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ABSTRACT: Locally mobile bond-vectors contribute to the conformational
entropy of the protein, given by Sk ≡ S/k = −∫ (Peq ln Peq)dΩ − ln∫ dΩ. The
quantity Peq = exp(−u)/Z is the orientational probability density, where Z is the
partition function and u is the spatially restricting potential exerted by the
immediate internal protein surroundings at the site of the motion of the bond-
vector. It is appropriate to expand the potential, u, which restricts local rotational
reorientation, in the basis set of the real combinations of the Wigner rotation
matrix elements, D0K

L . For small molecules dissolved in anisotropic media, one
typically keeps the lowest even L, L = 2, nonpolar potential in axial or rhombic form. For bond-vectors anchored at the protein, the
lowest odd L, L = 1, polar potential is to be used in axial or rhombic form. Here, we investigate the ef fect of the symmetry and polarity of
these potentials on Sk. For L = 1 (L = 2), Sk is the same (differs) for parallel and perpendicular ordering. The plots of Sk as a function
of the coefficients of the rhombic L = 1 (L = 2) potential exhibit high-symmetry (specific low-symmetry) patterns with parameter-
range-dependent sensitivity. Similar statements apply to analogous plots of the potential minima. Sk is also examined as a function of
the order parameters defined in terms of u. Graphs displaying these correlations, and applications illustrating their usage, are
provided. The features delineated above are generally useful for devising orienting potentials that best suit given physical
circumstances. They are particularly useful for bond-vectors acting as NMR relaxation probes in proteins, when their restricted local
motion is analyzed with stochastic models featuring Wigner-function-made potentials. The relaxation probes could also be molecules
adsorbed at surfaces, inserted into membranes, or interlocked within metal−organic frameworks.

1. INTRODUCTION

Typically, proteins exhibit internal mobility. Within their
scope, various structural moieties, notably bond-vectors, move
locally in the presence of spatial restrictions exerted by the
immediate (internal) protein surroundings. These restrictions
result from the anisotropic nature of the local structure. In
their presence, the bond-vector orientation is distributed
nonuniformly even in cases where the local motion is
undetectable, while the local ordering can be measured. The
pertinent probability density functions yield conformational
entropy, Sk, defined (in units of the Boltzmann constant, k) as
Sk = −∫ (Peq ln Peq)dΩ − ln∫ dΩ.1 Peq = exp(−u)/Z is the
normalized probability density, where Z is the partition
function and u is the restricting local potential. The quantity
of interest is the change in conformational entropy, ΔSk,
between two protein states, entailed by a physical process.1−3

Usually, the second term in the expression for Sk cancels out in
calculating ΔSk.
In some cases, the restricted local bond-vector motion is

observable (following appropriate isotope labeling) with NMR
relaxation. Stochastic models for NMR relaxation analysis
feature explicit potentials,4,5,7,8 which straightforwardly yield Sk
(refs 6, 10). While this study refers to bond-vectors in proteins

in general, it connects with NMR relaxation through the subset
of NMR-active bond-vectors.11,12 Let us examine this
connection.
The traditional method for the analysis of NMR relaxation

in proteins is model-free (MF).13 In the MF formalism, the
local spatial restrictions are expressed in terms of the squared
generalized order parameter, S2, rather than a potential
function. Analytical expressions connecting S2 with Sk for
very simple axial potentials were developed;1,12 an empirical
relation which does so for several simple axial potentials was
also devised.1 A dictionary for protein side-chain entropies
derived from S2 was established in ref 14. In that study,
empirical relations connecting S2 with Sk were developed
utilizing reference configurational entropies and order
parameters determined with molecular dynamics (MD)
simulations. Actual cases using this method appear in the
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literature.15 In the context of ligand binding, Wand et al.
devised the empirical relation called “model-independent
entropy meter” that features adjustable coefficients, which
project the experimentally measured methyl-related changes in
motion across the entire protein and ligand.12

Thus, within the scope of the MF conceptualizations, the S2-
to-Sk conversion features in some cases simple axial potentials.
In recent years, we developed the two-body coupled-rotator

slowly relaxing local structure (SRLS) approach16−18 for the
analysis of NMR relaxation in proteins.19−22 In SRLS, the local
potential is expanded in the basis set of the real linear
combinations of the Wigner rotation matrix elements, D0K

L (in
brief, real Wigner functions).16,19 In accordance with typical
experimental data, the lowest even L terms, and in some cases
the lowest odd L terms, have been kept, yielding u = − c0

2D00
2 −

c2
2 (D02

2 + D0−2
2 ) for nonpolar ordering17,18,20−22 and u = −c01

D00
1 − c1

1 (D0−1
1 − D01

1 ) for polar ordering.23−26

Nonpolar (L = 2) ordering prevails when there is inversion
symmetry with respect to the origin of the director (preferred
probe orientation) frame as for rigid molecules dissolved in
anisotropic media.4,5 Polar (L = 1) ordering prevails when
there is no inversion symmetry with respect to the origin of the
director frame. This is the case for bond-vectors anchored at
the protein23,24 (or any other relaxation probe anchored at the
entity that represents the local director). In view of the various
approximations, admixtures are most appropriate. The fact that
MF, and in many cases SRLS, have treated local ordering from
the nonpolar (L = 2) perspective is due to the fact that the
theories for proteins originate in theories for small molecules.
In principle, the two-term potentials depicted above can be

enhanced in SRLS by adding terms to its expression. In
practice, this is often hindered by limited experimental data.
We pursued the idea of potential enhancement outside of the
scope of SRLS25,26 as follows. Linear combinations of real
Wigner functions with L = 1−4 were created and optimized
against the corresponding potential of mean force (POMF)
obtained with MD simulations. Comparison between the best-
fit Wigner function and the POMF indicated that the set of
terms with L = 1−4 suffices for obtaining good agreement.
Moreover, using such optimized potentials, new insights into
the dimerization of the Rho GTPase binding domain of plexin-
B1 (in brief, plexin-B1 RBD) were gained.26 In future work, we
plan to incorporate these potentials unchanged into SRLS data-
fitting schemes. This will improve the picture of structural
dynamics to be obtained due to better potentials, and better
characterization of this picture as additional parameters can
now be determined with data fitting.
The POMFs are themselves restricting potentials that can

yield conformational entropy. However, they are statistical
functions and as such cannot be utilized in the development
promoted in this study, which is based on explicit potentials.
Thus, we have at hand explicit axial and rhombic, polar and

nonpolar, fairly accurate Wigner-function-made local poten-
tials. This constitutes a rich source for conformational entropy
derivation. To optimize this process in terms of the suitability
of the local potential and the accuracy of the pertinent
conformational entropy, it is important to determine the
relation between potential form, symmetry, parity, etc. and
conformational entropy. We do this here for the L = 1 and 2
potentials depicted above. Correlation graphs are provided,
and their utilization is illustrated with several applications.
NMR relaxation analysis using SRLS directly can benefit from
this study.

A theoretical summary is given in Section 2. Our results and
their discussion are described in Section 3, and our conclusions
appear in Section 4.

2. THEORETICAL BACKGROUND
2.1. Restricting Potentials. The orienting potential,

U(Ω), associated with restricted rotational reorientation, is
typically given by the expansion in Wigner rotation matrix
elements, D0K

L (Ω)4,5

u U kT c D( ) ( )/ ( )
L

L

M L

L

K L
L L

1

MK MK∑ ∑ ∑Ω ≡ Ω = Ω
∞

=

+

=−

+

=−

(1)

where the Euler angles, Ω, describe the orientation of the
probe relative to the director, which is the direction of
preferential orientation in the restricting surroundings.4,5 Note
that u and the coefficients featured by eq 1 are dimensionless.
It is usually assumed that the director is uniaxial (see ref 17

for the introduction of biaxiality in a manner involving one
additional variable angle). Consequently, the “quantum
number” M in eq 1 is zero and Ω = (0, θ, φ). One has to
ensure that the potential is real; this is achieved by expanding
u(Ω) in the basis set of the real combinations of the Wigner
rotation matrix elements (the real Wigner functions). Finally,
the infinite expansion in eq 1 has to be truncated. Keeping only
the lowest even L terms, one has5

u c D c D D( , ) ( , ) ( , ) ( , )0
2

00
2

2
2

02
2

0 2
2θ φ θ φ θ φ θ φ− − [ + ]−

(2)

For c0
2 > 0, the main ordering axis orients preferentially parallel

to the director; this is termed parallel ordering. For c0
2 < 0, the

main ordering axis orients preferentially perpendicular to the
director; this is termed perpendicular ordering.4,5 Keeping only
the lowest odd L terms, one has:23,24

u c D c D D( , ) ( , ) ( , ) ( , )0
1

00
1

1
1

0 1
1

01
1θ φ θ φ θ φ θ φ= − − [ − ]−

(3)

For c0
1 > 0 (c0

1 < 0), the primary polar axis is parallel to the +z
(−z) axis of the local ordering frame. For c1

1 > 0 (c1
1 < 0), the

primary polar axis is tilted in the +zx (−zx) plane of the local
ordering frame.4,23

Exploring the relationship between these (and further
enhanced) potentials and the conformational entropy, Sk, is
very broad in scope. The connection with SRLS,19−22 which
applies to proteins in solution, has been delineated above. The
SRLS limit where the protein motion is frozen is the
microscopic-order-macroscopic-disorder (MOMD) ap-
proach,27 which we developed for proteins in the solid
state.28−32 SRLS and MOMD were originally developed for
electron spin resonance (ESR) applications in complex fluids
and proteins.16−18,27 In all of these theoretical approaches, the
local potential is expressed in terms of real Wigner functions.
The present study is relevant to all of them and, in general, to
any established stochastic model for spin relaxation analysis.4,5

2.2. Parameters of Interest Defined in Terms of the
Restricting Potentials. 2.2.1. Order Parameters. Order
parameters are ensemble averages of real Wigner functions
defined in terms of restricting potentials. Here, we are using
the order parameters4,23

S D L(0, , 0) , 1, 2L L
0 00 θ= ⟨ ⟩ = (4a)

S D D( , ) ( , )1
1

0 1
1

01
1θ φ θ φ= ⟨ − ⟩− (4b)
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S D D( , ) ( , )2
2

02
2

0 2
2θ φ θ φ= ⟨ + ⟩− (4c)

The normalized probability density function required to
calculate these ensemble averages is given by

D (0, , ) e sin d d

e sin d d
K

L u

u
0

( , )

( , )

∫
∫

θ φ θ θ φ

θ θ φ

θ φ

θ φ

−

−
(5)

where u(θ,φ) is the restricting potential.
2.2.2. Conformational Entropy. The entropy divided by k,

Sk, is defined as1

S P P( ln )d ln dk eq eq∫ ∫= − Ω − Ω
(6)

where Peq = exp(−u)/Z is the normalized probability density,
Z is the partition function, and u is the restricting potential.
The change in conformational entropy is given by1

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑS P P( ln )dk eq eq∫Δ = Δ − Ω

(7)

In this study, u is given by eqs 2 or 3 and ΔSk is calculated
using eqs 6 and 7. The coefficients c0

2, c2
2, c0

1, and c1
1 may be

positive or negative.
Let us relate to the model-free treatment of eq 7. The local

spatial restrictions are implicit in the squared generalized order
parameter, S2, defined as13

S D D
K

K K
2

0, 1, 2
0
2

0
2∑= |⟨ ⟩⟨ ⟩|

= ± ±
−

(8)

where ⟨···⟩ denotes ensemble average. The functions in eq 8
are the (complex) Wigner rotation matrix elements with L = 2
and K = −L,...,L. We have shown that10

S S S( ) 0.5 ( )2
0
2 2

2
2 2= + (9)

For wobble-in-a-cone and one-dimensional (1D) harmonic
oscillator, analytical expressions connecting S2 with Sk were

developed.1,12 For several simple axial potentials, the following
empirical expression was developed1

S A SIn 3 (1 8 )k
1/2π= + [ − + (10)

The parameter A is adjusted to suit the individual potentials.
This equation was obtained with a different parameterization
in ref 14. Only positive values of S (which, as pointed out
above, correspond to parallel ordering) are considered.
Empirical relations for methyl groups were developed within
the scope of a dictionary-type framework in ref 14 (see above).
A comprehensive empirical relation was developed in ref 12
(see above).

3. RESULTS AND DISCUSSION

3.1. Axial Potentials. The first axial (K = 0) even L term
in the Wigner function expansion yields the potential u =
−c02D00

2 = −c02 (1.5 cos2 θ − 0.5). Figure 1a−c shows Sk as a
function of the coefficient c0

2 > 0, the order parameter S0
2 =

⟨D00
2 ⟩, and the squared order parameter (S0

2)2, respectively. A
comparison with MF may be conducted given that both S and
S0
2 range from 0 to 1. Note that S0

2 = 0 corresponds to c0
2 = 0

and S0
2 = 1 corresponds to c0

2 → ∞. We use 0 ≤ c0
2 ≤ 50; any

number greater than approximately 20 is virtually infinity.
Figure 1c shows Sk as a function of (S0

2)2. The conforma-
tional entropy, Sk, was calculated according to eq 6; S0

2 was
calculated in terms of the potential u = −c02D00

2 according to eq
4a. Figure 1 of ref 1 shows Sk as a function of S

2 obtained using
eq 10 for several simple potentials. All of the curves in Figure 1
of ref 1 agree qualitatively with the curve in Figure 1c; none
agrees with it quantitatively, although many of the simple
potentials considered in ref 1 are limiting cases of u = −c02D00

2 .
As expected, in all three panels of Figure 1, the entropy

decreases with increasing potential or ordering strength. In the
region of interest for proteins, where 1 ≲ c0

2 ≲ 10, the Sk versus
c0
2 curve is substantially steeper, hence more sensitive, than the
other two curves.

Figure 1. Conformational entropy, Sk, as a function of (a) the coefficient, c0
2, of the potential u = −c02D00

2 , (b) the order parameter, S0
2 = ⟨D00

2 ⟩, and
(c) the squared order parameter, (S0

2)2. c0
2 ranges from 0 to 50; S0

2 and (S0
2)2 range from 0 to 1.

Figure 2. Conformational entropy, Sk, as a function of (a) the coefficient, c0
2, of the potential u = −c02D00

2 , (b) the order parameter, S0
2 = ⟨D00

2 ⟩, and
(c) the squared order parameter, (S0

2)2. c0
2 ranges from −20 to 20, S0

2 ranges from −0.5 to 1.0, and (S0
2)2 ranges from 0 to 1. The long branch in

Figure 2c is associated with c0
2 > 0 and S0

2 > 0; the short branch is associated with c0
2 < 0 and S0

2 < 0.
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Let us focus on c0
2. As indicated, nonpolar (L = 2) local

ordering may be parallel or perpendicular. We19−22 and
others33−35 found that typically the main ordering axis at N−H
sites in proteins is Cα−Cα. Recalling that the director is given
by the equilibrium orientation of the N−H bond, it may be
deduced that, within a good approximation, perpendicular
ordering prevails at these sites.20−22 In general, the sign of the
coefficient, c0

2, in eq 2, obtained with data f itting, determines
whether the local ordering is parallel or perpendicular. This
information enters the expression for Sk straightforwardly (eq
6). When MF is used, data fitting determines S2. For
perpendicular ordering to enter Sk, one has to use −S in
expressions such as eq 10. This has not been done, with
implications illustrated below.
Figure 2a−c is analogous to Figure 1a−c, except that now

both parallel and perpendicular orderings are featured by
considering the full parameter range of c0

2. For parallel ordering,
one has 0 ≤ c0

2 < ∞ and 0 < S0
2 < 1; for perpendicular ordering,

one has 0 > c0
2 > −∞ and 0 ≥ S0

2 ≥ −0.5. The Sk patterns for c02
< 0 and c0

2 > 0 differ; so do the Sk patterns for S0
2 < 0 and S0

2 > 0.
Figure 2c shows Sk as a function of (S0

2)2. A second branch
yielded by negative S0

2 values is featured in the 0−1 range; this
branch is missing in MF.
Let us focus on the simplest axial polar case. L = 1 potentials

are treated in refs 23, 26. In ref 24, we analyzed the 15N−H
relaxation data from the third immunoglobulin binding domain
of streptococcal protein G (GB3) with rhombic L = 1 or 2
potentials and found that the results differ. Importantly, we

found that the process by which GB3 binds to its cognate Fab
fragment has polar character.24 Thus, potential parity is both
influential and important.
Figure 3 refers to the potential u = −c01D00

1 = −c01 cos θ.
Figure 3a shows Sk as a function of c0

1 for −30 ≤ c0
1 ≤ 30, Figure

3b shows Sk as a function of S0
1 for −1 ≤ S0

1 ≤ 1, and Figure 3c
shows Sk as a function of (S0

1)2. In Figure 3a,b Sk is the same for
positive and negative c0

1 (S0
1), i.e., for the primary polar axis

pointing along +z and −z.23 A single branch is featured by
(S0

1)2 (Figure 3c).
We extend the analysis by including in it order parameters

and the minima of the L = 1 and 2 potentials. Figure 4a shows
S0
1= ⟨D00

1 ⟩ as a function of c0
1 for −30 ≤ c0

1 ≤ 30, and Figure 4b
shows S0

2 = ⟨D00
2 ⟩ as a function of c0

2 for −30 ≤ c0
2 ≤ 30. For L =

1, S0
1 is the same for +c0

1 (primary polar axis pointing along +z)
and −c01 (primary polar axis pointing along −z); for L = 2, S0

2 is
not the same for +c0

2 (parallel ordering) and −c02 (perpendicular
ordering).
Figure 4c shows Sk as a function of c0

1 (blue), superposed on
the minimum of the u = −c01 cos θ potential, denoted umin, as a
function of c0

1 (red). The corresponding scales are depicted on
the left and right ordinates. As one would expect, primary polar
axes pointing along +z or −z yield the same patterns.
Figure 4d shows Sk as a function of c0

2 (blue), superposed on
umin of u = −c02 (1.5 cos θ2−0.5) as a function of c0

2 (red). The
corresponding scales are depicted on the left and right
ordinates. Both patterns differ for parallel (c0

2 > 0) and
perpendicular (c0

2 < 0) ordering. In particular, if the potential

Figure 3. Conformational entropy, Sk, as a function of (a) the coefficient, c0
1, of the potential u = −c01D00

1 , (b) the order parameter, S0
1 = ⟨D00

1 ⟩, and
(c) the squared order parameter, (S0

1)2. c0
1 ranges from −30 to 30, S0

1 from −1.0 to 1.0, and (S0
2)2 from 0 to 1.

Figure 4. Order parameter, S0
1, as a function of the coefficient, c0

1, of the potential u = −c01D00
1 (a). Order parameter, S0

2, as a function of the potential
coefficient, c0

2, of the potential u = −c02D00
2 (b). Conformational entropy, Sk (blue), and the minimum, umin, of u = −c01D00

1 (red), as a function of c0
1

(c). Conformational entropy, Sk (blue), and the minimum, umin, of u = −c02D00
2 (red), as a function of c0

2 (d).
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minimum is −a (at θ = 0°) for parallel ordering, it will be −a/2
(at θ = 90°) for perpendicular ordering.
3.2. Rhombic Potentials. Equations 2 and 3 show the

functional forms of the rhombic L = 2 and 1 potentials,
respectively. Figure 5a,b shows Sk as a function of the potential
coefficients c0

1 and c1
1 (c0

2 and c2
2). Figure 5c,d shows umin as a

function of the coefficients c0
1 and c1

1 (c0
2 and c2

2). In all of the
Figure 5 simulations, and in the simulations of Figures 6 and 7,
1681 data points were used; the same results were obtained
with a larger number of data points.
The curves depicted in Figure 5a represent the group of

points with coordinates (c0
1, c1

1) that yield the same conforma-
tional entropy, Sk; those depicted in Figure 5b represent the

group of points with coordinates (c0
2, c2

2) that yield the same
conformational entropy. We call these curves Sk isolines. Figure
5c,d shows the umin isolines for the L = 1 and 2 potentials,
respectively. The color codes for the values of Sk and umin are
given on the right of each figure. In Figure 5a,b, intense orange
corresponds to large entropy and intense blue corresponds to
small entropy. In Figure 5c,d, intense orange corresponds to
shallow potentials and intense blue corresponds to deep
potentials.
L = 1 potentials (Figure 5a,c), which are shallow and nearly

axial (small |c0
1| and |c1

1|), yield large entropy; those which are
deep and highly rhombic (large |c0

1| and |c1
1|) yield small

entropy. In-between the changes are less monotonic for Sk

Figure 5. Conformational entropy, Sk, as a function of the coefficients, c0
1 and c1

1, of the potential u = −c01 D00
1 − c1

1 (D0‑1
1 − D01

1 ) (a). Conformational
entropy, Sk, as a function of the coefficients, c0

2 and c2
2, of the potential u = −c02D00

2 − c2
2 (D02

2 + D0‑2
2 ) (b). The minimum, umin, of u = −c01D00

1 − c1
1

(D0‑1
1 − D01

1 ) as a function of c0
1 and c1

1 (c). The minimum, umin, of u = −c02D00
2 − c2

2 (D02
2 + D0‑2

2 ) as a function of c0
2 and c2

2 (d). Color codes are on the
right of each panel. A total of 1681 data points were used in generating each panel of this figure.

Figure 6. Conformational entropy, Sk, as a function of the order parameters, S0
1 and S1

1, defined in terms of the potential u = −c01D00
1 − c1

1 (D0‑1
1 −

D01
1 ) (a). Conformational entropy, Sk, as a function of the order parameters, S0

2 and S2
2, defined in terms of the potential u = −c02D00

2 − c2
2 (D02

2 +
D0‑2

2 ) (b). umin of u = −c01D00
1 − c1

1 (D0‑1
1 − D01

1 ) as a function of S0
1 and S1

1 (c). umin of u = −c02D00
2 − c2

2 (D02
2 + D0‑2

2 ) as a function of S0
2 and S2

2 (d).
Color codes and number of data points as in Figure 5.
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(Figure 5a) and more monotonic for umin (Figure 5c). The Sk
patterns are more sensitive in the middle, and the umin patterns
are more sensitive in the outer region. The situation is more
complicated for L = 2, which is associated with asymmetric
shapes of the Sk and umin isoline patterns (Figure 5b,d). While
+c2

2 and −c22 yield the same isoline patterns, +c0
2 and −c02 yield

different isoline patterns. The Sk patterns are more sensitive in
the middle, and the umin patterns are more sensitive in the
outer region, in a distinctive manner. Note that the high
sensitivity of the Sk isoline patterns ensures good certainty in
Sk.
Figure 6a−d is analogous to Figure 5a−d, with the

coordinates being order parameters instead of potential
coefficients. (S0

1, S1
1) are defined in terms of (c0

1, c1
1), and (S0

2,
S2
2) are defined in terms of (c0

2, c2
2) (cf. Equations 2, 3 and 4a−

c). The isolines of Figure 6 are much more dispersed in
conformation space than the isolines of Figure 5. Good
certainty in Sk is expected for potentials of relatively great, and
intermediate, strength, and relatively great, and intermediate,
rhombicity, as the Sk isolines vary most in these regions.
N−H bonds in well-structured regions of the protein

conformation feature relatively strong and highly rhombic
potentials.20,21 In this case, it is preferable to use the
correlation graphs of Figure 6. C−CH3 bonds in proteins

feature relatively weak potentials.20,21 In that case, it is
preferable to use the correlation graphs of Figure 5 (see
examples below).
Figure 7a shows superposed Sk and umin isolines as a function

of the coefficients c0
1 and c1

1 of the L = 1 potential. The
objective is to examine the correlation between Sk and umin.
One can recognize a one-to-one correspondence; its precise
form is revealed by Figure 7c, where Sk is depicted as a
function of umin. Figure 7b shows superposed Sk and umin

isolines as a function of the coefficients c0
2 and c2

2 of the L = 2
potential. The relation between Sk and umin is intricate. Indeed,
Figure 7d shows that, in general, multiple Sk values correspond
to a given value of umin.
The utilization of the correlation graphs of Figures 1−6 is

illustrated below.
3.3. Applications. 3.3.1. Example 1. Statistical potentials

of mean force (POMFs) can be derived directly from MD
trajectories.25,26,36,37 Figure 8a,b shows images of two POMFs
representing two protein states before and after a physical
event. They belong to residue G73 of plexin-B1 RBD in
monomer and dimer forms,26 but we consider them
representative of a general situation where the only
information available consists of POMFs.

Figure 7. (a) Superposed conformational entropy, Sk (blue), and potential minimum, umin (red), as a function of the coefficients, c0
1 and c1

1, of the
potential u = −c01 D00

1 − c1
1 (D0‑1

1 − D01
1 ). (b) Sk of (a) as a function of umin of (a). (c) Superposed conformational entropy, Sk (blue), and potential

minimum, umin (red), as a function of the coefficients, c0
2 and c2

2, of the potential u = −c02D00
2 − c2

2 (D02
2 + D0‑2

2 ). (d) Sk of (c) as a function of umin of
(c). Number of data points as in Figure 5.

Figure 8. MD-derived potentials of mean force for the N−H bonds of residue G73 of plexin-B1 RBD in monomer (Figure 8a) and dimer (Figure
8b) forms.9,36,37 The minima of these potentials (in units of kT) are 8.4 and 7.8, respectively.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.0c02662
J. Phys. Chem. B 2020, 124, 4284−4292

4289

https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02662?fig=fig8&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.0c02662?ref=pdf


The estimated minima are (in units of kT) 8.4 and 7.8. One
could use eq 7 to determine ΔSk. However, at this stage, it is
not known whether the local ordering is parallel or
perpendicular. Taking u = −c02D00

2 as a reasonable approx-
imation, and using conjointly the graphs of Figure 2a−c, it
might be possible to distinguish between these two situations.
Figure 2c is likely to be particularly useful in this context. With
this information in hand, one could proceed effectively with
detailed analysis, where rhombic symmetry is allowed for.
3.3.2. Example 2. 15N relaxation of the major urinary

protein I (MUP-I) and its complex with the pheromone 2-sec-
butyl-4,5-dihydrothiazol were studied with MF at 300 K in
early work.38 The authors of ref 38 found that pheromone
binding brings about increase in conformational entropy. We
studied this system with SRLS in the 283−308 K range using u
= −c02D00

2 and assuming parallel ordering, to find that below
approximately 300 K, Sk indeed increases, but above that
temperature, it decreases, upon pheromone binding.9

At 308 K, c0
2 is on the order of 15−17 in both forms of

MUP-I. At 283 K, the majority of the c0
2 values are on the order

of 25 in the free form and between 15 and 20 in the bound
form (Figure 7 of ref 9). ΔSk is small at both temperatures.
The Sk versus positive c0

2 curve in Figure 2a shows that the
dependence of Sk on c0

2 is nearly linear for large c0
2 and much

steeper for smaller c0
2. Therefore decreasing the pressure at 283

K would lower c0
2 differentially increasing Δc02, hence ΔSk.

Thereby, the change in conformational entropy upon
pheromone binding will be determined with enhanced
certainty in the interesting temperature range.
3.3.3. Example 3. Table 1 shows the average values of the

potential coefficients ⟨c0
2⟩ and ⟨c2

2⟩ for all of the methyl

moieties of the complex of Ca2+−calmodulin with the peptide
smMLCKp at the temperatures depicted (rows 1 and 2). It
also shows ⟨c0

2⟩ and ⟨c2
2⟩ of the alanine and methionine methyl

groups at 295 K (rows 3 and 4).39

The coefficients ⟨c0
2⟩ and ⟨c2

2⟩ in Table 1 represent rhombic
L = 2 potentials. SRLS calculations where the potentials have
rhombic symmetry are considerably more time-consuming
than SRLS calculations, where the potentials have axial
symmetry. One can permute the axes of the local ordering
frame so that, in the new frame, the symmetry of the potential
is different.5,40 The permuted coefficients, c0̂

2 and c2̂
2, are given

by40

c c c/2
3
20

2
0
2

2
2̂ = − −

(11a)

i
k
jjjj

y
{
zzzzc c c

3
2

/22
2

0
2

2
2̂ = −

(11b)

The following situation is envisioned for the methyl groups of
a given protein designated for SRLS analysis. One selects
representative methyl moieties and determines c0

2 and c2
2 with

SRLS data fitting. Using Figure 5b, the corresponding isolines
are identified. For small c0

2 and small c2
2, typical of methyl

moieties in proteins,39 every Sk isoline has two points with c2
2 ≈

0. In some cases, c0
2 of such points will be similar to the c0̂

2 data
of the representative residues. For residues with data similar to
those of the representative residues (appropriate criteria will
have to be specified), it will be useful to use in SRLS
calculations c0̂

2 and c2̂
2 ≈ 0. The geometric information will have

to be updated accordingly.
3.3.4. Example 4. Table 2 shows S0

2 and S2
2 obtained with

SRLS analysis of the N−H bonds of residues Q2 and A26 of

the third immunoglobulin binding domain of streptococcal
protein G (GB3) using the rhombic L = 2 potential.41

The points (S0
2, S2

2) with values (−0.49, 1.08) and (−0.42,
1.13) are located in the upper left corner of Figure 6b, as they
represent strong perpendicular ordering and large rhombicity.
Figure 6b refers to the rhombic L = 2 potential, whereas Figure
6a refers to the rhombic L = 1 potential. Figure 6a shows better
sensitivity in the region under consideration than Figure 6b.
This indicates that analyzing 15N relaxation in compact
proteins such as GB3 using the rhombic L = 1 potentials is
likely to yield local potentials, hence pertinent order
parameters and conformational entropy, which are determined
with enhanced certainty. This is useful information for future
work.

3.3.5. Future Prospects. It is of interest to compare for a
given NMR relaxation probe dynamic structures associated
with the same value of Sk. This can be accomplished by the
following strategy:1 Analyze NMR relaxation data of a given
probe with SRLS and determine the “experimental” c0

2 and c2
2

values;2 calculate Sk (eq 6) and use Figure 5b to determine the
corresponding isoline;3 select representative pairs of c0

2 and c2
2

belonging to this isoline;4 use these c0
2 and c2

2 pairs unchanged in
SRLS data fitting and determine the corresponding local
motional rates and local geometry;5 and compare the results of
steps 1 and 4.

3.3.6. Comments. (1) Lately, pressure-dependent42 and
temperature-dependent43 studies have been performed in the
context of conformational entropy derivation. The results of
such studies might be useful in a project where explicit SRLS
potentials and statistical MD-derived POMFs improve one
another within the scope of an iterative scheme. We
contemplate devising such a scheme in future work. (2) We
derive conformational entropy from restricted local motions. In

Table 1. Average Potential Coefficients, ⟨c0
2⟩ and ⟨c2

2⟩, of All
of the Methyl Groups of the Complex of Ca2+−Calmodulin
with the Peptide smMLCLp at 288 and 308 K (Rows 1 and
2), and ⟨c0

2⟩ and ⟨c2
2⟩ of Alanine (A) and Methionine (M) at

295 K (Rows 3 and 4)a

T, K ⟨c0
2⟩ ⟨c2

2⟩ Sk

1 288 0.92 −0.68 1.69
2 308 0.39 −0.74 1.77
3 295 0.22 −0.98 1.72
4 295 0.65 −0.50 1.76

aReproduced with permission from ref 39. Copyright 2011 of the
American Chemical Society.

Table 2. S0
2 and S2

2 of Residues Q2 and A26 of GB3 Obtained
with SRLS Analysis of 15N Relaxation.41Sk Derived from the
c0
2 and c2

2 Values That Yielded These S0
2 and S2

2 Values (eqs 2,
4a, and 4c)a

1 2 3 4 5

residue structural element S0
2 S2

2 Sk
Q2 β1 strand −0.49 1.08 −0.37
A26 α helix −0.42 1.13 −0.70

aReproduced with permission from ref 41. Copyright 2012 of the
American Chemical Society.
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the context of NMR relaxation, the pertinent restrictions are
“observed” sources.2 There exists a different approach pursued,
e.g., in ref 44, where the entropy changes are derived using an
“entropy meter”. The latter is an expression comprising S2

from observed sources as well as adjustable coefficients that
“project the experimentally measured changes in motion across
the entire protein and ligand”. The projected changes are
“unobserved” sources. Such contributions are outside the
scope of our study.

4. CONCLUSIONS
The local potentials, u, at the site of mobile bond-vectors in
proteins have been expressed in terms of the real linear
combinations of the Wigner rotation matrix elements, D0K

L (in
brief, real Wigner functions), with L = 1 or 2. From them, the
conformational entropy, Sk, has been derived. To determine
the effect of the symmetry (axial or rhombic) and L-parity of
the local potential on the associated conformational entropy,
correlation graphs between Sk and the coefficients of u, as well
as between Sk and the order parameters defined in terms of u,
have been created. The Sk patterns obtained are highly specific
and exhibit distinctive parameter-range-dependent sensitivity.
This lays the groundwork for devising potentials for the
determination of Sk that best suit given physical circumstances.
NMR relaxation analysis has been invoked as a physical

method that can profit substantially from these results. So can
any physical method where the local restrictions are expressed
in terms of real Wigner functions.
We use here the amide bond and the methyl moiety of

proteins as examples of NMR relaxation probes. Additional
examples are molecular moieties adsorbed as surfaces,
embedded in membranes, or interlocked in metal−organic
frameworks.
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