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Abstract

Employing computer vision to extract useful information from images and videos is becoming a key technique for
identifying phenotypic changes in plants. Here, we review the emerging aspects of computer vision for automated plant
phenotyping. Recent advances in image analysis empowered by machine learning-based techniques, including
convolutional neural network-based modeling, have expanded their application to assist high-throughput plant
phenotyping. Combinatorial use of multiple sensors to acquire various spectra has allowed us to noninvasively obtain a
series of datasets, including those related to the development and physiological responses of plants throughout their life.
Automated phenotyping platforms accelerate the elucidation of gene functions associated with traits in model plants
under controlled conditions. Remote sensing techniques with image collection platforms, such as unmanned vehicles and
tractors, are also emerging for large-scale field phenotyping for crop breeding and precision agriculture. Computer
vision-based phenotyping will play significant roles in both the nowcasting and forecasting of plant traits through modeling
of genotype/phenotype relationships.
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Background

Computer vision that extracts useful information from plant
images and videos is rapidly becoming an essential technique
in plant phenomics [1]. Phenomics approaches to plant science
aim to identify the relationships between genetic diversities and
phenotypic traits in plant species using noninvasive and high-
throughput measurements of quantitative parameters that re-
flect traits and physiological states throughout a plant’s life [2].
Recent advances in DNA sequencing technologies have enabled
us to rapidly acquire a map of genomic variations at the pop-
ulation scale [3, 4]. Combining high-throughput analytical plat-
forms for DNA sequencing and plant phenotyping has provided
opportunities for exploring genetic factors for complex quan-
titative traits in plants, such as growth, environmental stress
tolerance, disease resistance [5], and yield, by mapping geno-
types to phenotypes using statistical genetics methods, includ-
ing quantitative trait locus (QTL) analysis and genome-wide as-
sociation studies (GWASs) [6]. Moreover, a model of the relation-
ship between the genotype/phenotype map of individuals in a
breeding population can be used to compute genome-estimated
breeding values to select the best parents for new crosses in ge-
nomic selection in crop breeding [7, 8]. Thus, high-throughput
phenotyping aided by computer vision with various sensors and
algorithms for image analysis will play a crucial role for crop
yield improvement in scenarios related to population demogra-
phy and climate change [9].

Machine learning (ML), an area of computer science, offers
us data-driven prediction in various applications, including im-
age analysis, which can aid typical steps of image analysis
(i.e., preprocessing, segmentation, feature extraction, and clas-
sification) [10]. ML accelerates and automates image analysis,
which improves throughput when handling labor-intensive sen-
sor data. Algorithms based on deep learning, an emerging sub-
field of ML, often show more accurate performance compared
with traditional approaches to computer vision-based tasks, in-
cluding plant identification, such as PlantCLEF [11]. Moreover,
ML-based algorithms often provide discriminative features as-
sociated with outputs extracted through their training process,
which may enable us to dissect complex traits and determine
visual signatures related to traits in plants. These outcomes
of ML offer us opportunities for revitalizing methodologies in
plant phenomics to improve throughput, accuracy, and resolu-
tion (Fig. 1).

In this review, we provide an overview of recent advances
in computer vision-based plant phenotyping, which can con-
tribute to our understanding of genotype/phenotype relation-
ships in plants. Specifically, we summarize sensors and plat-
forms recently developed for high-throughput plant image col-
lection. Then, we also address recent challenges in computer
vision-based plant image analysis and the typical image anal-
ysis process (e.g., segmentation, feature extraction, and classifi-
cation), as well as its applications to large-scale phenotyping in
genetic studies in plants, by highlighting ML-based approaches.
Moreover, we showcase datasets and software tools that are use-
ful to plant image analysis. Then, we discuss perspectives and
opportunities for computer vision in plant phenomics.

Review

High-throughput image collection for large-scale plant
phenotyping: sensors and platforms

Sensors for plant phenotyping
Various types of sensors can be encountered to acquire morpho-
logical and physiological information from plants [10] (Fig. 1).
The basic sensors are digital cameras that are typically adopted
for quick color and/or texture-based phenotyping operations. In
a previous study [12], the authors presented a plant phenotyping
system for stereoscopic red-green-blue (RGB) imaging to evalu-
ate the growth rate of tree seedlings during post-seed germina-
tion through calculation of the increase in seeding height and
the rate of greenness. Multispectral and hyperspectral sensors
enable us to capture richer spectral information about plants of
interest, thus allowing more in-depth phenotyping. Moreover,
in another study [13], a methodology to monitor the responses
of plants to stress by inspecting the hyperspectral features of
diseased plants was established, describing a hyperspectral im-
age ”wordification” concept, in which images are treated as text
documents by means of probabilistic topic models, which en-
abled automatic tracking of the growth of three foliar diseases
in barley. An interesting analysis of vegetation-specific crop in-
dices acquired by a multispectral camera mounted on an un-
manned aerial vehicle (UAV) surveyed over a pilot trial of 30
plots was conducted in another prior analysis [14]. In this study,
the authors exploited multiple indices to estimate canopy cover
and leaf area index; they reported that the significant correla-
tions among the normalized difference vegetation index, en-
hanced vegetation index, and normalized difference red edge
index, which estimates leaf chlorophyll content, were useful
for characterizing leaf area senescence features of contrasting
genotypes to assess the senescence patterns of sorghum geno-
types. Moreover, thermal infrared sensors offer additional com-
plementary and useful information, particularly for determin-
ing the previsual and early response of the canopy to abiotic
[15] and biotic stress [16] conditions. LiDAR (light detection and
ranging)is another form of sensor characterized as a traditional
remote sensing technique that is capable of yielding accurate
three-dimensional (3D) data; this approach has been recently
applied to plant phenotyping coupled with other sensors [17].
With these recent advancements, 3D reconstruction of plants
enables us to identify phenotypic differences, including entire-
plant and organ-level morphological changes, and combinato-
rial use of multiple sensors offers us opportunities to identify
spectral markers associated with previsual signs of plant physi-
ological responses.

Platforms
Plant phenotyping frameworks incorporate sensors with mobil-
ity systems, such as tray conveyors [18], aerial and ground vehi-
cles [19], UAVs [20], and motorized gantries [21, 22], to continu-
ously capture growth and physiology data from plants. An au-
tomated plant phenotyping system, called the phenome high-
throughput investigator (PHI), allowed noninvasive tracking of
plant growth under controlled conditions using an imaging sta-
tion with various camera-based imaging units coupled with two
growth rooms for growth of different types of plants (∼200 crop
plants and ∼3,500 Arabidopsis, respectively) [23]. A computa-
tional pipeline for single leaf-based analysis with PHI was used



Mochida et al. 3

Image collection Computer vision-based plant phenotyping Applications

Ecology/Paleobotany
• Landscape surveillance
• Fossil leaves classification
Agriculture
• Food quality control
• Stress diagnostics
• Productivity forecasting
Genetics/Breeding
• Mutant discovery
• GWAS
• PheWAS
• Genomic prediction

SegmentationPre-
processing

Feature 
extraction

Classification

Sensors
• RGB camera
• Multispectral and 

hyperspectral sensor
• LIDAR
• SAR

Labeled-Image 
datasets

Pre-trained
networks

Transfer
learning

• Object detec�on
• Instance 

segmenta�on
• Seman�c 

segmenta�on

• Noise reduction
• Image correction
• Normalization
• Scaling
• Augmentation

• Key-points 
detec�on

• Representa�on 
learning

Genomic 
datasets

Meteorological
datasets

Traits
datasets

Data from other domains

• Disease/Resistance
• Sensi�ve/Adap�ve
• Growth staging
• Taxonomic 

classifica�on

SIFT, HOG, CNN SVM, RF, kNN, 
CNN

Otsu’s thresholding,
k-means, CNN

Figure 1: Schematic representation of a typical example scenario in computer vision-based plant phenotyping. Various sensors are used for collection of plant images.

Large-scale collections of labeled image data are useful to design pretrained network models. A typical step of computer vision-based image analysis consists of the
following steps: preprocessing, segmentation, feature extraction, and classification. Various ML-based algorithms, including convolutional neural network, are applied
to the steps, such as segmentation, feature extraction, and classification. Pretrained networks are often adapted to reduce computational costs through fine-tuning.
The classification step represents case-control phenotypes in plants; disease-resistance, sensitive-adaptive, morphological phenotypes; growth stages; and taxonomic

classification. Exploration of associations among the classification results and genetic polymorphisms, agronomic traits, and meteorological observations will expand
applications to areas such as ecology/paleobotany, agriculture, and genetics and breeding.

to monitor leaf senescence and its progression in Arabidopsis.
A high-throughput hyperspectral imaging system was designed
for indoor phenotyping of rice plants [24] and was applied to
quantifying agronomic traits based on hyperspectral signatures
in a global rice collection of 529 accessions [24]. More recently,
the RIKEN Integrated Plant Phenotyping System has been used
owing to its accurate quantification of Arabidopsis growth re-
sponses and water use efficiency in the context of various water
conditions [25]. PhenoTrac 4, a mobile platform for phenotyp-
ing under field conditions that is equipped with multiple passive
and active sensors, was used to perform canopy-scale phenotyp-
ing of barley and wheat [26]. Another mobile platform, the Phe-
nomobile system equipped with multiple sensors [27], has been
investigated for its potential in field-phenotyping applications to
examine agronomically important traits, such as stay-green [28].
These platforms for high-throughput plant phenotyping moni-
tor plant growth noninvasively and continuously and evaluate
phenotypic differences quantitatively throughout the life cycle
at the population scale; this facilitates the identification of ge-
netic factors associated with traits related to growth and devel-
opment.

Computer vision-based plant phenotyping

In this section, we discuss recent advances in image analysis
methodologies for plant phenotyping; these methodologies con-
sist of four major steps, i.e., preprocessing, segmentation, fea-
ture extraction, and classification. In each of the following sub-
sections, we highlight ML-based approaches discussed in re-
cently published literature.

Preprocessing
Preprocessing is a preliminary step of image analysis that aims
to organize data properties to facilitate subsequent steps and

even derive reasonable final outcomes. Particularly when we
target images acquired under field conditions, unlike in con-
trolled environments, image preprocessing contributes to en-
hancement of image processing quality. A simple preprocess-
ing step is image cropping, which extracts rectangles contain-
ing target objects out of an image. Data transformation tech-
niques, such as gray scale conversion, normalization, standard-
ization, and contrast enhancement, are also adopted during pre-
processing. Data augmentation is another example of prepro-
cessing whose underlying goal is to increase variations in im-
ages in datasets, resulting in making pattern analysis more ro-
bust and generalized. Various techniques, such as image scal-
ing, rotation, flipping, and noise addition, are often used for data
augmentation.

Segmentation
Segmentation represents a first important step to extract infor-
mation of targets from preprocessed image data by separating a
set of pixels including objects of interest in images (Fig. 1), en-
abling the identification and quantification of areas correspond-
ing to particular organs in plants automatically. To develop a
pipeline to automatically count maize tassels, a deep convolu-
tional neural network (CNN) model, resulting from learning of
the Maize Tassels Counting dataset [29], was applied, and plau-
sible results were obtained with an absolute error of 6.6 and a
mean squared error of 9.6 [29]. To automatically count tomato
fruits, a deep CNN based on the Inception-ResNet was applied
through training on synthetic data and tested on real data; 91%
counting accuracy was obtained [30]. In addition to these model-
driven approaches, various image-driven approaches have been
applied for autosegmentation of plant organs. For example, in
a previous study [31] in which images were acquired by X-ray
micro-computed tomography, a method for accurate extraction
and measurement of spike and grain morphometric parameters
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of wheat plants was established based on combinatorial use of
adaptive threshold and morphology algorithm and applied to
examine spike and grain growth of wheat exposed to high tem-
peratures under two different water treatments. Another study
[32] proposed a method for resegmentation and assimilated de-
tails that were missed in the a priori segmentation, which was
useful to improve the accuracy of determination of sharp fea-
tures, such as leaf tips, twists, and axils of plants. Moreover, hy-
brid approaches integrating model-based and image-based ap-
proaches have been applied for segmentation of plant shape and
organs. For example, in a previous study [33], a decision tree-
based ML method with multiple color space and a method com-
bining mean shift and threshold based on the hue, saturation,
and value color space, were applied for segmentation of top- and
side-view images in maize, yielding an accuracy of 86% in esti-
mation of ear position in 60 maize hybrids. In wheat, researchers
used an improved color index method for plant segmentation,
followed by a neural network-based method with Laws texture
energy; this method enabled them to detect spikes with an accu-
racy of more than 80% [34]. Rzanny et al. [35] reported systematic
guidelines for workloads of image acquisition (perspective, il-
lumination, and background) and preprocessing (nonprocessed,
cropped, and segmented) and assessed the impact of segmen-
tation and other preprocessing techniques on recognition per-
formances. These recent attempts to improve the accuracy of
segmentation enabled us to automatically identify and quan-
tify plant organs and evaluate the biomass and yields of fruits
and grains. We were also able to improve reproducibility in phe-
notyping by replacing conventional human-based phenotyping,
which is often time consuming and labor intensive.

Feature extraction
Feature extraction is a step to create a set of significant and
nonredundant information that can sufficiently represent im-
ages. Because pattern recognition performance in computer vi-
sion heavily depends on the quality of the extracted features,
a number of approaches have been attempted in various areas,
including plant phenotyping.

Typically, features are hand-chosen based on characteristics
of objects in images, such as pixel intensities, gradient, tex-
ture, and shape. For example, in a previous study [36, 37], the
authors extracted features such as shape, color, and texture
(contrast, correlation, homogeny, entropy) from wheat grains to
classify their accessions. Moreover, in another study [38, 39],
the authors used an elliptic Fourier descriptor and the texture
feature set called Haralick’s texture descriptors to characterize
seeds of plants for taxonomic classification. With a representa-
tive feature extraction tool, Scale Invariant Features Transforms
(SIFT), which acts as an invariant feature descriptor not only to
scale but also rotation, illumination, and viewpoint, Wilf et al.
[40] generated codebooks for dictionary learning, and their re-
sults demonstrated the effectiveness of their approach on taxo-
nomic classification through leaves. The bag-of-keypoints/bag-
of-visual-words method, an analogy to the bag-of-words method
for text categorization using keywords [41–44], has also been
used as a feature representation tool in image analysis in which
the SIFT algorithm is used for keypoint detection and local fea-
ture description [45, 46]. The bag-of-keypoints method and the
SIFT algorithm were applied to RGB color images of wheat under
field conditions for growth stage identification [47].

Recently, CNN-based approaches have shown remarkable ad-
vancement, and their applications have been expanded to myr-
iad areas, including computer vision [48–50], which can auto-
matically extract features from images and classify them. There-

fore, unlike hand-chosen feature-based algorithms, CNNs cre-
ate and train classifiers without explicit feature extraction steps.
Moreover, pretrained CNNs can be used as a simple feature ex-
tractor [51]. Based on these advantages of CNNs, many CNN-
based strategies have been developed and are now widely used
for pattern-recognition and image-classification tasks, even for
plant phenotyping. Notably, the authors of previous studies
[52, 53] illustrated feature extraction processes based on CNNs,
which learn hierarchical features through network training for
taxonomic classification tasks on leaf image datasets. Recent
outcomes of CNN-based classification in plant phenotyping are
discussed in the following sections.

Classification
In classification steps, outcomes from the previous three steps
are obtained. Here, we address classification techniques, includ-
ing ML-based techniques, recently applied in plant phenotyp-
ing, highlighting two major applications: taxonomic classifica-
tion and classification of plant physiological states.

Taxonomic classification Computer vision-based taxonomic clas-
sification plays an essential role in plant phenotyping to auto-
matically distinguish target species for phenotyping from other
plants, which is particularly important for images from real
fields. Wäldchen and Mäder have thoroughly summarized the
literature on computer vision-based species identification pub-
lished by 2016 [54]. In recent years, because techniques for com-
puter vision-based species identification have shown dramat-
ically improved accuracy and expanded applications for vari-
ous plant groups through handcrafted feature-based and CNN-
based approaches, we highlight studies describing plant tax-
onomic classification by means of these two distinctive ap-
proaches (Table 1).

In a custom feature-based approach, Wilf et al. [40] at-
tempted to classify leaf images into labels of major groups (such
as families and orders) in the taxonomic category. They used
SIFT and a sparse coding approach to extract the discriminative
features of leaf shapes and venation patterns, followed by a mul-
ticlass support vector machine (SVM) classifier for grouping. A
sparse representation was also used by Zhang et al. [57] as a part
of their processes for classifying plant species from RGB color
leaf images; they demonstrated the superiority of their approach
in identification on leaf image datasets. As a case study, a Turk-
ish research group investigated the capability of computer vision
algorithms to classify wheat grains into bread wheat and durum
wheat based on grain images captured by high-resolution cam-
eras [36, 37]. They used two types of neural networks: a multi-
layer perceptron (MLP) with a single hidden layer and an adap-
tive neuro-fuzzy inference system (ANFIS). They selected seven
discriminative grain features, incorporating aspects of shape,
color, and texture, and achieved greater than 99% accuracy on
the grain classification task. Another group examined two tax-
onomic classification tasks: the Malva alliance taxa and genus
Cistus taxa [38, 39]. They acquired digital images of seeds using a
flatbed scanner; extracted morphometric, colorimetric, and tex-
tural seed features; and then performed taxonomic classifica-
tion with stepwise linear discriminant analysis (LDA). Species
identification from herbarium specimens with computer vision
approaches was first presented in 2016, in which Unger et al.
classified German trees into tens of classes with images of
herbarium specimens photographed at a high resolution [55].
Their analytical processes were composed of preprocessing, nor-
malization, and feature extraction with Fourier descriptors, leaf
shape parameters, and vein texture, followed by SVM classifica-



Mochida et al. 5

Table 1: Examples of taxonomic classification approaches

Approach Object Features/feature extractor Classifier Reference

Custom feature-based
approach

Seed Elliptic Fourier descriptor, Haralick’s texture
descriptor, morpho-colorimetric feature

LDA [38, 39]

Grain Shape, color, texture features MLP [36]
ANFIS [37]

SIFT, sparse coding SVM [40]
Fourier descriptor, leaf shapes, vein structure [55]

Leaf Pretrained CNN [35]
Ffirst [56]
Texture features LWSRC [57]

Bark Ffirst SVM [56]
Tree Reflectance, minimum noise fraction

transformation, narrowband vegetation indices,
airborne imaging spectroscopy features

SVM, RF [58]

CNN-based approach Grain [59]
Ear, spike, spikelet [60]

Leaf CNN [52, 53, 61, 62]
Root [62]

Various organs [63, 61, 56]

Ffirst: Fast Features Invariant to Rotation and Scale of Texture.

tion. In this study, they demonstrated the potential of computer
visions for taxonomic identification, even when using discol-
ored leaf images of herbarium specimens. Using rather different
data for species classification, Piiroinen et al. [58] attempted tree
species identifications with airborne laser scanning and hyper-
spectral imaging in a diverse agroforestry area in Africa, where
a few exotic tree species are dominant and most native species
occur less frequently. Despite this challenge, they demonstrated
that ML-based analytical approaches using SVMs and random
forests (RFs) could achieve reasonable tree species identification
based on airborne-sensor images.

In the last few years, many CNN-based approaches have
been developed for the taxonomic classification of plants [52,
53]. Using a dataset of accurately annotated images of wheat
lines, the authors in a previous study [60] applied a CNN-based
model to perform feature location regression to identify spikes
and spikelets and carried out image-level classification of wheat
awns, suggesting the feasibility of employing CNN-based mod-
els in multiple tasks by coordinating their network architec-
ture. In this study, the authors also suggested that the im-
ages of wheat in the training dataset, which were acquired us-
ing a consumer-grade 12 MP camera, could be favorable for
training the CNN-based model. A comparative assessment be-
tween CNN-based and custom feature-based approaches was
performed in a rice kernel classification task [59]. In this assess-
ment, the authors compared a deep CNN with k-nearest neigh-
bor (kNN) algorithms and SVMs, along with custom features,
such as a pyramid histogram of oriented gradients and GIST, and
showed that the CNN surpassed the kNN and SVM algorithms in
classification accuracy.

Although CNNs usually require large amounts of data and
extensive computational load and time, transfer learning (i.e.,
the reuse and fine-tuning of pretrained networks for other tasks)
is a promising technique for mitigating these costs [56, 63, 61].
Ghazi et al. [63] fine-tuned the three deep neural networks that
performed well in the ImageNet Large-Scale Visual Recognition
Challenge, i.e., AlexNet [64], GoogLeNet [65], and VGGNet [66],
for a large classification dataset of 1,000 species from Plant-
CLEF2015, aiming to construct a neural network model for tax-
onomic classification. In this study, the authors compared ap-

proaches based on fine-tuning and training from scratch and
demonstrated that the fine-tuning approach had a slight edge
in species identification. Carranza-Rojas et al. [61] applied a pre-
trained CNN to herbarium species classification. Sulc and Matas
[56] utilized a pretrained 152-layer residual network model [67]
and the Inception-ResNet-v2 model [68] for plant recognition in
nature, in which views of plants or their organs differ signifi-
cantly and in which the background is often cluttered. Moreover,
the authors proposed the use of a textual feature, called Fast Fea-
tures Invariant to Rotation and Scale of Texture (Ffirst), to com-
putationally recognize bark and leaves from segmented images.
They demonstrated improved recognition rates with this feature
for a small computational cost. Pound et al. [62] applied CNNs to
two types of identification tasks, classification and localization,
with megapixel images taken by multiple cameras. In this classi-
fication task, the authors succeeded in identifying root tips and
leaf-ear tips with accuracies of 98.4% and 97.3%, respectively,
with deep CNNs and extended trained classifiers for localizing
plant root and shoot features. Rzanny et al. [35] summarized
workloads of image acquisition and the impact of preprocess-
ing on accuracy in image classification and concluded that im-
ages taken from the top sides of leaves were most effective for
processing of nondestructive leaf images. Interestingly, in this
study, the authors recorded leaf images using a smartphone (an
iPhone 6) in diverse situations, including natural background
conditions, followed by feature extraction with the pretrained
ResNet-50 CNN and classification with an SVM.

Classification of plant physiological states The applications of com-
puter vision-based image classification have been expanding
to include description of developmental stages, physiological
states, and qualities of plants (Table 2). Autonomous phenotyp-
ing systems equipped with multiple sensors for data acquisi-
tion have enabled us to collect information associated with in-
ternal and surface changes in plants [69–71]. Through explo-
ration of the relationships between multidimensional spectral
signatures and the physiological properties of plants, we may
be able to identify novel spectral markers that can reflect vari-
ous plant physiological states [69, 72–74]. Moreover, noninvasive
data acquisition enables us to continuously monitor phenotypic
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Table 2: Examples of approaches for classification of physiological states

Approach Object Features/feature extractor Classifier Reference

Custom feature-based
approach

Ear (growth stages) SIFT + bag of keypoints SVM [47]

Grain (quality
assessment)

Weibull distribution model
parameter features

SVM [76]

Leaf Spectral vegetation indices Spectral Angle
Mapper

[77]

CNN-based approach Leaf CNN [78, 79]

changes over time in plant life courses [75]. Therefore, computer
vision-based plant phenotyping provides opportunities for early
identification and detection of fine changes in plant growth, as-
sisting crop diagnostics in precision agriculture.

ML-based and statistical algorithms have been used to ex-
tract structural features from plant images for tasks such as
tissue segmentation, growth stage classification, and quality
evaluation in plants [80]. Multiple ML-based algorithms, such
as kNN, naive Bayes classifier, and SVM algorithms, have been
examined in segmentation processes for detecting aerial parts
of plants, and the findings suggested that different algorithms
would be preferable for segmenting images of the visible and
near infrared spectra [81]. The bag-of-keypoints method was re-
cently applied to RGB color images of wheat under field con-
ditions and demonstrated its ability to identify growth stages
from heading to flowering [47]. Quality inspection of harvested
crop grains can also be assisted by computer vision-based ap-
proaches to describe the relationships between the visual ap-
pearance and qualities of grains. A method based on omnidi-
rectional Gaussian derivative filtering was proposed to extract
visual features from images of granulated products (e.g., cereal
grains) and applied to automated rice quality classification [76].

Computer vision-based image classification techniques have
also been widely used to identify symptoms of disease in
plants. Hyperspectral imaging was applied to detect and quan-
tify downy mildew symptoms caused by Plasmopara viticola in
grapevine plants [77]. Recent deep learning-based techniques
have led to improvements in throughput and accuracy for de-
tecting disease symptoms in plants. Mohanty et al. [78] demon-
strated the feasibility of using a deep CNN to detect 26 diseases
in 14 crop species by fine-tuning popular pretrained deep CNN
architectures, such as AlexNet [64] and GoogLeNet [65], with a
publicly available 54,306-image dataset of diseased and healthy
plants from PlantVillage. Transfer learning was also used to train
CNN models for detecting of disease symptoms in crops, such as
olives [79].

Deep neural network-based image analysis with end-to-end learning
Beyond applications in each of the typical steps in computer
vision-based image analysis, deep CNNs have automated ap-
proaches to directly identify biological instances from image
data through end-to-end training. Faster region-based CNN (R-
CNN) is a CNN-based region proposal network that enables rep-
resentation of high-quality region proposals through end-to-end
training [82]. Jin et al. demonstrated the performance of a faster
R-CNN-based model for segmentation of maize plants from ter-
restrial LiDAR data [83]. In addition to faster R-CNN, Fuentes
et al. examined two other CNN-based end-to-end frameworks
for object detection: region-based fully convolutional network
(FCN) and single shot multibox detector to detect diseases and
pests in tomatoes [84]. Shelhamer et al. proposed an FCN that

enables end-to-end training for sematic image segmentation by
pixel-wise object labeling [85], which has been applied to gener-
ate weed distribution maps from UAV images [86, 87]. Moreover,
FCN has also been applied to segment a particular region of an
image into each instance (pixel-wise instance segmentation) for
computer vision-based image and scene understanding, which
should facilitate various instance segmentation tasks in plant
phenotyping, such as the Leaf Segmentation and Counting Chal-
lenges [88].

Application of computer vision-assisted plant
phenotyping for gene discovery

Modern techniques in computer vision can aid digital quantifi-
cation of various morphological and physiological parameters
in plants and are expected to improve the throughput and ac-
curacy of plant phenotyping for population-scale analyses [89,
90]. Combined with recent advances in high-throughput DNA
sequencing, the automated acquisition of plant phenotypic data
followed by computer vision-based extraction of phenotypic fea-
tures provides opportunities for genome-scale exploration of
useful genes and modeling of the molecular networks underly-
ing complex traits related to plant productivity, such as growth,
stress tolerance, disease resistance, and yield [9, 75, 91–93].

Autoscreening of mutants
Large-scale mutant resources have played crucial roles in re-
verse genetics approaches in plants, and computer vision-
assisted phenotype analyses can provide new insights into gene
functions and molecular networks related to traits in plants. A
computer vision-based tracking approach to organ development
revealed temperature-compensated cell production rates and
elongation zone lengths in roots through comparative image
analysis of wild-type Arabidopsis and a phytochrome-interacting
factor 4- and 5-double mutant of Arabidopsis [94]. A new cluster-
ing technique, nonparametric modeling, was applied to a high-
throughput photosynthetic phenotype dataset and showed ef-
ficiency for discriminating Arabidopsis chloroplast mutant lines
[95]. In rice, a large-scale T-DNA insertional mutant resource
was developed and applied to phenotyping 68 traits belonging to
11 categories and 3 quantitative traits, screened by well-trained
breeders under field conditions [96]. These findings led us to
question whether using computer vision-based phenotyping to
digitize growth patterns may bridge physiological features de-
tected by machines and agronomically important traits observed
by breeders.

Phenotyping for genetic mapping and prediction of agronomic traits
Phenotyping a set of accessions provides a dataset beneficial
for exploring novel interactions between genetic factors that in-
fluence productivity [97]. In several instances, automated plant
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phenotyping systems have been applied for characterizing the
growth patterns of diverse crop accessions grown under con-
trolled conditions. An automated plant phenotyping system,
the rice automatic plant phenotyping platform, also assisted
in quantifying 106 traits in a maize population composed of
167 recombinant inbred lines across 16 developmental stages
and identified 998 QTLs for all investigated traits [98]. In an-
other study using a high-throughput phenotyping system, Phe-
noArch [99] represented differences in daily growth among 254
maize hybrids in different soil and water conditions and re-
vealed genetic loci affecting stomatal conductance through a
genome-wide association study using the phenomic dataset
[100]. A study using multiple sensors, such as hyperspectral, flu-
orescence, and thermal infrared sensors, demonstrated a time
course heritability of traits found in a set of 32 maize inbred lines
in greenhouse conditions [101]. These examples indicate that
noninvasive phenotyping, unlike destructive measurement, en-
ables us to characterize growth trajectories to identify pheno-
typic differences in development and phenological responses
over time that may influence eventual traits, such as biomass
and yield [102].

For phenotyping crops under field conditions, the combined
use of multiple sensors and techniques for image analysis has
proven to be efficient for comprehensively identifying genetic
and environmental factors related to phenotypic traits. With a
dataset of 14 photosynthetic parameters and 4 morphological
traits in a diverse rice population grown in different environ-
ments, a stepwise feature-selection approach based on linear
regression models assisted in identifying physiological param-
eters related to the variance of biomass accumulation in rice
[103]. In a study of poplar trees, UAV-based thermal imaging of a
full-sib F2 population across water conditions showed the poten-
tial of UAV-based imaging for field phenotyping in tree genetic
improvements [104]. In a genetic study of iron deficiency chloro-
sis using an association panel of soybeans, supervised machine
learning-based image classification allowed identification of ge-
netic loci harboring a gene involved in iron acquisition, sug-
gesting that computer vision-based plant phenotyping provides
a promising framework for genomic prediction in crops [105].
In sorghum, UAV-based remote sensing was used to measure
plant height for genomic prediction modeling, demonstrating
that UAV-based phenotyping with multiple sensors is efficient
for generating datasets for genomic prediction modeling [106].

Datasets and software tools for plant phenotyping

Datasets
Public datasets from various platforms for plant phenotyping
will provide data for developing analytical methods in computer
vision-based plant phenotyping. In a recent Kaggle competition,
an image dataset of approximately 960 unique plants belong-
ing to 12 species was used to create a classifier for plant taxo-
nomic classification from a photograph of a plant seedling [107].
In a previous study [108], the authors introduced the first dataset
for computer vision-based plant phenotyping, which was made
available in a separate report [109].

A comprehensive phenotype dataset is available in Arabidop-
sis and will be useful as a reference image-set for the growth
and development of model plant species when assessing meth-
ods in computer vision-based plant phenotyping [110]. In maize,
the datasets used in two previous studies [33, 111] are available
in other reports [112]. Moreover, the PlantCV website has pro-
vided image datasets acquired in grass species, such as rice, Se-
taria, and sorghum [113]. Additionally, the importance of inte-

grating traits, phenotypes, and gene functions based on ontolo-
gies has increased dramatically; plant ontology, plant trait ontol-
ogy, plant experimental conditions ontology, and gene ontology
can facilitate semantic integration of data and corpuses rapidly
generated from plant genomics and phenomics [114].

Software tools
Various types of software tools have been established to aid
steps of image analysis in plant phenotyping. The Plant Im-
age Analysis website [115] showcases 172 software tools and
28 datasets (as of 9 August 2018) for analysis of plant image
datasets, aiming to provide a user-friendly interface to find so-
lutions and promote communication between users and de-
velopers [116, 117]. Figure 2 shows the ecosystem of software
tools for plant phenotyping based on the plant image analysis
database, in which software tools are connected to plant organs
of an analytical target, indicating that the ecosystem is grow-
ing, particularly for images from leaves, shoots, and roots. Ta-
ble 3 shows examples of software tools recently developed for
plant phenotyping by image processing, which take advantage
of ML-based algorithms. Leaf Necrosis Classifier supports detec-
tion of leaf areas that show necrotic symptoms with combina-
torial use of MLP and self-organizing maps [118]. EasyPCC eval-
uates the ground coverage ratio accurately through image data
acquired under field conditions and uses a pixel-based segmen-
tation method that applies a decision-tree-based segmentation
model [119]. Leaf-GP is a software tool that is used for quan-
tification of various growth phenotypes from large image se-
ries, applying Python-based machine learning libraries, which
were used to analyze the growth of Arabidopsis and wheat [120].
A deep CNN-based approach was applied to develop Stomata-
Counter for detection of stomatal pores in microscopic images
[121]. Moreover, the mobile app Plantix enables diagnosis and
customized options for detection of plant diseases, pests, and
nutrient deficiencies to users who send a picture of a plant [122],
in which it synergistically uses a deep learning, crowd-sourced
database to identify plant diseases on various crops worldwide.

Conclusions and Perspectives

In recent years, computer vision-based plant phenotyping has
rapidly grown as a multidisciplinary area that integrates knowl-
edge from plant science, ML, spectral sensing, and mechani-
cal engineering. With large-scale plant image datasets and suc-
cessful CNN-based algorithms, the tools available for computer
vision-based plant phenotyping have shown remarkable ad-
vancements in plant recognition and taxonomic classification.
Repositories for pretrained models for plant identification play
significant roles in rapidly implementing models for new pheno-
typing frameworks through fine-tuning. Moreover, these models
aid in the further improvement of recognition accuracy in more
challenging tasks, such as multilabel segmentation of multiple
organs and species under natural environments. These efforts to
improve accuracy, throughput, and computational costs for au-
tomated plant identification will provide an analytical basis for
computer vision-based plant phenotyping beyond the capacity
of human vision-based observation.

Computer vision-based plant phenotyping has already
played important roles in monitoring the physiological states
of plants for agricultural applications, such as disease symp-
toms and grain quality. Meta-analysis of the spectral signatures
of crops associated with growth stage, physiological states, and
environmental conditions will provide useful clues for preven-
tive interventions in farming. Moreover, spectral signatures ob-
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Figure 2: An ecosystem map of software tools for plant image analysis. The network-formed map consists of 169 software tools whose targets are particular plant
organs based on the plant image analysis database [117]. The nodes represent the software tools and their target plant organs represented using Cytoscape 3.0 [123].

Table 3: Software tools recently developed for plant image analysis that use machine learning-based algorithms

Name Algorithms Functionalities Reference, URL

Leaf Necrosis
Classifier

Multilayer perceptron and
self-organizing maps

Detection of leaf areas showing necrotic symptoms [118]

EasyPCC Decision-tree-based
segmentation model

Quantification of ground coverage ratio from image data
acquired under field conditions

[119, 124]

Leaf-GP Python-based machine
learning libraries

Quantification of multiple growth phenotypes from large
image series

[120, 125]

StomataCounter Deep CNN Counting stomate pores [121]
Plantix Deep learning Diagnosing plant diseases, pest damage, and nutrient

deficiencies
[122]

served during earlier growth stages of crops, which are associ-
ated with eventual agronomic traits such as yield and quality,
will be beneficial phenotypes for dissecting the interactions be-
tween genetic and environmental factors and for increasing ge-
netic gain in crop breeding.

Assorted sensors have assisted plant phenotyping under
both controlled and field conditions and will aid our discovery
of genes involved in agronomic traits and our understanding
of their functions through statistical explorations of genome-
phenome relationships, such as GWASs and phenome-wide as-
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sociation studies [126, 127] in plants. High-throughput auto-
mated phenotyping will allow common garden experiments to
be performed with diverse genetic resources in order to eluci-
date the genetic bases of adaptive traits in plants [128]. Noninva-
sive and population-scale plant phenotyping will provide us op-
portunities to investigate interactions between internal and ex-
ternal factors related to plant growth and development, dissect-
ing the effects of earlier life-course exposures onto later agro-
nomic outcomes. Moreover, with the recent success of ML-based
approaches in predicting individual traits in genomic prediction
[129] and cohort studies [130, 131], computer vision-based phe-
notyping will play significant roles in both nowcasting and fore-
casting of plant traits through modeling genotype/phenotype re-
lationships.
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