSIE
dataset. Consistent with the NSS analysis, predictions
from our original object recognition uncertainty model
appear the best match to ground-truth free-viewing
fixations, suggesting that this metric may be the most
psychologically meaningful of the three considered
here.

Discussion and future directions

Our goal in this study was to better understand
the relative importance of different factors (namely,
center bias, target bias, bottom–up saliency, and object
recognition uncertainty) in predicting gaze fixations
during free-viewing and search tasks. We report several
patterns, some expected and some unexpected. One
expected pattern was that center bias played a strong
role in predicting the first new fixations in free-viewing
and TA search tasks compared with the importance of
this factor throughout the remainder of the scanpath.
We interpret this pattern as suggesting that, in the
absence of a strong target guidance signal attracting
attention to a location in the visual periphery, people
make relatively small amplitude initial saccades away
from the starting center location (Zelinsky, 2012), thus
creating the behavioral data pattern captured by the
center-bias model. Also as expected, we found that
target features introduced a strong bias on attracting
attention during TP categorical search (Malcolm &
Henderson, 2009; Schmidt & Zelinsky, 2009; Yang &
Zelinsky, 2009). This target bias appeared in the very
first fixation and dominated the allocation of attention
throughout the nine-fixation scanpath. Unexpectedly,
however, the target bias did not extend to TA search,
where target features ranked among the poorest in
predicting attention. Based on previous work showing
that the target guidance signal was sufficiently strong
on TA trials to decode the target category (Zelinsky,
Peng, & Samaras, 2013), we expected to find some role
for target guidance. However, that study used only
four-object search arrays and purposefully inserted
non-target objects that were rated as visually similar
to the target category. Our findings suggest that target
guidance, compared with other factors, is relatively weak
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in the case of TA categorical search and perhaps only
meaningful when the search context can be significantly
constrained.

Another unexpected finding from our study was the
strong role played by object recognition uncertainty
in controlling gaze during free viewing, given that
this factor has been relatively neglected in the study
of attention control. For free viewing, uncertainty
played a greater role than saliency in guiding overt
attention. We also found saliency to be a significant
factor affecting attention, just to a lesser degree
than uncertainty. Saliency gave uniformly better pre
dictions than center bias regardless of task, except
for the first new fixation during free viewing where
center bias was most predictive. Saliency was even
more predictive than target features in the case of
TA search. TA search therefore appears to be more
exploratory than guided by target features, resulting
in larger roles played by image saliency and object
uncertainty. Comparing uncertainty to saliency during
search, we found saliency to be the clearly better
predictor over the entire TA search scanpath, with
this advantage extending to TP search, although
becoming smaller. We therefore conclude that, whereas
bottom–up saliency is generally more predictive in the
case of visual search, object recognition uncertainty
is better than bottom–up saliency in predicting
fixations made during free viewing. Ironically, given
that saliency models were developed in the context of
free-viewing tasks, uncertainty in object recognition
dominated saliency as a factor biasing the first nine new
fixations.

We propose that a basic factor affecting the allocation
of visual attention is a need to recognize objects.
It is through object recognition that a meaningful
label becomes attached to previously unlabeled visual
input, thereby enabling all further complex motor
and cognitive interactions with the object. It therefore
stands to reason that an object in an image having
more than one label will create a recognition-based
dissonance that attracts attention in an effort to resolve
the object recognition uncertainty. It is unclear how our
formulation of object recognition uncertainty relates to
meaning maps (Henderson & Hayes, 2017), and future
work will explore whether there is more to meaning
than just object recognition in attention control.
What we can say, however, is that our formulation of
object-based control uses computer vision methods
that rely solely on pixels and can therefore be applied to
a limitless number of images, making it preferable in
this sense to the hand-labeling method used to create
meaning maps.

Keywords: uncertainty, attention, fixations, saliency,
visual search
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