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LETTER TO EDITOR

Development of a deep learning-based nomogram for
predicting lymph node metastasis in cervical cancer: A
multicenter study

Dear Editor,
Cervical cancer is one of the most frequently diag-

nosed cancers in women and has a high mortality rate
worldwide.1 Lymph node metastasis (LNM) is an impor-
tant prognostic factor in patients with cervical cancer.2–4
The assessment of LNM before treatment is essential to
guide and tailor the treatment.5,6 Themorphological exam-
ination of lymph nodes via medical images is commonly
used for diagnosing LNM. However, it depends mainly on
radiologists’ experience and has relatively low accuracy.
Thus, we collected a multi-center dataset and developed
a deep learning-based nomogram (DLN) to improve the
accuracy of LNM diagnosis in cervical cancer.
In total, 1123 cervical cancer patients with computed

tomography (CT) examination were enrolled from 13 cen-
ters in our study (Table S1 and Supplementary A1). As
shown in Supplementary A2 and Figure S1, we divided
these patients into four cohorts: training cohort, valida-
tion cohort, external testing cohort 1, and external testing
cohort 2. Detailed information on the four cohorts is pre-
sented in Table S2. The clinical characteristics included
age, gravidity, histological type, FIGO stage, etc. More-
over, two experienced gynecologists, who were blinded to
the pathological report, were invited to diagnose the sta-
tus of LNM together using only CT images. Additionally,
a follow-up cohort including 148 patients from one center
was used for survival analysis.
The workflow of this study is described in Figure 1,

including region of interest (ROI) segmentation, data pre-
processing (Supplementary A3), model construction, and
model evaluation (Supplementary A4).
We invited experienced gynecologists to segment ROIs

in normalized CT images. Before model construction, data
augmentations, including flipping, rotating, and random
cropping, were used to generate new training samples to
avoid overfitting. Oversampling methods were used to bal-
ance the ratio of LNM-positive patients and LNM-negative
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patients in the training cohort. Three state-of-the-art deep
learning methods, including ResNet18,7 ResNet50,7 and
SE-Net,8 were used to construct three candidate mod-
els (Supplementary A5). As shown in Table S3, ResNet18
showed the best performance in the validation cohort,
and thus it was selected to build the final deep learn-
ing signature (Sig_DL). As shown in Supplementary A6, a
total of 1407 handcrafted radiomic features were extracted,
and three key radiomic features were selected via a series
of feature selection methods and integrated them into a
radiomic signature (Sig_radiomic).9–10 As shown in Table 1
and Figure S2, the AUCs of Sig_DL performed better than
Sig_radiomic in all the cohorts.
Additionally, univariate analysis was used to screen for

significant clinical features. We noticed that the FIGO
stage was significantly associated with LNM (P < 0.01).
After multivariable logistic regression, we selected the
FIGO stage and age as key clinical features and used
them to construct a clinical signature (Sig_clin). The area
under the receiver operating characteristic curve (AUCs) of
Sig_clin reached 0.678 and 0.597 in training and validation
cohorts, respectively.
Finally, we integrated Sig_DL, diagnoses of gynecol-

ogists, and all significant clinical features into a DLN
via multivariate linear regress analysis (Table S4 and
Figure 2A). Compared with other models, DLN had the
best predictive ability (Figure S3), with AUCs of 0.867,
0.807, 0.781, and 0.804 in the training cohort, valida-
tion cohort, external testing cohort1 and external testing
cohort2 (Figure 2B–E). As shown in Table 1, the accuracy
also indicated the good performance of DLN in these four
cohorts.
Meanwhile, the decision curves showed that the patients

could benefit more from DLN than both Sig_DL and
Sig_clin (Figure 2F). As shown in Figure 2G, the cal-
ibration curves demonstrated that the DLN had good
consistency with the gold standard of LNM.
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F IGURE 1 Workflow of the development of deep learning-based nomogram (DLN). (A) CT images and segmentation, (B) Data
preprocessing. (C) Model construction. (D) Model evaluation

TABLE 1 Performance of models in all cohorts

Specificity Sensitivity Accuracy AUC (95% CI)
True

negative
True

positive
False

negative
False

positive
Sig_clin
Training cohort 0.578 0.678 0.600 0.678 (0.619–0.726) 289 97 46 218
validation cohort 0.710 0.423 0.665 0.597 (0.481–0.722) 97 11 15 41
External testing1 0.579 0.348 0.544 0.489 (0.367–0.605) 73 8 15 53
External testing2 0.615 0.572 0.609 0.626 (0.485–0.755) 80 12 9 50

Sig_radiomic
Training cohort 0.527 0.545 0.531 0.575 (0.520–0.626) 269 78 65 247
validation cohort 0.522 0.577 0.530 0.621 (0.505–0.746) 72 15 11 66
External testing 1 0.508 0.652 0.530 0.616 (0.497–0.735) 64 15 8 62
External testing 2 0.562 0.619 0.570 0.595(0.475–0.714) 73 13 8 57

Sig_DL
Training cohort 0.734 0.818 0.753 0.853 (0.821–0.885) 379 117 26 137
validation cohort 0.710 0.731 0.713 0.787 (0.702–0.878) 98 19 7 40
External testing 1 0.651 0.739 0.664 0.776 (0.677–0.877) 82 17 6 29
External testing 2 0.777 0.714 0.768 0.768 (0.662–0.874) 101 15 6 29

DLNa

Training cohort 0.793 0.790 0.792 0.867 (0.839–0.897) 412 113 30 104
validation cohort 0.783 0.654 0.762 0.807 (0.713–0.889) 108 16 10 30
External testing 1 0.714 0.739 0.718 0.781 (0.669–0.876) 91 17 6 35
External testing 2 0.808 0.667 0.788 0.804 (0.705–0.892) 105 14 7 25

aDLN, deep learning-based nomogram.

It is worth noting that the diagnoses of the gynecolo-
gists had high specificity but low sensitivity in our cohorts.
Therefore, we modified the cutoff value so that DLN could
have the same specificity as the gynecologists’ diagnoses.
Then, we found that DLNhad better accuracy and sensitiv-

ity than the gynecologists (Table S5). The Venn diagrams
also showed that DLN had more true positive cases than
the gynecologists (Figure S4). Four typical cases are shown
in Figure 3, which indicates that DLN could help the
clinician reduce the risk of misdiagnosis.
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F IGURE 2 Evalutaion of the deep learning-based nomogram (DLN) mdoel. (A) The DLN model. The ROC curves in the training cohort
(B), validation cohort (C), external testing cohort 1(D), and external testing cohort 2 (E). (F) The decision curve of all models. (G) The
calibration curves of the DLN. (H) Kaplan–Meier curves of DLN in the follow-up cohort. ROC, receiver operating characteristic curve

Subgroup analysis was performed on the data of the
enrolled patients, including their clinical characteris-
tics, the CT manufacturers, and the centers. As shown
in Figure S5A–F, the subgroup analysis indicates that
the DLN was not affected by age, times of pregnancy,
human papillomavirus (HPV) testing result, and histo-
logical type. Especially, we selected 614 cervical cancer
patients for human papillomavirus (HPV) testing. Sub-
group analysis revealed that our DLN showed good
performance in both HPV-positive subgroup and HPV-
negative subgroup (Figure S5G–H). Our model also was

minimally affected by the CT manufacturers and centers
(Figure S6A,B).
Besides, 148 cervical cancer patientswith follow-up from

Center 2 were used for exploring the association between
DLN score and overall survival (OS) using Kaplan-Meier
curves (Supplementary A7).We divided them into low-risk
and high-risk groups using themean value of DLN score as
a cutoff. As shown in Figure 2H, we found that the high-
risk group exhibited shorter OS (log-rank test: P= 0.0012).
Furthermore, we stratified patients via the FIGO stage
for comparison, however, the FIGO stage showed no sig-
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F IGURE 3 Four typical cases to show the performance of deep learning-based nomogram (DLN) and gynecologists. (A) A lymph node
metastasis (LNM)-positive patient correctly diagnosed by both DLN and gynecologists; (B) An LNM-positive patient only correctly diagnosed
by DLN; (C) An LNM-negative patient only correctly diagnosed by DLN; (D) An LNM-positive patient correctly diagnosed by both DLN and
gynecologists

nificant association with OS (Figure S7). Hence, DLN
could serve as a significant prognostic factor for cervical
cancer.
In conclusion, we developed a deep learning model

for the preoperative prediction of LNM in cervical cancer
and validated it in a large-scale and multicenter dataset.
The performance of DLN surpassed the diagnosis of expe-
rienced gynecologists. Therefore, DLN can serve as a
non-invasive tool for LNM determination and thus assist
treatment decision-making.

ACKNOWLEDGEMENTS
This work was supported by Strategic Priority Research
Programof ChineseAcademy of Sciences (XDB 38040200),
National Key R&D Program of China (2017YFA0205200),
National Natural Science Foundation of China (82022036,
91959130, 81971776, 81771924, 62027901, 81930053,
81227901), the Beijing Natural Science Foundation
(Z20J00105), Chinese Academy of Sciences under Grant

No. GJJSTD20170004 and QYZDJ-SSW-JSC005, the
Project of High-Level Talents Team Introduction in
Zhuhai City (Zhuhai HLHPTP201703), and the Youth
Innovation Promotion Association CAS (Y2021049). The
authors would like to acknowledge the instrumental and
technical support of Multi-modal biomedical imaging
experimental platform, Institute of Automation, Chinese
Academy of Sciences.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

Yujia Liu1,2
Hui Duan3
Di Dong1,2,4

Jiaming Chen3,5
Lianzhen Zhong1,2

Liwen Zhang1,2
Runnan Cao1,2

https://orcid.org/0000-0002-1561-2582
https://orcid.org/0000-0002-8335-268X
https://orcid.org/0000-0003-0783-3171
https://orcid.org/0000-0002-0073-8174
https://orcid.org/0000-0002-8426-5289
https://orcid.org/0000-0001-9816-1344
https://orcid.org/0000-0003-1682-3960


LETTER TO EDITOR 5 of 5

Huijian Fan3
Zhumei Cui6
Ping Liu3
Shan Kang7

Xuemei Zhan8
Shaoguang Wang9

Xun Zhao1,2
Chunlin Chen3
Jie Tian2,4,10,11

1School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing, China

2CAS Key Laboratory of Molecular Imaging, the State Key
Laboratory of Management and Control for Complex
Systems, Institute of Automation, Chinese Academy of

Sciences, Beijing, China
3Department of Obstetrics and Gynecology, Nanfang

Hospital, Southern Medical University,
Guangzhou, China

4Beijing Key Laboratory of Molecular Imaging,
Beijing, China

5Huizhou Municipal central Hospital, Huizhou, China
6The affiliated hospital of Qingdao University,

Qingdao, China
7Department of Gynecology, Fourth Hospital Hebei Medical

University, Shijiazhuang, China
8Jiangmen central Hospital, Jiangmen, China

9Department of Gynecology, Yantai Yuhuangding Hospital,
Yantai, China

10Beijing Advanced Innovation Center for Big Data-Based
Precision Medicine, School of Engineering Medicine,

Beihang University, Beijing, China
11Zhuhai Precision Medical Center, Zhuhai People’s

Hospital (Affiliated with Jinan University),
Zhuhai, China

Correspondence
Chunlin Chen, Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, No. 1838,

Guangzhou Avenue, Guangzhou 510515, China.
Email: ccl1@smu.edu.cn

Jie Tian Ph.D, Beijing Advanced Innovation Centre for
Big Data-Based Precision Medicine, School of

Engineering Medicine, Beihang University, Beijing,
100191, China.

Email: jie.tian@ia.ac.cn

Yujia Liu, Hui Duan, Di Dong and Jiaming Chen
contributed equally as co-first authors.

ORCID
YujiaLiu https://orcid.org/0000-0002-1561-2582
HuiDuan https://orcid.org/0000-0002-8335-268X
DiDong https://orcid.org/0000-0003-0783-3171
JiamingChen https://orcid.org/0000-0002-0073-8174
LianzhenZhong https://orcid.org/0000-0002-8426-5289
LiwenZhang https://orcid.org/0000-0001-9816-1344
RunnanCao https://orcid.org/0000-0003-1682-3960
HuijianFan https://orcid.org/0000-0002-9520-3067
PingLiu https://orcid.org/0000-0001-6769-3479
ChunlinChen https://orcid.org/0000-0002-7140-5668
Jie Tian https://orcid.org/0000-0003-0498-0432

REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:

GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):
209-249.

2. KohWJ, Abu-RustumNR, Bean S, et al. Cervical cancer, version
3.2019, NCCN clinical practice guidelines in oncology. Jour-
nal of the National Comprehensive Cancer Network. 2019;17(1):
64-84.

3. Kan Y, Dong D, Zhang Y, et al. Radiomic signature as a pre-
dictive factor for lymph node metastasis in early-stage cervical
cancer. J Magn Reson Imaging. 2019;49(1):304-310.

4. Gien LT, Covens A. Lymph node assessment in cervical can-
cer: prognostic and therapeutic implications. J Surg Oncol.
2009;99(4):242-247.

5. Liu Y, Fan H, Dong D, et al. Computed tomography-based
radiomic model at node level for the prediction of normal-
sized lymph node metastasis in cervical cancer. Translational
Oncology. 2021;14(8):101113.

6. Chen J, He B, Dong D, et al. Noninvasive CT radiomic
model for preoperative prediction of lymph node metasta-
sis in early cervical carcinoma. Br J Radiol. 2020;93(1108):
20190558.

7. He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition. IEEE; 2016.

8. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. IEEE;
2018.

9. Bluemke DA, Moy L, Bredella MA, et al. Assessing radiology
research on artificial intelligence: a brief guide for authors,
reviewers, and readers—from the radiology editorial board.
Radiology. 2020;294(3):487-489.

10. Zwanenburg A, Leger S, Vallières M, et al. Image biomarker
standardisation initiative. arXiv; 2016.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

https://orcid.org/0000-0002-9520-3067
https://orcid.org/0000-0001-6769-3479
https://orcid.org/0000-0002-7140-5668
https://orcid.org/0000-0003-0498-0432
mailto:ccl1@smu.edu.cn
mailto:jie.tian@ia.ac.cn
https://orcid.org/0000-0002-1561-2582
https://orcid.org/0000-0002-1561-2582
https://orcid.org/0000-0002-8335-268X
https://orcid.org/0000-0002-8335-268X
https://orcid.org/0000-0003-0783-3171
https://orcid.org/0000-0003-0783-3171
https://orcid.org/0000-0002-0073-8174
https://orcid.org/0000-0002-0073-8174
https://orcid.org/0000-0002-8426-5289
https://orcid.org/0000-0002-8426-5289
https://orcid.org/0000-0001-9816-1344
https://orcid.org/0000-0001-9816-1344
https://orcid.org/0000-0003-1682-3960
https://orcid.org/0000-0003-1682-3960
https://orcid.org/0000-0002-9520-3067
https://orcid.org/0000-0002-9520-3067
https://orcid.org/0000-0001-6769-3479
https://orcid.org/0000-0001-6769-3479
https://orcid.org/0000-0002-7140-5668
https://orcid.org/0000-0002-7140-5668
https://orcid.org/0000-0003-0498-0432
https://orcid.org/0000-0003-0498-0432

	Development of a deep learning-based nomogram for predicting lymph node metastasis in cervical cancer: A multicenter study
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


