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Differential epigenetic reprogramming in response
to specific endocrine therapies promotes
cholesterol biosynthesis and cellular invasion
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Endocrine therapies target the activation of the oestrogen receptor alpha (ERa) via distinct

mechanisms, but it is not clear whether breast cancer cells can adapt to treatment using

drug-specific mechanisms. Here we demonstrate that resistance emerges via drug-specific

epigenetic reprogramming. Resistant cells display a spectrum of phenotypical changes with

invasive phenotypes evolving in lines resistant to the aromatase inhibitor (AI). Orthogonal

genomics analysis of reprogrammed regulatory regions identifies individual drug-induced

epigenetic states involving large topologically associating domains (TADs) and the activation

of super-enhancers. AI-resistant cells activate endogenous cholesterol biosynthesis (CB)

through stable epigenetic activation in vitro and in vivo. Mechanistically, CB sparks the

constitutive activation of oestrogen receptors alpha (ERa) in AI-resistant cells, partly via the

biosynthesis of 27-hydroxycholesterol. By targeting CB using statins, ERa binding is reduced

and cell invasion is prevented. Epigenomic-led stratification can predict resistance to AI in a

subset of ERa-positive patients.

DOI: 10.1038/ncomms10044 OPEN

1 Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK. 2 IFOM-IEO Campus, European Institute of Oncology, Milan 20139,
Italy. 3 School of Biological Science, University of Reading, Reading RG6 6LA, UK. 4 MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of
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O
ver 70% of all breast cancers are characterized by the
expression of the nuclear receptor oestrogen receptor
alpha (ERa)1. Patients with ERa-positive disease are

routinely treated with adjuvant endocrine therapies (ETs) after
surgery. ETs include a series of compounds designed to interfere
with ERa activation, including selective oestrogen receptor
modulators (for example, tamoxifen), aromatase inhibitors (AIs,
for example, Letrozole and Anastrozole) and selective oestrogen
receptor downregulators (Faslodex/Fulvestrant)2. Tamoxifen
competitively bind to ERa in the place of estrogens such as
estradiol (E2). AIs are designed to deplete the estrogens in
circulation, while Fulvestrant irreversibly bind to ERa leading to
ERa degradation. Over 40% of ERa breast cancers eventually
relapse from ETs becoming progressively refractory to further
treatments1. It remains unclear whether resistance to ETs
involves drug-specific mechanisms. Since ETs are characterized
by different mechanisms2,3, it is conceivable that chronic
exposure to therapy may impart specific selective pressure and
elicit different response mechanisms to induce stable phenotypic
changes.

During development and differentiation, cell identity is
established by the epigenetic activation of cell-type-specific distal
regulatory elements mediated by combinatorial patterns of
histone modifications4,5. These regions are often embedded in
chromatin-accessible sites and contain DNA sequence motifs for
cell-type-specific transcription factors (TFs)6. The epigenome
retains some degree of plasticity, as cell identity can be
epigenetically reprogrammed by exposure to external stimuli
such as the ectopic expression of TFs6. Cancer cells can also
remodel histone modifications and chromatin accessibility in
response to chronic exposure to therapeutic agents7–9. For
example, adaptation to oestrogen deprivation in ERa-positive
breast cancer cells invokes extensive epigenetic reprogramming
especially in distal regulatory regions such as enhancers7.
Regulatory elements directly associated with active
transcription, and more complex regulatory regions (that is,
super-enhancers (SEs)) can be mapped by measuring the histone
modification histone 3-lysine 27 (H3K27ac)10–14. In this study,
we have investigated the nature of drug adaptation to a diverse
range of ETs in isogenic ERa-positive breast cancer cells using
integrative and orthogonal epigenomic approaches.

Our data demonstrate that breast cancer cells evolve individual
epigenomic and transcriptomic profiles in response to treatment.
Both in vitro and in vivo, AI-resistant cells acquire the most
aggressive phenotype and develop invasive characteristics in two-
dimensional and three-dimensional (3D). Integrative analyses of
AI-resistant cells identify stable upregulation of the entire
cholesterol biosynthesis (CB) pathways including genes involved
in 27-hydroxyl-cholesterol (27HC) biosynthesis. 27HC stimula-
tion is sufficient to promote oestrogen-independent ERa binding
to thousands of putative regulatory regions. In agreement with
this finding, chromatin immunoprecipitation sequencing (ChIP-
seq) analysis of the chromatin of AI-resistant cells confirmed
extensive ERa binding despite oestrogen-deprived conditions.
Furthermore, CB blockers (statins) can reduce ERa binding to
DNA and abrogate cell invasion. CB upregulation also occurs
in vivo during breast cancer progression. Finally, we demonstrate
that a CB-based signature might be used to improve the
stratification of ERa breast cancer patients before adjuvant
treatment.

Results
Adaptation to AI treatment leads to de novo invasiveness. ETs
are designed to block oestrogen-driven proliferation by inter-
fering with one specific TF (for example, ERa). However, we

hypothesized that the development of resistance may follow
distinct routes and generate alternative phenotypes through the
different molecular mechanisms specific to each agent2. To test
this hypothesis, we used a series of isogenic cell lines resistant to
single agents or a combination of agents (endocrine therapy (ET)-
resistant ETR cells, Fig. 1a)15. Our aim was to understand the
connection between the acquisition of drug-resistance and breast
cancer progression, particularly metastatic development. We then
carried out a real-time, impedance-based assay to monitor the
migratory and invasion behaviour of ETR cells. These assays
demonstrated that long term estrogen deprived (LTED) cells
(mimicking AI resistance16) specifically develop migration and
invasion properties, while MCF7- and TAM/Fulvestrant-resistant
cells (MCF7T and MCF7F) do not (Fig. 1b; Supplementary
Fig. 1A). It is worth noting that sequential resistance did not
increase these traits (LTEDT and LTEDF versus LTED). To
corroborate these findings, we developed a 3D invasion assay
(organoids assay) in which the cells were allowed to form 3D
bodies and then embedded in Matrigel. In agreement with the 2D
assay, AI-resistant cells (LTEDs) spread remarkably through the
Matrigel environment, while the MCF7s do not (Fig. 1c;
Supplementary Movie 1A–D). Finally, we developed a
metastatic mouse model to validate our findings in vivo by
engineering two red-fluorescent protein reporter (mCherry) lines
(MCF7-FRP and LTED-RFP). After injection into the tail vein of
NOD-SCID mice (Fig. 1c), only LTED cells colonize several sites
including the lymph nodes and bones (Fig. 1d). Histology
analyses of putative metastatic tissues from the lymph nodes and
bone marrow confirms that the invading cells are of human origin
and contains breast cancer protein markers17 (HNA and PBX1
(ref. 18), Fig. 1d; Supplementary Fig. 1B). Overall, these data
demonstrate that AI-resistant cells acquire traits common to
aggressive breast cancers. Tamoxifen- or Fulvestrant-resistant
cells, although becoming resistant to the cytostatic effect of the
agent, do not evolve into highly invasive cells thus supporting the
notion of agent-specific reprogramming.

ETR cells follow distinct reprogramming routes. To decipher
the molecular changes induced by drug-specific resistance, we
developed an unbiased integrative approach combining RNA
sequencing (RNA-seq) and H3K27ac ChIP-seq in ETR cells. All
ETR cells express significantly lower messenger RNA (mRNA)
levels for several oestrogen receptor target genes, indicating that
ET treatments still exert negative pressure on ERa signalling. As
expected, MCF7F and LTEDF cells acquire an ERa-negative
status, while the rest of the panel remained ERa positive
(Supplementary Fig. 2A). Interestingly, other chromatin compo-
nents of ERa signalling19 (for example, ERa pioneer factors such
as FoxA1, PBX1 and GATA3 (refs 20,21)) remain expressed at
similar levels in all cell lines (Supplementary Fig. 2B,C). Cell lines
with sequential resistance are characterized by a greater number
of differentially regulated genes (Supplementary Fig. 3A).
Correspondingly, these cells display increased numbers of
potential regulatory regions as demonstrated by the significant
increase in H3K27ac-positive loci (Supplementary Fig. 3B). This
increase could not simply be attributed to general changes in
H3K27ac distribution (Supplementary Fig. 3C).

We then carried out a gene ontology analysis on our RNA-seq
data to identify potential pathways responsible for the invasive
phenotype characterizing LTED cells. To increase the
power of these analyses, we clustered together all the genes
differentially regulated in invasive (LTED–LTEDT–LTEDF) and
non-invasive (MCF7T–MCF7F) cells (Supplementary Fig. 4A).
Strikingly, we found that LTED cells activated metabolic
pathways and lipid metabolism (for example, super-pathway of
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CB, Fig. 2a; Supplementary Fig. 4B; Supplementary Data 1). More
importantly, these pathways were not active in non-invasive
MCF7T and MCF7F cells (grey versus red bars), suggesting

differential transcriptional reprogramming (Fig. 2a). These
changes are not transiently imposed by the culture condition,
but rather represent stably engrained transcriptional. In point of
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Figure 1 | Adaptation to AI treatment is associated with cell invasion. (a) In vitro adaptation experimental protocol: ERa-positive breast cancer cells

(MCF7) were chronically exposed to endocrine therapies to generate ETR lines15. Each cell type was screened for the development of invasive potential.

ETR cells were also profiled using integrative epigenomics and the results were cross-validated using clinical samples. (b) Real-time monitoring of cell
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tail of the mice and followed using in vivo imaging. (e) Snapshots of histological analysis of tissues from mice injected with LTED or MCF7 cells. The first
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Figure 2 | Drug adaptation and epigenetic reprogramming. (a) IPA pathway analysis of differentially upregulated genes (for details of the analysis, see

Supplementary Fig. 4A). The top 20 IPA pathways for invasive and non-invasive cells are plotted with their respective P values. Metabolic pathways are in

bold. The dotted line is set at a pVal¼0.01. (b) Diagrammatic image of the bioinformatics strategy adopted for the epigenetic analysis in the six cell lines.

For more details, please see the Methods (c) Heatmaps showing the mean H3K27ac level in each cluster for each of the six cell lines. Regions were split
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each cluster is shown. (e) Heatmap showing the median of the linear FPKM for each cluster along the cell lines. (f) IPA canonical pathways significantly
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fact, we could not re-establish the original transcriptional profile
(for example, MCF7) by culturing resistant cells in MCF7 culture
conditions and the absence of endocrine treatment
(Supplementary Fig. 4C).

We hypothesized that the reprogrammed transcriptomes
evolved by invasive LTEDs cells might play a central role in
driving aggressive breast cancer in vivo. To test this, we devised
five individual cell signatures containing the top 10% of
upregulated genes specific to each individual cell line
(Supplementary Data 2) and split patients into high and
low expressors (Supplementary Fig. 5A). Analysis of the
METABRIC22 data set (restricting it to the ERa-positive
patients) demonstrates that only LTED-based signatures
significantly predict poor survival (Supplementary Fig. 5B,C).
Collectively, these data demonstrate that AI-resistant cell lines
evolve transcriptional programmes typical of patients developing
more aggressive tumours.

Drug resistance invokes activation of regulatory elements. We
reasoned that chronic drug exposure probably acts as a constant
selective pressure within our cell line system and allow for
selective activations of regulatory regions. Indeed, we demon-
strated that these changes become heritable and eventually
independent from media conditions. We then investigated the
epigenetic circuitry that drives the cell-type-specific transcription
in our ETR models. By comparing our epigenomic maps with
publically available H3K27ac profiles, we confirmed the common
ancestry of ETR cells (data from ENCODE5), suggesting that
adaptation to therapy does not entirely upset the epigenetic
landscape (Supplementary Fig. 6A). Next, we devised a strategy to
pinpoint the distal regulatory enhancers actively involved in
regulating cell-type-specific gene expression (Fig. 2b). We first
identified all the loci that showed changes in H3K27ac by
comparing ETR cells with MCF7s using MACS23. We then
pooled and clustered all the regions showing a significant increase
or decrease in at least one cell line according to the co-variation of
their patterns across the six cell lines (Fig. 2b and extended
Methods). Using this strategy, we extrapolate genome-wide
groups of potentially interacting TSS and enhancer pairs
sharing the same pattern of activity across the lines (13
different clusters). Each cluster is then de-convoluted to
TSS-proximal and TSS-distal (canonical enhancers) elements
(Fig. 2c,d). We then match the promoter-proximal H3K27-
acetylated regions to RefSeq genes and annotate the genes
according to our RNA-seq analysis. These analyses demonstrate
that H3K27ac at distal enhancers is highly consistent with
H3K27ac at promoter and mRNA transcription (Fig. 2e).
Of note, our analysis provides a solid alternative for studying
distal regulatory regions in the absence of detailed interaction
maps.

We then used Ingenuity Pathway Analysis to identify cell-type-
specific pathways based on canonical enhancers (Supplementary
Data 3). Cluster 1 contains mainly promoter-proximal elements
(Fig. 2d) and shows an increase in H3K27ac signals in all resistant
cells (Fig. 2c). In agreement, pathways significantly enriched in
this cluster have been previously associated with ET resistance
(mTOR, EIF2, NGF, EGF and HER2 signalling22,24) (Fig. 2f).
Clusters 2 and 3 are directly associated to the loss of ERa, thus
demonstrating the central role of this TF in breast cancer cells.
Despite over half of the regions in these groups mapping to distal
enhancers, coding regions unambiguously assigned to TSS-
proximal elements are enriched for pluripotency genes (Fig. 2f),
a feature typical of basal, stem-like ERa-negative breast cancers25.
Focusing on LTED-specific regulatory elements, cluster 5 and
cluster 9 are almost exclusively enriched for genes belonging to

the super-pathway of CB confirming our transcriptional analysis
(Fig. 2f). Overall, these unbiased epigenomics analyses strongly
support our initial findings, and substantiate the hypothesis
that AI-resistant cells epigenetically activate distinct pathways
compared with other resistant cells.

Drug-resistance-specific activation of SEs. Our integrative
epigenomic analyses suggest that endogenous activation of CB is
one of the key pathways epigenetically activated in AI-resistant
cells. Epigenetic activation of the CB pathway appears to occur
through a multi-step process. For example, many regulatory
elements associated with genes belonging to CB are included in
cluster 1 (common to all resistant cells, Supplementary Data 3),
indicating that these genes are active also in Tamoxifen- or
Fulvestrant-resistant cells (Fig. 2g). Nevertheless, the rate-limiting
enzymes of this pathway and their associated regulatory regions
(for example, HMGCR and SQLE) are ultimately activated/
upregulated only in oestrogen-deprived LTED cells (Fig. 2g). We
therefore decided to investigate whether epigenomic activation
of CB involves more complex epigenetic features such as SEs.
Recent publications11,26,27 have identified dense clusters of distal
regulatory regions that are strongly associated with transcription
and particularly susceptible to perturbation, termed SEs (Fig. 3a).
Adapting a previously published approach27, we identified a set of
710 SEs with different types of distribution across ETR cells
(Supplementary Fig. 6B). Initial clustering analysis using SEs
reveals that LTEDs cells share extensive epigenetic features.
Instead, MCF7F cells maintain fewer connections with parental
MCF7 further demonstrating the marked effect of ERa loss
(Supplementary Fig. 6C). As expected, SEs activation strongly
reflects cell unique traits, for example, the SEs associated with
oestrogen/oestrogen receptor target gene17 EGR3 was identified
only in MCF7 cells (Fig. 3a). Next, we clustered SEs to obtain 10
distinct groups using a similar approach-based on co-variance
(Figs 2b and 3b and extended materials). IPA analysis of LTED-
specific SE clusters (clusters 3 and 5) identified once more
metabolic and signalling pathways. It must be pointed out that
the acetylation of SEs was strongly associated with the expression
of nearby genes, in agreement with previous findings28

(Supplementary Fig. 6D; Supplementary Data 4). Finally, we
identified the TF motifs buried within peak-valley-peak structures
to gain further insights into the regulatory circuitry underlying
these SEs. Running IPA analysis to identify pathways coordinated
by TFs that could potentially bind these SE valleys, we found that
LTED-specific SE clusters 3, 5 and 6 were enriched for several
metabolic nuclear receptor-driven pathways (Fig. 3c, the TFs
identified include FOXO1, FOXA1, FOXA2, NR5A2 for cluster 3
and RXRG, VDR, RXRB, RXRA for cluster 5). Finally, we
investigated the accessible chromatin landscape to gain more
detailed insights into global changes in TF occupancy using
high-depth DHS-seq29. Footprinting analysis to scan for putative
binding sites using DHS-seq identifies a massive increase in
SREBP1 and SREBP2, the two master regulators of cholesterol
homeostasis in mammals30, in LTED cells (Fig. 3d). Significantly,
SREBP1/e are also the top candidates transcriptional regulators in
LTED for our RNA-seq-based analysis (see Supplementary Data
1, upstream regulators). SREBP1 activates cholesterol genes by
binding their promoter after nuclear translocation in response to
intracellular cues31,32. SREBP1 nuclear translocation can be
inhibited using a novel series of compounds called fatostatin33.
To test whether SREBP1 translocation was effectively one of the
key events in CB activation, we treated MCF7 and LTED cells
with fatostatin. Fatostatin treatment induced a significant
reduction for several key genes in the CB pathway including
the two rate-limiting enzymes HMGCR and SQLE specifically in
LTED cells (Fig. 3e).
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In summary, SEs and chromatin accessibility analyses further
demonstrate a role for cholesterol-driven signalling centred on
the potential crosstalk between nuclear receptors and cholesterol-
specific TFs. These data suggest that epigenetic reprogramming
might induce new transcription factor dependencies.

Epigenetic reprogramming involves larger chromatin structures.
Recent evidence suggests that SEs are regulated in the context of
TADs28, with relatively insulated effects within CTCF-defined
regions. TADs are physically defined genomic regions that
shows cohesive gene regulation during development33. Several
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studies indicate that TAD boundaries are generally resistant to
differentiation34. We observed that in some instances, clusters of
genes physically located in the same genomic region (for example,
keratin locus, chr12q13.13) are differentially regulated as a single
transcriptional unit (Supplementary Data 4). More specifically, the
KRT locus (KRT7, KRT80, KRT81, KRT83 and KRT86) is
upregulated in all resistant cells and its putative SE belongs to
cluster 1 (Fig. 3b). This raises the possibility of coarse-grained
epigenetic reprogramming occurring at the level of entire genomic
compartments. To test this hypothesis, we sorted 2,283 TADs
(previously identified in IMR90 cells33) according to the ratio of
their H3K27ac levels in LTED versus MCF7 (Fig. 4a). The TAD
encompassing the KRT genes (chr12:52,513,733� 53,913,733)
ranked in the top 5%, showing a 1.42-fold increase in H3K27ac
in LTED cells (Fig. 4a), confirming that epigenetic reprogramming
might target sets of genes simply based on their physical proximity.

We then investigated whether analogously to KRTs, CB genes
are regulated in response to coarse-grain activation of their
respective SE-TAD structures. Genes in the CB pathways were
found scattered over different genomic compartments with no
coherent changes in H3K27ac, suggesting a TAD-independent,
punctuated regulation (Fig. 4a). Thus, while some CB genes might
be passively regulated in response to widespread epigenetic
changes, others may be controlled by more precise epigenetic
changes, often counteracting the local TAD changes. For example,
at the SQLE locus the local increase in acetylation (LTED versus
MCF7) substantially overshadows the modest increase in TAD
acetylation (Fig. 4b, yellow arrow). Strikingly, genes such as
HMGCR and CYP51A1 gain H3K27ac signals in their putative
regulatory regions despite locally losing acetylation at the TAD
level (Fig. 4b, black arrows). We obtained similar results when
comparing global changes in RNA transcription within the TAD to
the local changes for single CB genes. These data strongly suggest
that CB genes activated in non-invasive cells (Fig. 2g) might be
passengers of TAD-wide epigenetic activation, while rate-limiting
CB genes are specifically targeted in AI-resistant cells only.

To further investigate the role of CB in AI-resistant cells, we
transcriptionally profiled the entire cholesterol superpathway
using reverse transcription (RT)–quantitative (q)PCR. The CB
pathway is made up of 24 genes coding for enzymes necessary to
build cholesterol molecules from acetyl-derived carbons (Fig. 4c;
Supplementary Fig. 7A). Strikingly, 22/24 genes in the CB
superpathway are upregulated in LTED cells, while 2/24 and 3/24
are upregulated in MCF7T and MCF7F cells, respectively
(Fig. 4c). To rule out cell-type-specific bias in the activation of
CB, we then analysed a second ERa-positive cell lines (in T47D
breast cancer cells35). In agreement with MCF7 data, we observe a
marked upregulation of CB transcripts in T47D-LTED cells as
compared with naive T47D (21/24, Fig. 4d). On the other hand,
non-tumorigenic MCF10A have much lower mRNA levels for all
CB genes compared with non-invasive T47D or MCF7 cells
(average 14±11%).

To confirm the epigenetic nature of CB activation in
T47D-LTED cells, we assessed the H3K27ac status of several
regulatory elements comparing resistant and naive cells. In agree-
ment with MCF7 ETR cells, T47D-LTED exhibit a strong increase
in K27acetylaiton at enhancers associated with CB genes (Fig. 4e).
Finally, we investigated the epigenetic activation of distal
enhancers associated with CB directly in clinical specimens. In
agreement with our in vitro data, ChIP–qPCR analysis demon-
strate a significant increase in H3K27ac signal in a biopsy derived
from a metastatic deposit (AI resistant) compared wih a sample
derived from a primary, drug-sensitive ERa breast cancer patient
(Fig. 4g).

Altogether, these data demonstrate that the selective pressure
operated by chronic drug exposure is counteracted using very

distinctive epigenetic mechanisms. More specifically, these data
strongly support the centrality of CB epigenetic activation in AI-
resistant cells.

CB promotes ERa activation. ERa and other nuclear receptors
can be activated by a vast array of ligands including sexual
hormones (estrogens) and other cholesterol-derived compounds.
Recent evidence has shown that cholesterol derivatives such as 25
and 27 hydroxycholesterol can also promote the transcription of
ERa target genes in breast cancer cells36,37. Interestingly, 27HC
can also increase metastatic invasion in mice xenografted with
MCF7 cells38. We then hypothesized that one of the possible
consequence of epigenetic activation of CB in AI-resistant cells
might be the activation of autocrine signalling via de novo
synthesis of 27HC39. To test this, we initially investigated the
expression levels of CYP27A1 and CYP7B1, the two enzymes
involved in the synthesis and catabolism of 27HC from
cholesterol precursors39. Analogously to CB genes, CYP27A1 is
significantly upregulated in LTEDs compared with MCF7 and
other resistant cells (Fig. 4c). Similarly, T47D-LTED exhibited an
increase in CYP27A1 compared with parental T47D cells
(Fig. 4d). On the other hand, we could not identify CYP7B1
transcripts in our cells (Fig. 4c,d). CYP27A1 is highly expressed in
macrophages but also in ERa-positive breast cancer cells
in vivo38. For example, we could identify strong expression of
CYP27A1 in two newly established ERa metastatic cell line
models derived from pleural effusion of AI-resistant patients
(Supplementary Fig. 7B). These data suggest that LTED cells can
convert the cholesterol obtained via augmented CB into 27HC in
an autocrine pattern39.

Next, we performed ChIP-seq analysis to determine whether
27HC could induce ERa chromatin binding in a way similar to
other well-characterized ligands such as estradiol (E2)38 and
EGF40. We performed these experiments using parental MCF7, in
which endogenous CB is modest compared with LTED, to
increase the signal to noise ratio and get robust ERa induction.
27HC stimulation (1 mM)38 led to ERa binding to 5,174 regions.
Interestingly, over 70% of 27HC-ERa-binding sites were occupied
by E2-ERa or EGF-ERa (Fig. 5a). Shared ERa-binding sites were
enriched for H3K27Ac, H3K4me1, PBX1 and FOXA1, two TFs
central to ERa signalling19 and were highly accessible (as shown
by DHS-seq) while depleted of repressive histone marks (K9me3
and K27me3) (Fig. 5b). Shared ERa-binding sites had over 70%
overlap with the core-ERa-binding sites found in vivo41. We thus
concluded that 27HC-bound ERa can be recruited to regulatory
regions commonly associated with oestrogen signalling. In
addition, we also identified a set of binding sites unique to
27HC activation (Fig. 5c). These sites appeared to be weaker and
less enriched for K27ac but still under selective constraints
(Phastcons method).

We then examined ERa recruitment in LTED cells cultured in
the complete absence of oestrogen. We hypothesized that
endogenous CB activity might be sufficient to promote ERa
binding to a large set of regulatory elements. Focusing on
27HC-specific ERa-binding sites, we found that oestrogen-
depleted LTED cells have a higher average ERa binding
compared with MCF7 cells grown in the same conditions
(Fig. 5d). When we expanded this analysis to the entire repertoire
of ERa-binding sites (E2, EGF and 27HC in MCF7 plus LTED,
total 51,974 regions), LTED cells still exhibited stronger genome-
wide recruitment of ERa compared with their parental MCF7
cells grown in the absence of oestrogen (Fig. 5e), suggesting that
CB activation might be sufficient to replace oestrogen in LTED
cells. Blocking endogenous CB using Lovastatin (HMGCR
inhibitor) or Terbinafine (SQLE inhibitor) induces a modest
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although significant reduction in ERa recruitment at 27HC
unique sites in LTED cells (Fig. 5f), further suggesting that CB
contributes to cell-autonomous ERa recruitment in LTED cells.

Finally, we reasoned that epigenetic CB activation in AI-
resistant LTED cells might contribute to the invasive phenotype
displayed by these cells. We therefore tested the possibility of
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blocking cellular invasion by targeting CB. As expected, LTED
cells tended to be more sensitive to inhibition of CB as
demonstrated by their respective half-maximal inhibitory con-
centration (IC50) (MCF7: 89 and 90 mM, LTED: 22 and 42 mM,
Lovastatin and Terbinafine, respectively). More importantly,
inhibition of CB or short interfering RNA-mediated depletion
of SQLE was sufficient to block the invasion of AI-resistant LTED
cells in 3D Matrigel assay (Fig. 6a; Supplementary Movie 5A–D).
Conversely, treatment with mevalonate (the byproduct of
HMGCR) significantly increased the invasive potential of non-
invasive MCF7 cells (Fig. 6b). SQLE depletion also resulted in the
significant repression of several genes involved in cellular
invasion (Fig. 6c). Altogether, these data strongly suggest that
epigenetically activated CB contributes to the invasive phenotype
exhibited by AI-resistant LTED cells.

CB serves as a biomarker in AI-treated breast cancer patients.
Our integrative analysis of breast cancer cell lines resistant to
individual ETs identified epigenetic activation of CB as a poten-
tially important resistance mechanism specific to AI-treated
patients. We therefore investigated whether our findings had
translational potential and could be used to stratify patients
before endocrine treatment. We initially developed a gene
signature (Supplementary Data 1) to retrospectively stratify
TCGA ERa-positive breast cancer patients that expressed high or
low levels of CB gene mRNA levels. We used TCGA data since it
was possible to retrieve treatment information from these patients
(AI n¼ 144, Tamoxifen n¼ 127). ERa-positive patients with high
expression of our CB-based signature at diagnosis consistently
display shorter recurrence- and metastatic-free survival and are
characterized by poor survival (Supplementary Fig. 8A,B). The
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same signature cannot be used to identify ERa-negative patients,
suggesting a significant degree of specificity (Supplementary
Fig. 8C). There are no significant changes in performance when
correcting for luminal A or luminal B (Supplementary Fig. 9). CB
can be directly upregulated in response to p53 mutations42;
however, MCF7 cells are p53wt and LTED do not acquire p53
mutations. On the other hand, T47-LTED incur in significant CB
activation despite T47D being already p53mut, suggesting a
degree of independence between the genetic status of p53
and the activation of CB. Finally, we still observed a
strong prognostic significance within the ERa-p53-mutated
subpopulation, suggesting the existence of additional
mechanisms (Supplementary Fig. 9).

Most importantly, our CB signature was particularly efficient in
assessing overall survival in AI-treated patients but not in

Tamoxifen-treated patients (Fig. 7a) again suggesting that
endocrine resistance is driven by distinct mechanisms. Examining
the expression of genes involved in CB in an independent cohort
(FEMARA trial43), we find that MSMO1, MVD and SQLE
mRNA levels are statistically higher in patients that did not
respond to neo-adjuvant (pre-surgery) AI therapy (Fig. 7b).
Overall, these data suggest that patients with high CB are less
likely to benefit from AI treatment and are in substantial
agreement with our in vitro results.

SQLE is the second rate-limiting enzyme in the CB pathway
and one of the genes epigenetically activated specifically in
LTED cells (Figs 2g and 4b). As expected, SQLE-encoded
protein is strongly upregulated in all LTED models (Fig. 7c). We
therefore quantified mRNA levels for HMGCR and SQLE in an
ERa breast cancer patient treated with AI for whom we had
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longitudinal data (RNA obtained at diagnosis, first relapse and
in circulating metastatic cells from pleural effusion). In
agreement with our previous finding, we found that key CB
genes are progressively upregulated during cancer progression
(Fig. 7d). Overall, SQLE emerged from these analyses as a novel
candidate biomarker to identify AI-resistant breast cancer
patients. This was further confirmed by our unbiased analysis
of the entire human transcriptome. When we sorted all 22,277
probes present in the U133A gene chip according to their
potential to predict relapse in a panel of 724 ERa-positive breast
cancer patients treated with ET, SQLE (probe set 209218_at)
ranked 1st (hazard ratio¼ 2.67) (Fig. 7e; Supplementary
Data 5). Finally, we speculated that genetic–epigenetic interac-
tions might facilitate SQLE expression in ERa-positive breast

cancer. Remarkably, SQLE is amplified in almost 10% of
ERa-positive patients and overexpressed in an additional 13%44

(Supplementary Fig. 10A). SQLE amplification directly
correlates with increased mRNA expression in primary
tumours (Supplementary Fig. 10B). SQLE emerges also as one
of the top-ranking overexpressed genes in 10 breast cancer-
independent data sets (invasive ductal carcinoma (IDC) versus
normal breast, Supplementary Data 6). More importantly, SQLE
amplification or mRNA overexpression is sufficient to stratify
outcome in ERa-positive breast cancer patients from the TCGA
cohort (Supplementary Fig. 10C). Altogether, our data strongly
support the prediction generated using drug-specific resistant
cells and confirm a functional role for epigenetic activation of
CB as a mechanism of resistance to AI therapy in vivo.
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Discussion
In addition to clonal selection41, adaptation to drug treatment
may involve heritable transcriptional changes that allows cells to
survive in the presence of externally imposed selective pressure7,8.
Using ERa-dependent breast cancer cells as a working model, we
demonstrate that adaptation to therapeutic agents sharing the
same target follow distinct routes depending on the specific
mechanism of action. More specifically, the appearance of
oestrogen-independent growth corresponds to the epigenetic
activation of CB. CB functionally contributes to the invasive
phenotype AI-resistant cells and CB activation can be used to
predict resistance to AI before treatment. Drug-resistance,
however, does not invariably coincide with the development of
more aggressive phenotypes, suggesting that in some instances
the transition to metastatic progression requires additional
reprogramming. Using recently developed paradigms, our data
demonstrate that individual drugs impose very specific epigenetic
changes that target both local regulatory elements such as
individual enhancers and large topological domains and SEs11.
This is surprising considering that endocrine treatments impinge
on the same TF (for example, ERa). It will be important to
evaluate whether a similar process occurs also in other
malignancies.

TF motif analyses of epigenetically reprogrammed loci show
that deregulation of the core network of TFs, which lies at the
basis of cell-type specification (for example, FoxA1)45 might lead
to aberrant rearrangements of entire chromosomal territories.
These rearrangements may include surrounding genes that are
central to functional reprogramming, drug resistance and
invasion. At the same time, specific selective pressures might
trigger epigenetic activation of tailored pathways (for example,
CB), irrespective of the broad chromatin context in which single
genes are nested.

Our data support a model in which chronic exposure to AI
constitutively activates CB. Intra-tumour activation of CB may
then lead to the local accumulation of metabolic ligands for other
nuclear receptors. Promisingly, we find that AI-resistant SEs are
enriched with DNA motifs of metabolic nuclear receptors
including FXR and LXR. It is well established that 27HC is also
an LXR agonist38, therefore we cannot exclude that LXR might
also contribute to AI resistance in combination with endogenous
ERa activation46. In addition, endogenously produced ligands,
including 27HC might act on additional nuclear receptors and
allow the activation of an alternative cohort of regulatory
elements (Supplementary Fig. 11). Of note, 40/48 nuclear
receptors (NRs) have increased expression in LTED cells
(FXR4300 fold, LXR41.8 fold) and 9 of these are markedly
increased in ERa-negative LTEDF (PPARg4 500-fold) strongly
suggesting that other nuclear receptors might contribute to the
invasive phenotype observed in LTEDF cells. In the same way,
autocrine metabolic signalling might also contribute to ERa
binding found in metastatic breast cancer in vivo41.

Epigenetic activation of the CB pathway might also be
supported by specific genetic aberrations. For example, SQLE
amplification occurs in a significant proportion of cancers47, but
the functional consequences of SQLE amplification have not
previously been appreciated. SQLE locus is just 2 Mb away from
the oncogene Myc in a hotspot for genomic rearrangements44.
However, we could not find any clear correlation between SQLE
and MYC expression, suggesting that the poor outcome typical of
breast cancer patients with high SQLE does not simply reflect
MYC activation. Notably, our model could partially explain
recently published epidemiological observations. While the
protective role of anti-cholesterol statin towards breast cancer is
still debated, a nation-wide study found that statin users with
ERa-positive breast cancer are less likely to develop relapses48. In

agreement with our findings, no effect on relapse rates was noted
in patients with ERa negative48

Recent clinical trials recommend a switch from Tamoxifen to
AI with ovarian suppression in pre-menopausal women49. Our
data suggest that Tamoxifen and AI exposure do not have an
equivalent effect on breast cancer cells; thus ERa patients should
be assigned to a specific endocrine treatment depending on the
molecular profile of their tumour. Moreover, our data offer novel
molecular insights and warrants for additional clinical trials
combining statins and AI in patients with metastatic disease47.
Pharmacodynamics studies show no influence of statins on E2
levels or Anastrozole metabolism50. Interestingly, statins were
shown to interfere with ovarian cancer and multiple myeloma
growth in pre-clinical models51,52. Our work therefore offers a
new paradigm in the context of how epigenomes evolve in
response to interrelated exogenous pressures while paving
the way for future studies designed to help us understand the
specific effects of therapeutic intervention during metastatic
progression.

Methods
Cell lines and clinical samples. Cell lines were cultured as follows MCF7 and
T47D: DMEM cell growth medium (DMEM with 10% of fetal bovine serum (FBS)
and 100 U penicillin/0.1 mg ml� 1 streptomycin plus 10� 8 17-b-estradiol (SIGMA
E8875). LTED cells were passaged in stripped DMEM cell growth medium
(Phenol-free DMEM with 10% of charcoal-stripped FBS (CDT) and 100 U peni-
cillin/0.1 mg ml� 1 streptomycin MCF7T and LTEDT were cultured as MCF7 and
LTED with the addition of 10� 7 4-hydroxytamoxifen (SIGMA H7904). MCF7F
and LTEDF were cultured as MCF7 with the addition of 10� 7 Fulvestrant (SIGMA
I4409)15. Tissues (primary, secondary and pleural effusions) were obtained from
the Imperial Tissue Bank. The Tissue Management Committee reviewed and
approved all documents. Imperial Tissue bank released stores the samples under an
HTA Licence (12275). The appropriate regulatory committees approved all the
relevant documents. Each patient signed an informed consent to donate tissue to
Imperial Tissue Bank. All patients’ notes are kept within locked filing cabinets
within locked offices in research. This is to maintain confidentiality. Tissues used
for qRT–PCR were manually enriched for tumour cells by the resident pathologist.
Pleural effusions were cultured in DMEM, 10% FBS and phenol for a brief time
before RNA extraction. Cells were tested, genotyped and characterized as ERa
positive (LGC standards). Circulating tumour cells were characterized as mammary
gland based on short tandem repeat similarity with HTB-22 (LGC standards).

Invasion assays. Boyden chamber and 3D Matrigel invasion assays were
performed as previously described53. Briefly, cells (5� 104 in 200ml of a-MEM)
were plated in the Matrigel-coated upper chambers of the 24-well Transwell
invasion assay plate (Corning). Each condition was represented in triplicate. Plates
were incubated at 37 �C for 24 h for HCC1806 cells. Cells in the lower chamber
(including those attached to the under surface of the membrane) were trypsinized
and counted using a Casy 1 counter (Sharfe System). Mean and s.e.m. of
independent experiments were calculated. Statistical analysis was performed using
a two-tailed Student’s t-test to determine the statistical significance of the
differences observed. A P value below 0.05 was considered significant.

Fatostatin and mevalonate treatments. Cell lines were cultured in the appro-
priate conditions until 60–70% confluence and then treated with 15 mM of
Fatostatin (SIGMA F8932) for 6 h before RNA extraction and qRT–PCR analysis.
For mevalonate treatment, organoids were allowed to form and embedded in
Matrigel (see Hanging-drop assay) then treated with 50 mM mevalonate54 (SIGMA
90469).

Mouse models. MCF7-mCherry-Puro and LTED-mCherry-Puro cells (1� 106)
were injected into the tail vein of NOD-SCID mice (n¼ 3 per group). Images were
taken of the mice weekly from dorsal and ventral views for 8 weeks to monitor the
development of metastases. The mice were assessed weekly using whole-body
imaging to quantify the relative amounts of tumour burden. Imaging was per-
formed with a highly sensitive, cooled charge-coupled device camera mounted in a
light-tight specimen box (IVIS; Xenogen). The imaging and quantification of
signals were controlled by acquisition and analysis software. At termination, the
lymph nodes, lungs, kidney, bones and livers were harvested by dissection. The
lymph nodes, lungs, kidneys, liver and bones were fixed for 24 h in neutral buffered
formalin, and then rinsed in 70% ethanol. Following fixation, the bones were
decalcified in 10% EDTA in 0.1 M Tris-HCl pH 7.4 for 1 week, re-fixed in formalin
and then rinsed in 70% ethanol. All tissues were dehydrated using ethanol, cleared
with Histoclear and embedded in paraffin wax. Paraffin sections (5 mm) were
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stained with haematoxylin and eosin to reveal their tissue morphology and the
presence of infiltrating cells. The animal trials were carried out under London
Home Office license authority and London Home Office Ethics Committee
guidelines.

Immunohistochemistry and western blot. Paraffin sections were dewaxed and
antigen retrieval was carried out with citrate buffer at pH 6.0 or in 10 mM
Tris-HCl, pH 9.0. Tissue sections were pretreated using 0.3% H2O2 in PBS, rinsed
in PBS and then incubated with 20 ml ml� 1 normal goat serum. Primary antibodies
were diluted in PBS and incubated overnight at 4 �C, along with negative control
sections where the primary antibody was omitted. All the bound antibodies were
detected using biotinylated anti-mouse or anti-rabbit secondary antibodies,
detected using the Vectastain Elite peroxidase ABC kit and the ImmPACT DAB kit
(Vector Laboratories). Stained sections were counterstained with haematoxylin.
Antibody dilutions: PBX1 1:50 (Abnova H00005087-M01), Human nuclear antigen
1:25 (Abcam ab191181), Pan-cytokeratin 1:100 (SIGMA C5992). For western blot,
SQLE antibody (SIGMA HPA018038) was used at 1:250 and ERa (Santa Cruz
sc-543) was used at 1:1,000.

Hanging-drop assay. Briefly, cells were trypsinized and counted. In all, 250,000
cells were resuspended in 1 ml of phenol-red or phenol-red-free DMEM with the
relevant concentrations of Estradiol, Fulvestrant and Tamoxifen. Twenty-microlitre
drops were dispensed on to a 10-cm dish lid. Five millilitre of medium were added
to the bottom of the dish to prevent evaporation. The lid was inverted and the
drops were left hanging for 5 days. The newly formed organoids were then
transferred into 10ml Matrigel drops (BD 356237, BD 356234) and moved
to 24- or 48-well plates after which immunofluorescence or real-time monitoring
(respectively) was carried out. Two hundred microlitre of medium with the
relevant concentration of drugs were added to the wells.

Real-time invasion and migration assays. Cell invasion and migration were
assessed in real time using the xCELLigence system CIM-16 wells plates. The
bottom chamber was filled with 160 ml of full medium (phenol-red or phenol-red-
free DMEM with the relevant concentrations of Estradiol, Fulvestrant and
Tamoxifen) and acted as a chemoattractant. The upper chamber was then secured
on top and 30ml of serum-free medium were added to avoid the membrane drying
out. The plate was loaded on the machine cradle and left for 1 h to allow membrane
equilibration. After 1 h, the baseline measurement was taken. Hundred microlitre
of serum-free medium (again phenol-red or phenol-red-free DMEM with the
relevant concentration of Estradiol, Fulvestrant and Tamoxifen) containing 40,000
cells were subsequently added to each well, and left for 30 min at room temperature
to allow for the attachment of the cells. The impedance value for each well was
recorded every 15 min for 20 h for migration experiments and 48 h for invasion and
expressed as Cell Index value. For invasion, the CIM plates were coated with 30 ml
of a 1:40 dilution of Matrigel (BD Biosciences) and allowed to set for 4 h at 37 �C
before proceeding as per the migration experiment. Four wells per condition were
used in each experiment and every experiment was repeated four times.

Chromatin immunoprecipitation (ChIP). Cells were crosslinked with 1%
formaldehyde and processed according to Schmidt et al.55 Briefly, chromatin
extract were sonicated using a Diagenode sonicator using 20 cycles (30 s on and
30 s off) at maximum intensity. Purified chromatin was then immuno
precipitated using 4 mg of K27ac antibodies (Abcam ab4729) per ChIP. Non-
immunoprecipitated chromatin was used as Input control. Chromatin was then
decrosslinked and sonication efficiencies tested on a 1.5% agarose gel. Before the
construction of ChIP-seq libraries (NEB, see Supplementary Methods), we
determined the enrichment using positive and negative controls. We then used
10 ng of IPed chromatin and 10 ng of Input for library preparation.

Bioinformatic analyses. Detailed protocols on Peak Calling, enhancers-promoters
Peak-pairing, Clustering analysis, IPA analysis and RNA-seq differential expression
analysis can be found in the Supplementary Methods.

RT–qPCR and ChIP–qPCR. RT–qPCR and ChIP–qPCR were performed and
analysed as follows. Briefly, reactions were carried on in 10 ml volume containing
5 ml of SYBR mix (ABI 4472918), 0.5 ml of primers (2.5 and 5 mM final
concentration, respectively), 2.5 ml of complementary DNA or DNA and 2 ml of
water. We used a three-step cycle programme with melting analysis. The cycles
were as follow: 10 s at 95 �C, 30 s at 60 �C and 30 s at 72 �C, repeated 40 times7.

SRB and IC50 assay. SRB and IC50 assays were performed as follow: briefly, the
sulphorhodamine B (SRB) assay was used to monitor the effects of statin or
Terbinafine treatment cell on cell proliferation in monolayer cultures. Cells were
seeded in flat-bottomed 96-well plates (3� 103 cells per well). The cells were
allowed to adhere overnight. One plate was assayed at this time point (day 0) and
further plates were assayed at 2-day intervals. The cells were fixed by adding 100 ml
per well of ice-cold 40% (vol/vol) TCA to each well for 60 min. The plates were

washed five times in running tap water and stained with 100ml per well of the SRB
reagent (0.4% wt/vol SRB in 1% (vol/vol) acetic acid) for 30 min. The plates were
washed five times in 1% (vol/vol) acetic acid and allowed to dry overnight. SRB was
solubilized with 100 ml per well 10 mM Tris-base, shaken for 30 min and the optical
density was measured at 492 nm.

Primers. The sequences of primers (RT–qPCR, ChIP–qPCR) are listed in
Supplementary Data 7.
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