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Abstract: In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC)
source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm
minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are
used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary
transformation. Then a real-valued block sparse model is established based on a novel over-complete
dictionary, and a UNNM algorithm is formulated for recovering the block-sparse matrix. In addition,
the real-valued NC-MUSIC spectrum is used to design a weight matrix for reweighting the nuclear
norm minimization to achieve the enhanced sparsity of solutions. Finally, the DOA is estimated by
searching the non-zero blocks of the recovered matrix. Because of using the noncircular properties of
signals to extend the virtual array aperture and an additional real structure to suppress the noise,
the proposed method provides better performance compared with the conventional sparse recovery
based algorithms. Furthermore, the proposed method can handle the case of underdetermined DOA
estimation. Simulation results show the effectiveness and advantages of the proposed method.

Keywords: multiple-input multiple-output radar; noncircular signal; direction of arrival estimation;
nuclear norm minimization; unitary transformation

1. Introduction

Recently, the parameter estimation problem has attracted more and more attentions in multiple
input multiple output (MIMO) radar [1–4], especially for DOA estimation. Compared with
the conventional phased-array radar systems, MIMO radar exhibits better parameter estimation
performance by using the spatial diversity gain and/or waveform diversity gain. In general, there are
two classes of MIMO radar: statistical MIMO radar [5] and colocated MIMO radar [6]. The statistical
MIMO radar is equipped with separated antennas in both transmit and receive arrays, which can
achieve the spatial diversity gain from different channels. The transmit and receive antennas of
the colocated MIMO radar are closely located to form a virtual array with a large aperture and
achieve higher spatial resolution. In this paper, we consider the DOA estimation problem in colocated
MIMO radar.

For the DOA estimation problem in MIMO radar, the algorithms can be mainly divided
into two groups: subspace-based algorithms and sparse recovery (SR) based algorithms. In the
subspace-based algorithms, the multiple signal classification (MUSIC) algorithm and its variations
have been investigated [7,8]. In general, these algorithms can estimate the DOA via searching the spatial
spectrum at heavy computational costs. On the other hand, the estimation of signal parameters via
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rotational invariance technique (ESPRIT) and its extensions are proposed in [9,10], which can achieve
the DOA by calculating the rotation invariant factor. Compared with MUSIC algorithm, the ESPRIT
algorithm requires lower computational complexity due to the avoidance of the extensive spatial
searching, but it can only be applied to some special array configurations, such as uniform linear arrays
(ULAs). Due to the fact that the subspace-based algorithms are implemented with the eigenvalue
decomposition (EVD) of the covariance matrix, these algorithms generally need some necessary
conditions, such as a reasonably large number of snapshots and high enough signal-to-noise ratio
(SNR), to achieve the desirable performance. In recently years, the SR-based techniques are investigated
in both conventional phase-array systems [11–15] and MIMO radar systems [16–19], which exploit the
concept of sparse signal reconstruction. In [11], a sparse signal reconstruction perspective based on
l1-norm penalty is successfully proposed for DOA estimation, in which the computational complexity
of the sparse reconstruction and the sensitivity of the measurement noise are reduced by using the
singular value decomposition (SVD) technique. Some other sparsity-inducing techniques, such as
covariance vectors based SR algorithm [12], covariance matrix based SR algorithm [13], real-valued
SR algorithm [14] and coprime array based sparse representation algorithm [15], are investigated in
phased-array systems. In addition, several SR-based algorithms are proposed for DOA estimation in
MIMO radar [16–19]. The simulation results in [11–19] have shown that the SR-based DOA estimation
methods provide better performance than the subspace-based algorithms in the cases using a limited
number of snapshots and low SNR.

It is well known that the spatial resolution depends on the array aperture, i.e., larger array
aperture means better performance. In radar systems, exploiting the property of complex noncircular
signals, such as BPSK, ASK, and UQPSK modulated signals, provides a possible way to enlarge the
virtual aperture for improving the performance, which has been verified in [20–22]. For MIMO radar,
some subspace-based methods are extended for DOA estimation by using the noncircular property
of signals, and the theoretical analysis and simulation results verify that these methods achieve
higher spatial resolution and better performance than traditional subspace-based methods [23–25].
On the other hand, there are a few literatures about the SR-based DOA estimation by using the
noncircular property of signals. In [26], a SR-based DOA estimation algorithm for noncircular sources
is investigated by combining the received data and its conjugation, and the performance is improved
significantly compared with the conventional SR-based methods. In [27], a nuclear norm minimization
(NNM) framework is proposed to effectively use the whole aperture corresponding to the extended
data. Therefore it provides better angle estimation performance than the SR-based method in [28].

In this paper, a novel unitary nuclear norm minimization (UNNM) algorithm is proposed for DOA
estimation of noncircular sources in MIMO radar. The UNNM algorithm can be seen as a real-valued
extension of the nuclear norm minimization (NNM) algorithm in [27]. In the proposed method, the
virtual array aperture can be doubled by using the noncircular properties of signals, and the complex
extended data can be turned into a real-valued data by utilizing unitary transformation. Then the
real-valued data are represented with a block-sparse model based on a novel over-complete dictionary,
and a UNNM algorithm is formulated for recovering the block-sparse matrix. In order to achieve the
enhanced sparsity of solutions, the real-valued NC-MUSIC spectrum is exploited to design the weight
matrix for reweighting the nuclear norm minimization. Finally, the DOA is achieved by using the
recovered matrix. Due to the suppression of the noise by using the real-valued structure, the proposed
method shows higher spatial resolution and better performance than NNM algorithm. In addition,
the proposed method can handle the case of underdetermined DOA estimation because of using the
whole extended aperture.

This paper is organized as follows. The data model and problem formation are introduced in
Section 2. A unitary nuclear norm minimization algorithm is proposed in Section 3, and several related
issues are discussed in Section 4. The simulation results are given and analyzed in Section 5. Section 6
gives the conclusion of the paper.
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Notation: (·)H, (·)T, (·)−1, (·)∗, (·)+ and Re{·} represent the conjugate-transpose, transpose,
inverse, conjugate, pseudo-inverse and real part operator, respectively. ⊗ and � denote the Kronecker
product and Khatri-Rao product, respectively. IK denotes a K× K dimensional unit matrix. diag{·}
denotes the diagonal matrix, and blkdiag{A, B} represents a block diagonal matrix with diagonal
entries A and B. det{A} is the determinant of the square matrix A, and || · ||F denotes the
Frobenius norm.

2. Data Model and Problem Formulation

We consider a MIMO radar with M antennas in the transmit array and, N antennas in the receive
array, and all the antennas are omnidirectional. The transmit and receive arrays are half-wavelength
spaced uniform linear arrays (ULAs) and located closely, as shown in Figure 1. Thus, the DOAs of a
source with respect to the normals of transmit and receive arrays are the same. The transmit array
uses M antennas to emit M strictly noncircular waveforms, such as BPSK modulated signals, which
are orthogonal and have identical bandwidth and central frequency. It is assumed that there are P
sources in the far-field, and the DOA of pth source is denoted as θp. To exploit the orthogonality of the
noncircular waveforms, a group of matched filters can be formed. Then the received data of the receive
array are handled with matched filters, and the output of all the matched filters can be expressed
as [23–27].

y(t) = Asc(t) + n(t) (1)

where y(t) ∈ CMN×1 is the received data vector. A = At � Ar ∈ CMN×P is the transmit-receive
steering matrix, At = [at(θ1), · · · , at(θP)] ∈ CM×P and Ar = [ar(θ1), · · · , ar(θP)] ∈ CN×P are the
transmit and receive steering matrices, respectively. at(θp) = [1, exp(jπsinθp), · · · , exp(jπ(M −
1)sinθp)]T and ar(θp) = [1, exp(jπsinθp), · · · , exp(jπ(N − 1)sinθp)]T are the transmit and receive
steering vectors, respectively. n(t) ∈ CMN×1 is the additional Gaussian white noise vector with the
covariance matrix σ2IMN . sc(t) is strictly noncircular signal vector, and it is generally written as

sc(t) = Φs0(t) (2)

where s0(t) ∈ RP×1 is a real-valued symbol vector, and Φ = diag{[exp(jψ1), · · · , exp(jψP)]} ∈ CP×P

is a diagonal matrix that contains the noncircularity phase ψ = [ψ1, · · · , ψP], which can be arbitrary
for each source. Then substituting Equation (2) into Equation (1), we have

y(t) = AΦs0(t) + n(t). (3)

In the case of L snapshots, the received data in Equation (3) are rewritten as

Y = AΦS0 + N (4)

where Y = [y(t1), · · · , y(tL)] ∈ CMN×L is the received data matrix, S0 = [s0(t1), · · · , s0(tL)] is the
real-valued symbol matrix, and N = [n(t1), · · · , n(tL)] is the additional Gaussian white noise matrix.
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Figure 1. The configuration of colocated MIMO radar.

3. Unitary Nuclear Norm Minimization Algorithm

In this section, the redundant elements of the virtual array in MIMO radar are firstly eliminated,
and a real-valued extended data model is established by using the noncircular properties of the
signals and unitary transformation. Then a block-sparse model is formulated to represent the
real-valued extended data, and a reweighted nuclear norm minimization algorithm is proposed
for DOA estimation.

3.1. Augmented Data Matrix and Unitary Transforation

Due to the configuration of MIMO radar shown in Figure 1, there are some redundant elements
in virtual array. The reduced dimensional transformation technique can be adopted to eliminate these
redundant elements, and the reduced dimension transformation matrix is given as [10]

D = (GHG)−(1/2)GH (5)

where the transformation matrix G is expressed as

G = [JT
0 , JT

1 , · · · , JT
M−1]

T (6)

Jm = [0N×m, IN , 0N×(M−m−1)] m = 0, 1, ..., M− 1 (7)

and satisfies at(θ) ⊗ ar(θ) = Gb(θ), where b(θ) = [1, exp(jπsinθp), · · · , exp(jπ(M + N −
2)sinθp)]T ∈ C(M+N−1)×L is the steering vector without the redundant elements. Multiplying D
with the data matrix Y in Equation (4) yields

X = DY = (GHG)(1/2)BΦS0 + DN

= F(1/2)BΦS0 + N̄ = B̄ΦS0 + N̄
(8)

where B̄ = F(1/2)B is the new steering matrix composed with the steering matrix B = [b(θ1), · · · , b(θP)]

and the weight matrix F = GHG = diag{[1, 2, ..., min(M, N), ..., min(M, N)︸ ︷︷ ︸
|M−N|+1

, ...., 2, 1]}. N̄ = DN is the

Gaussian white noise matrix after using the reduced dimensional transformation technique. In order to



Sensors 2017, 17, 939 5 of 14

take advantage of the noncircular properties of the signals, the common preprocessing step is applied
to the data matrix X. Then the 2Q× L(Q = M + N − 1) augmented matrix can be achieved as [23–27]

YE =

[
ΠQB̄∗Φ∗

B̄Φ

]
S0 +

[
ΠQN̄∗

N̄

]
= BES0 + NE (9)

where ΠQ is the Q × Q exchange matrix with ones on its anti-diagonal elements and zeros
elsewhere, and NE is the 2Q × L augmented noise matrix. BE = [be(θ1, ψ1), · · · , be(θP, ψP)] ∈
C2Q×P is the augmented steering matrix with the extended steering vector be(θp, ψp) =

[(ΠQF(1/2)b∗(θp)exp(−jψP))
T, (F(1/2)b(θp)exp(jψP))

T]T, which enlarges the virtual array aperture to
achieve performance improvement. The NNM algorithm in [27] is implemented with complex-valued
processing based on Equation (9). Because the complex multiplication generally using three or
four real multiplications, a considerable amount of computational complexity can be reduced if the
complex-valued problem in Equation (9) can be transformed into a real-valued one. In addition, it has
been indicated in [14] that the noise can be suppressed by using the real-valued structure. These merits
motivate us to propose a real-valued sparse recovery framework for DOA estimation.

Following the convention in [28], the unitary transformation matrix used in the following section
can be defined as

U2K =
1√
2

[
IK jIK
ΠK −jΠK

]
(10)

and

U2K+1 =
1√
2

 IK 0 jIK
0T

√
2 0T

ΠK 0 −jΠK

 . (11)

It is obvious that the transformation matrix satisfies UMUH
M = IM, UM = ΠMU∗M and

(ΠMUM)T = UH
M. Then we have the following Lemma 1 and Lemma 2 .

Lemma 1. For any complex matrix K ∈ CM×N , if K = ΠMK∗, UH
MK is real.

Proof. The conjugation of UMK is expressed as

(UH
MK)∗ = (UH

MΠMΠMK)∗

= (ΠMUM)T(ΠMK)∗ = UH
MK.

(12)

Thus, UH
MK is real, which results in Lemma 1.

Lemma 2. For any centro-Hermitian K ∈ CM×N , i.e., K = ΠMK∗ΠN , UH
MKUN is real.

Proof. The conjugation of UH
MKUN is written as

(UH
MKUN)

∗ = (UH
MΠMΠMKΠNΠNUN)

∗

= (ΠMUM)T(ΠMK∗ΠN)(ΠNU∗N)

= UH
MKUN .

(13)

So, UH
MKUN is equal to its conjugation and is hence real, which results in Lemma 2.

According to the Lemma 1, it is easy to check that the vector b̄e(θp, ψp) = U2Qbe(θp, ψp) is real.
Then the received data matrix can be constructed by using unitary transformation, which is shown as

U2QYE = U2QBES0 + U2QNE

= B̄ES0 + U2QNE
(14)
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where B̄E = U2QBE is the real-valued extended steering matrix. According to Equation (14), the data
U2QYE can be divided into real and imaginary parts

Re(U2QYE) = B̄ERe(S0) + Re(U2QNE), (15)

Im(U2QYE) = B̄EIm(S0) + Im(U2QNE). (16)

Then combing Equations (15) and (16), a new real-valued extended data matrix is written as

Zr = B̄ES̄0 + Nr (17)

where S̄0 = [Re(S0) Im(S0)] and Nr = [Re(U2QNE) Im(U2QNE)]. Noting that the real-valued
extended steering matrix B̄E contains the unknown noncircularity phase and its conjugation, the
complete dictionary can not be formulated for the sparse representation framework. In order to achieve
an efficient dictionary without the influence of the unknown noncircularity phase, the augmented
steering matrix can be rewritten as

BE = AEΦE (18)

with

AE = [Ae(θ1), · · · , Ae(θP)], (19)

and

ΦE = blkdiag{[φ1, · · · , φP]} (20)

where φp = [exp(−jψp), exp(jψp)]T, (p = 1, 2, · · · , P), and Ae(θp) is expressed as

Ae(θp) =

[
ΠQF1/2b∗(θp) 0(M+N−1)×1
0(M+N−1)×1 F1/2b(θp)

]
. (21)

According to Equation (21), the steering submatrix satisfies Ae(θp) = Π2QA∗e (θp)Π2. Following
Lemma 2, the corresponding real-valued submatrix is expressed as

Ar(θp) = U2QAe(θp)U2. (22)

Then the real-valued extended steering matrix B̄E can be rewritten as

B̄E = ArΦr (23)

where Ar = [Ar(θ1), · · · , Ar(θP)] and Φr = blkdiag{[φ̄1, · · · , φ̄P]} with real-valued vector
φ̄p = UH

2 φp. Substituting Equation (23) into Equation (17) yields

Zr = ArΦrS̄0 + Nr = ArSr + Nr (24)

where Sr = ΦrS̄0 can be seen as a new real-valued signal matrix, and Ar is the new real-valued steering
matrix without the unknown noncircularity phase. Thus, the signal model in Equation (24) is suitable
to formulate the sparse representation framework.
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3.2. Nuclear Norm Minimization Algorithm

In order to reduce the data dimension and the sensitivity of the noise, the SVD technique is
applied to the real-valued data. Let Vs ∈ R2L×P be a matrix composed of the right singular vectors
corresponding to the P largest singular values, then multiplying the real-valued data Zr by Vs yields

Zrs = ZrVs = ArSrVs + NrVs = ArSrs + Nrs (25)

where Nrs = NrVs, and Srs = ΦrS̄0Vs = ΦrS̄s0 = [ST
rs1, · · · , ST

rsP]
T is a block structure, which

is divided into P rank one matrices Srsp = φ̄p s̄sp (p = 1, 2, · · · , P), where s̄sp is the pth row
of S̄s0. It should be highlighted that the real-valued steering matrix Ar in Equation (25) does not
contain any information of the unknown noncircularity phase. Then using the view of the sparse
representation, Equation (25) can be represented with a overcomplete dictionary by discretizing the
interested spatial domain. Let the discretized spatial sampling grid be {θ̄l}K

l=1(K � P), then the
real-valued overcomplete dictionary can be constructed as Aθ̄ = [Ar(θ̄1), · · · , Ar(θ̄K)] ∈ R2Q×2K.
Based on the dictionary, the sparse representation model of the data in Equation (25) is expressed as

Zrs = Aθ̄Sθ̄ + Nrs (26)

where Sθ̄ = [Sθ̄1, Sθ̄2, · · · , Sθ̄K] is a block-sparse real-valued matrix, and P nonzero blocks in the matrix
are equal to Srsp (p = 1, 2, · · · , P). The positions of these nonzero blocks are used to estimate the DOA.
Thus, the DOA estimation issue is turned into the problem of recovering the block-sparse matrix. It is
noticed that the block-sparse matrix Sθ̄ has two types of different sparsity: sparse block and sparse
rank in each block (rank one or rank zero). In order to combine the two types of sparsity to recover the
block-sparse matrix, a convex nuclear norm minimization problem is formulated as

min
Sθ̄

K

∑
l=1
||Sθ̄l ||∗

s.t. ||Zrs −Aθ̄Sθ̄ ||F ≤ β

(27)

where β is regularization parameter and sets the amount of error. The nuclear norm in Equation (27) is
defined by

||Sθ̄k||∗ =
min(2,P)

∑
`=1

ζ`(Sθ̄k) (28)

where ζ`(S̃ψk ) denotes the `th singular value of the block matrix Sθ̄k. The convex nuclear norm
minimization problem can be solved by semidefinite programming [29]. According to Equation (27),
the nuclear norm minimization problem can be seen as the l1 norm penalty of ||Sθ̄k||∗ (k = 1, 2, · · · , K).
Thus, the sparsity of the solution is limited due to the inherent property of l1 norm penalty, which
causes the loss of DOA estimation performance. In order to solve this problem, a weight matrix
based on a novel real-valued NC-MUSIC spectrum is formulated for reweighting the nuclear norm
minimization, which can achieve the enhanced sparsity of solutions. Let Un ∈ R2Q×P be a matrix
composed of the left singular vectors corresponding to 2Q− P smallest singular values, i.e., the noise
subspace En. In addition, because the columns of B̄ are independent and the virtual array is weighted
ULA, the steering matrix AE and Ar shown in Equaitons (19) and (23) are unambiguous.

Then according to the orthogonality principle of MUSIC algorithm [7,8], the real-valued steering
matrix Ar is orthogonal to the noise subspace En, that is

||EH
n Ar||F = 0. (29)
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Based on the structure of real-valued steering matrix in Equation (23), a new real-valued
NC-MUSIC spectrum function is defined by

f (θl) =
1

det{AH
r (θ̄l)EnEH

n Ar(θ̄l)}
. (30)

Using the discretized spatial sampling grid {θ̄l}K
l=1(K � P), the spectrum function in

Equation (30) can be used to formulate the weight vector γ = [γ1, γ2, · · · , γK], which is shown as

γl = det{AH
r (θ̄l)EnEH

n Ar(θ̄l)}, l = 1, 2, · · · , K. (31)

Then the weight matrix is designed as

W = diag{γ/max(γ)}. (32)

Due to the property of NC-MUSIC spectrum function, the elements W(i, i) = γi//max(γ) →
0(i = 1, 2, · · · , P) corresponding to the possible sources are much smaller than the residual elements
W(i, i) = γi/max(γ) (i = 1, 2, · · · , L − P), which achieves the same idea of the reweighting the
l1-norm penalty in [30]. Finally, the real-valued reweighted nuclear norm minimization framework
can be formulated as

min
Sθ̄

K

∑
l=1

γl ||Sθ̄l ||∗

s.t. ||Zrs −Aθ̄Sθ̄ ||F ≤ β.

(33)

Equation (33) can be solved by semidefinite programming (SDP) [29]. Due to the sparse rank in
each block, the DOA can be achieved by plotting the spatial spectrum of S̃ = [||Sθ̄l ||∗, · · · , ||Sθ̄K||∗].

4. Related Remarks

Remark 1. In the sparse recovery framework, the regularization parameter β plays an important role in the final
DOA estimation performance, which sets the amount of error. The choice of regularization parameter β depends
the probability distribution of the noise matrix Nrs. Based on [14], the noise matrix Nrs has approximately a
χ2 distribution with 2QP degrees of freedom upon normalization by a variance σ2/2, where σ2 is the noise
variance. Thus, the regularization parameter β can be set as the upper value of ‖ Nrs ‖2

F with a high probability
1− ξ, where ξ = 0.01 is generally enough.

Remark 2. In the proposed method, the noise variance is reduced by one half compared with the complex-valued
sparse recovery based methods. In addition, the proposed method uses both the noncircularity of signals and
reweighted matrix to enhance the sparsity of the solution. Thus, the proposed method is expected to have better
angle estimation performance than conventional sparse recovery based algorithms.

Remark 3. According to Equaiton (8), there are Q degrees of freedom (DOF) in the colocated MIMO radar
considered in this paper. Thus, the maximum number of identifiable sources is Q− 1 in the conventional sparse
representation based algorithms. However, the proposed method uses the noncircularity of signals to enlarge the
aperture of array in Equation (9), then the DOF is up to 2Q− 1. Thus, the maximum number of identifiable
sources of the proposed method is 2(Q− 1), which indicates that the proposed method can identify more sources
than conventional SR based algorithms and handle the case of underdetermined DOA estimation.

Remark 4. According to Ref. [31], the SDP can be solved in O(n2
1n2.5

2 ) flops, where n1 and n2 × n2 are
the variable size and dimension of the positive semidefinite matrix in the semidefinite constraint of an SDP,
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respectively. In Equation (27), the variable size and dimension of the positive semidefinite matrix are 2PK and
2 + P, respectively. Thus, the computational complexity of NNM algorithm is O(4K2P2(2 + P)2.5) flops. Due
to the real-valued processing of the proposed method, its computational complexity is O(K2P2(2 + P)2.5) flops.
In addtion, the computational complexity of l1-SVD algorithm is O(KP3) flops, therefore the computational
complexity of the proposed method is higher than l1-SVD algorithm.

5. Simulation Results

In order to verify the performance of the proposed method, simulation results are presented in this
section. The proposed method is compared with the l1-SVD algorithm [11], the NNM algorithm [27]
and the the Cramér-Rao Bound (CRB) [27]. Unless otherwise stated in the following simulation results,
a colocated MIMO radar equipped with M = 4 transmit antennas and N = 6 receive antennas is
considered, and the transmit and receive arrays are half-wavelength spaced ULAs. on the transmit
side, strictly noncircular waveforms, such as BPSK modulated signals, are emitted by M = 4 transmit
antennas. It is assumed that the number of sources is known or estimated by MDL criterion, and
there are P = 3 uncorrelated sources in the far field with the DOAs of θ1 = −10◦, θ2 = 0◦ and
θ3 = 8◦. The definition of signal-to-noise ratio (SNR) is given as 10log(σ2

s /σ2
n), where σ2

s and σ2
n are the

signal and noise power, respectively. The root-mean-square-error (RMSE) used to evaluate the DOA
estimation is defined as

RMSE =

√√√√ 1
ζP

ζ

∑
i=1

P

∑
p=1

(θ̂i,p − θp)2 (34)

where θ̂i,p is the estimation of θp from the ith trial, and ζ is the total number of Monte Carlo trials.
The discretized spatial sampling grid is set as 0.01◦ for all the methods.

Figure 2 shows the spatial spectrum of all methods, where the SNR is 0 dB, and the number of
snapshots is L = 100. From Figure 2, it can be seen that the proposed method and NNM method have
sharper peaks and lower sidelobes than the l1-SVD method, which indicates that they have better
performance than l1-SVD method. In addition, it is also noticed that the proposed method may have
better performance than NNM method due to the ability of noise suppression.
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Figure 2. The spatial spectrum of all methods (M = 4, N = 6, SNR = 0 dB, L = 100).

Figure 3 shows the spatial spectrum of the proposed method with different number of sources,
where M = N = 2, the SNR is 10 dB and the number of snapshots is L = 100. There are three cases
considered in this simulation. In case 1, two sources with DOAs of −10◦ and 10◦ are considered.
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In case 2, three sources with DOAs of −10◦, 10◦ and 30◦ are considered. In the last case, there are
four sources and the DOAs are −10◦ , 10◦, 30◦ and −30◦. According to the theoretical analysis, the
maximum number of identifiable sources of the proposed method is 2(Q− 1) = 4 when M = N = 2.
As seen in Figure 3, the proposed method can correctly estimate the DOAs with P = 4 sources when
the DOF of the colocated MIMO radar is Q = 3, which verifies that the proposed method can handle
the case of underdetermined DOA estimation.
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Figure 3. The spatial spectrum of the proposed method with different number of sources (M = N = 2,
SNR = 10 dB, L = 100).

Figure 4 shows the RMSE versus SNR for different methods, where ζ = 100 and the number of
snapshots is L = 100. From Figure 4, both the proposed method and NNM method provide better
DOA estimation performance than l1-SVD method. The main reason is that they use the noncircularity
of signals to enlarge the array aperture. On the other hand, it is also shown that the proposed method
has superior performance than NNM method, especially in low SNR region. This is because that
the proposed method uses the real structure to suppress the noise. It should be highlighted that the
implementation of the proposed method is referred to as real-valued processing, which is different
with the complex-valued implementation of NNM method.
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Figure 4. RMSE versus SNR for different methods (M = 4, N = 6, L = 100).
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Figure 5 shows the RMSE versus the number of snapshots for different methods, where ζ = 100
and SNR = 0 dB. It is shown that the DOA estimation performance of all methods can become better
with the increasing number of the snapshots. The proposed method has the best performance compared
with NNM and l1-SVD methods due to its advantages.
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Figure 5. RMSE versus snapshots for different methods (M = 4, N = 6, SNR = 0 dB).

Figure 6 shows the probability of successful detection versus SNR, where the number of snapshots
is L = 100 and the number of Monte Carlo trials is set as 100. In this simulation, all sources can
be considered as successful detection if the DOA estimation error satisfies maxi=1,2,3|θ̂i − θi| ≤ 0.5◦,
where θ̂i is the estimation of θi. It can be seen from Figure 6 that all methods can achieve 100%
detection performance when the SNR is high enough. The SNR threshold is defined as a point at
which the probability of successful detection starts dropping. According to Figure 6, it is clearly shown
that the proposed method has lowest SNR threshold compared with NNM and l1-SVD methods,
i.e., the proposed method provides better resolution than both of them.
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Figure 6. The probability of successful detection versus SNR (M = 4, N = 6, L = 100).
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Figure 7 shows the RMSE of the proposed method with different number of tranmit/receive
elements. The RMSE of the proposed method becomes smaller at the same SNR when the number of
transmit or/and receive elements increases. The key reason is that the more transmit or/and receive
elements the MIMO radar has, the more spatial gain can be obtained.
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Figure 7. RMSE of the proposed method with different number of transmit/receive elements (L = 100).

6. Conclusions

In this paper, we have proposed a unitary nuclear norm minimization algorithm for DOA
estimation with noncircular source in MIMO radar. The proposed method uses the noncircular
properties of signals to achieve the extended data, and the unitary transformation is utilized to obtain
the real-valued data and overcomplete dictionary. The DOA is estimated by formulating the real-valued
reweighted nuclear norm minimization framework based on the block sparse model.The computational
complexity of the proposed method has been analyzed, and it has been shown that the computational
complexity of the proposed method is higher than l1-SVD algorithm. The simulation results have
verified that the proposed method provides better DOA estimation performance and higher resolution
than the existing sparse recovery based methods. It is also shown that the proposed method can handle
the case of underdetermined DOA estimation.
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