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Abstract: Natural products derived from natural resources, including nutritional functional food,
play an important role in human health. In recent years, the study of anti-fungal and other properties
of agri-foods and derived functional compounds has been a hot research topic. Candida albicans is a
parasitic fungus that thrives on human mucosal surfaces, which are colonized through opportunistic
infection. It is the most prevalent cause of invasive fungal infection in immunocompromised individ-
uals, resulting in a wide variety of clinical symptoms. Moreover, the efficacy of classical therapeutic
medications such as fluconazole is often limited by the development of resistance. There is an ongoing
need for the development of novel and effective antifungal therapy and medications. Infection of
C. albicans is influenced by a great quantity of virulence factors, like adhesion, invasion-promoting
enzymes, mycelial growth, and phenotypic change, and among others. Furthermore, various natural
products especially from food sources that target C. albicans virulence factors have been researched,
providing promising prospects for C. albicans prevention and treatment. In this review, we discuss the
virulence factors of C. albicans and how functional foods and derived functional compounds affect
them. Our hope is that this review will stimulate additional thoughts and suggestions regarding
nutritional functional food and therapeutic development for patients afflicted with C. albicans.

Keywords: agri-foods; functional compounds; natural products; Candida albicans; virulence factor

1. Introduction

Agri-foods and derived components are important constituents of natural products.
Natural products serve as an essential source of drug development due to their remarkable
pharmacological activity, good compatibility, and few side effects compared to synthetic
compounds. Functional compounds, which specific reference to plant-derived active
ingredients with promising pharmacological activity, attracted the attention of researchers
all over the world. There is more and more proof of the possible protective effects of
particular foods and food bioactive ingredients that are relevant to human health. It
is necessary for researchers to explore the connection between the biological activity of
natural products and relevant mechanisms, and their application in the field of nutritional
functional foods as well as in the field of life and health.

Candidiasis caused by Candida spp. affects more than 400,000 people each year, with a
50% fatality rate among these individuals [1,2]. Invasive candidiasis is the most common
deep-seated fungal disease in critically ill patients. The incidence rate is approximately
2.6–16.5%, and the mortality rate can be as high as 40–60% [3,4]. Candida albicans is the
most opportunistic pathogenic Candida species that causes infections may range, in scale,
from affecting the mucous membranes to being systemic infections [5]. C. albicans infection
rates have risen substantially in recent years, particularly for systemic infection, due to
the widespread use of antibiotics and immunosuppressants, the use of radiotherapy and
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chemotherapy in tumor patients, and the spread of the immunodeficiency virus [6,7]. Even
with sufficient antifungal treatment, patients have a death rate of up to 40% [8]. Generally,
C. albicans is able to colonise the skin and mucosal membrane surfaces of most healthy
individuals [9]. When the normal defense function of the body is damaged, C. albicans can
progress from being a superficial mucosal infection in the mouth, throat, and reproductive
tract to a systemic invasive candidiasis affecting the circulatory system, bone, and brain [7].
C. albicans pathogenicity is associated with the virulence factors: morphological transition
between yeast and hyphae, the production of adhesions and invasins, biofilm formation,
phenotypic transformation, and hydrolases secretion [10].

Clinically, candidiasis treatment medications are classified into three categories of
polyenes, azoles, and echinocandins, they both target ergosterol and 1,3-D-glucan synthase
located on the fungal cell membrane and fungal cell wall respectively [11] (Figure 1).
Thompson et al. summarized, in detail, the effects of related traditional antifungal agents
on C. albicans (Table 1) [11]. Polyene drugs such as nystatin and amphotericin B (AmB) are
commonly used. However, dose-limiting toxicities, drug interactions, the development of
drug resistance, and other factors limit the use of these agents. For example, nystatin, which
is mainly used to treat the overgrowth of Candida spp., especially C. albicans, is limited to
topical use because of insignificant oral absorption and systemic toxicity from intravenous
administration [12–14]. AmB is an effective drug with the widest antibacterial spectrum
for deep fungal infection. However, the side effects and significant toxicity of AmB have
limited its clinical use in oral candidiasis [15]. Triazoles, which include fluconazole, are
currently the most widely used antifungal drugs. Fluconazole (FLZ) is the first choice in
the early stage of clinical treatment of Candida spp. infection. It remains at a subtherapeutic
level in the human body for long periods, leading to increased drug resistance [16]. Major
triazoles also include and voriconazole and itraconazole. With long-term drug abuse and
due to unnecessary use in combined medication, C. albicans resistance to oxazole drugs is
increasing, including through cross-resistance to a variety of oxazole derivatives, limiting
treatment options for patients with oxazole-resistant Candida spp. Echinocandins, such as
caspofungin, mycamine, and anidulafungin, are another class of antifungal drugs. These
antifungal drugs have limited clinical use due to the high incidence rate and mortality
associated with Candida spp. as well as the emergence of drug resistance and side effects.

Table 1. The effects of traditional antifungal agents on C. albicans.

Traditional Antifungal Agent Type Function

Fluconazole
Azoles

Inhibit cytochrome P450
(CYP)-dependent 14-α-demethylase and prevent the
conversion of lanosterol to ergosterol.

Voriconazole
Itraconazole

Amphotericin B Polyenes Bind to ergosterol of fungal cell membranes.Nystatin

Caspofungin
Echinocandins

Inhibit the synthesis of β-1,3 glucan, by inhibiting the
activity of glucan synthase.Micafungin

Anidulafungin

There is an urgent need to develop new antifungal drug candidates and therapeutic
methods [17,18]. During the last two decades, the situation has been exacerbated due
to lack of research to develop antifungal agents with novel mechanisms of action [19].
Compared with targeting the growth process of fungal cells, targeting virulence is a better
choice for the development of new antifungal drugs. Targeting C. albicans virulence factors
helps us to mine or design highly specific antifungal drugs that avoid or minimize side
effects on the host. The discovery of virulence factors can significantly increase the number
of potential targets for antifungal drug development, as well as lead to new therapeutic
categories with novel mechanisms [20]. In recent years, a number of natural functional
compounds and botanical preparations (Table 2) were found to be effective against the
virulence factors of C. albicans (Figure 2). It has been reported that nepodin (1, Figure 3),
a seasoning, derived from Rumex japonicus roots, effectively inhibits C. albicans biofilm
formation without affecting the growth of its planktonic cells [21].
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Table 2. The effects of natural products on C. albicans virulence factors.

No. Natural
Products Source Function Ref.

1 Nepodin (1) Rumex japonicus Inhibits C. albicans biofilm formation. [21]

2 Nortriptyline (2) Metabolites of amitriptyline
Inhibits the formation of biofilm and
hyphae and effectively kills cells in
mature biofilm.

[22–24]

3 Berberine (3) Bayberry,
Coptis chinensis

Inhibits the formation of germ tubes and
hyphae by regulating the MAPK pathway
and increasing exposure of chitin and
β-1,3-glucan.

[25,26]

4 Skullcap (4) Scutellaria amoena Reduces drug excretion. [27]

5 Shikonin (5) Echium plantagineum

Inhibits the formation of C. albicans
biofilm; inhibits hyphal formation and
adhesion, and enhances the
production of farnesol.

[28]
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Table 2. Cont.

No. Natural
Products Source Function Ref.

6 Tannins (6) Blueberry, grape, Mangrove
Laguncularia racemosa

Inhibit the adhesion of C. albicans.

[29]

7 α-Mangostin (7) Garcinia mangostana [30]

8 Hexane and ethyl acetate
extracts of raspberry Rubus idaeus [31]

9 Nerol (8) Rutaceous For the treatment of C. albicans invasion. [32]

10 Pulsatilla decoction
Pulsatilla chinensis, Phellodendri
Chinensis Cortex, Coptis
chinensis, Cortex Fraxini

Inhibits the adhesion of C. albicans. [33]

11 Phloretin (9) Apple peel, pear
tree, strawberry

Inhibits the biofilm formation and
suppresses the yeast hyphae transition via
downregulation genes related to hypha,
represses the proteases and
phospholipases secretion by reducing the
expression of protease-encoding genes
Sap1 and Sap2 as well as PLB1.

[34–36]

12 Lepidine B (10)
Lepidium Sativum

Inhibit the production of phospholipase.
[37]13 Lepidine E (11)

14 Oil of Origanum vulgare [38]

15 Methanolic extract of Juglans regia Affects Candida growth and hydrolytic
enzyme secretions. [39]

16 Acetone and water crude extracts of Eugenia uniflora
Affects the transformation from yeast to
hyphae and impairs the secretion of
phospholipase and proteases.

[40]

17 Pyridoxatin (VB6) (12) Fish, animal liver, legumes,
Lichen endophyte Interferes with ergosterol synthesis. [41]

18 5,6,8-Trihydroxy-
7,4′dimethoxyflavone (13)

Dodonaea viscosa
var. angustifolia

Inhibits ergosterol synthesis and hyphae
and biofilm production in C. albicans. [42]

19 Magnolol (14)
Magnolia garrettii

Inhibit adhesion and the transition from
yeast to hypha and has potential
inhibitory effects on C. albicans.

biofilm formation.

[43]

20 Honokiol (15)

21 Luteolin (16) Perilla, peppermint,
Verbascum lychnitis

Inhibits adhesion of C. albicans and
biofilm formation. [44]

22 Resveratrol (17) Grape, Berry, peanut
Inhibits biofilm formation and disrupts

preformed biofilms.
[45]

23 Pterostilbene (18) Vitis rupestris,
Pterocarpus marsupium

24 Solamargine (19) Solanum mammosum Affects biofilm formation. [46]

25 Magnoflorine (20) Acoruscalamus,
Tinospora cordifolia Reduces C. albicans biofilm formation. [47]

26 Propylene glycol extract of Rosmarinus officinalis Has an antibiofilm effect. [48]

27 Aqueous extract of Adenophora triphylla var. japonica Inhibits Candida biofilm formation. [49]

28 Ethanol extract of lemongrass Reduces C. albicans biofilm. [50]

29 Myricetin (21) Bayberry,
Solanum scabrum Interferes with biofilm formation. [51]
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Table 2. Cont.

No. Natural
Products Source Function Ref.

30 Oleuropein (22) Canarium album,
Syringa reticulata

Regulates the morphological
transformation of C. albicans. [52]

31 Paeonia lactiflora ethanol extract
Inhibits adhesion, morphological
transition from pseudohizophae to
hyphae, and biofilm formation.

[53]

32 6,7,4′-O-Triacetylxanthin (23) Scutellaria baicalensis
In combination with FLZ, inhibits the
myceliun and biofilm via
Ras/cAMP/PKA signaling pathway.

[54]

33 Tetrandrine (24) Stephania tetrandra

Inhibits biofilm formation by decreasing
adhesion and morphological
transformation. The mechanism of
anti-biofilm may be related to the
Ras/cAMP pathway.

[55,56]

34 Allicin (25) Allium sativum Suppresses hyphal formation in
C. albicans. [57]

35 Piperine (26) Pepper

Regulates the morphological
transformation between yeast and
mycelium via restrain mycelial extension
and converting mycelial phase into
yeast form.

[58]

36 Padma Hepaten Amla fruit, belleric myrobalan Inhibits C. albicans biofilm growth and the
yeast-to-hypha morphogenic change.

[59]
37 Green tea Camellia sinensis

38 Decanoic acid (27) Animal fat
Inhibits transformation from yeast to
hyphae, adhesion, and biofilm formation
of C. albicans.

[60]

39 Roemerine (28) Lotus leaf,
Fibraurea recisa

Inhibits yeast-to-hyphae transition of C.
albicans and biofilm formation. The
antibiofilm mechanism may be in
connection with the cAMP pathway.

[61]

40 Morin (29) Psidium guajava
Inhibits biofilm formation and production
of other virulence factors in C. albicans in a
concentration-dependent manner.

[62]

41 Biatriosporin D (30) Biatriospora spp. Inhibits adhesion, hyphal morphogenesis,
and biofilm formation of C. albicans. [63]

42 Solasodine-
3-O-β-D-glucopyranoside (31) Solanum nigrum Inhibits adhesion, morphological

transition, and biofilm formation. [64]

Line (NOR) (2, Figure 3) can inhibit the formation of biofilm and hyphae and effectively
kill cells within mature biofilms [22–24]. Moreover, natural products such as berberine
(3, Figure 3) from bayberry [25], skullcap (4, Figure 3) [27], and shikonin (5, Figure 3) [28]
can be used in conjunction with FLZ to reduce the dose of FLZ. In the field of C. albicans
research, finding and developing new antifungal medications is still a difficult job. This
paper aims to elaborate on C. albicans virulence factors and the effect of clinical drugs and
natural product intervention on C. albicans virulence factors, which is expected to provide
new ideas for C. albicans prevention and treatment.
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2. Virulence Factors in C. albicans and Natural Products with Regulating Activity

C. albicans predominates on the host gastrointestinal mucosa. It can infect the blood
and deep tissues when the host immune system is weak, giving it an aggressive nature [65].
Its invasion of the host process is divided into key steps of adhesion and colonization,
hyphal invasion, and immune escape. Firstly, it must adhere to organisms or various
nonbiological materials in vivo (such as dentures, urinary catheters, etc.) to form a biofilm
structure wrapped by single-layer or multi-layer cells and their secreted extracellular
polymeric matrix. Adhesion contributes to the persistence of organisms in the host, which
is very important for the spread of fungi. Adhesion of C. albicans to host cells is the first and
necessary step of infection and an important prerequisite for invasion. Many biomolecules



Foods 2022, 11, 2951 7 of 22

on the surface of bacteria increase their adherence to host cells and are referred to as
“adhesin” [66].

2.1. Adhesion
2.1.1. Adhesin

The best researched of adhesins are the agglutinin-like sequence proteins (Als) and
Hwp1 [67]. Proteins in the lectin-like sequence family of C. albicans are among the most
characterized fungal adhesins [68]. In this species, the Als family contains eight genes
encoding large cell surface glycoproteins. These glycoproteins have similar basic structures,
consisting of an N-terminal domain with adhesion function (MT-Als), a central structure
of tandem repeats, and a C-terminal domain rich in Ser/Thr. There is a secretory signal
sequence at the N-terminal of the protein and a glycosylphosphatidylinositol (GPI) an-
chored addition site at the C-terminal, which is consistent with the protein entering the
secretory pathway and its final localization to the fungal cell wall β-1,6-glucan [69]. Als
gene can encode GPI-like cell surface glycoprotein, and APX001A is an inhibitor of GPI
anchor protein. It inhibits the synthesis of GPI by inhibiting the inositol acylation reaction of
glucosamine-PI and reduces the content of GPI anchor protein on the cell surface to inhibit
the life processes related to fungal virulence, such as fungal adhesion, mycelial growth,
and biofilm formation. At present, the phase I clinical study has been completed, and the
phase II clinical study is recruiting patients for the first-line treatment of candidemia [70].

Another important C. albicans adhesin is Hwp1, which is also related to the mycelial
associated protein GPI-like protein. Hwp1 is a cell surface protein of C. albicans with
characteristics useful for infection. It means a lot to hyphal formation and yeast adhesion
to epithelial cells. Hwp1 is a substrate of mammalian transglutaminase, which can bind
C. albicans hyphae and host cells through covalent links, resulting in C. albicans infection [71].
Hwp1 gene encodes C. albicans proteins involved in a variety of functions, including cell
wall assembly, intracellular signal transduction, and hyphal development. In addition,
it can promote the combination of Candida spp. and epithelial cells as the first step of
colonization. C. albicans with the Hwp1 gene deleted cannot form stable covalent bond
mediated adhesions with human oral epithelial cells, which indicates that Hwp1 plays
an important role in the pathogenesis of C. albicans, making Hwp1 is a potential drug
target [72].

2.1.2. Invasin

C. albicans can invade host cells through two different mechanisms: inducible endo-
cytosis and active infiltration. Inducible endocytosis, which is the most researched, refers
to the process by which fungi express a special protein, invasion, on the cell surface (like
E-cadherin of epithelial cells) that binds to host ligands to induce swallowing of fungal cells
as a means for them to enter host cells [73]. One mechanism by which C. albicans hyphae
invade oral epithelium is to stimulate endocytosis by expressing Als3 and Ssa1 invasins
and interacting with epidermal growth factor receptor (EGFR) on epithelial cells [74].

Als3p is the most studied among the proteins encoded by Als3 and is among the
important factors involved in the pathogenic process of C. albicans. Its main function is
to help C. albicans in host colonization. For an adhesin, Als3p has extensive substrate
specificity and can mediate the attachment of C. albicans to mountains of host cells, like
epithelial cells, endothelial cells, and so on. In addition to helping C. albicans colonize the
host, Als3p is also necessary for fungi to invade the host. In recent years, it has become
a particular target of vaccines and antibodies against C. albicans [75,76]. Als3p-specific
antibodies contain monoclonal antibodies (MAb) 3-A5, MAb113, and scFv3 as well as
MAbC7, MAb3D9.3, MAb2G8, etc. An NDV-3 vaccine targeting the Als3p N-terminal has
entered clinical trials. These vaccines and antibodies are expected to become efficient new
antifungal drugs in the future [75–77].

Ssa1 is a member of the heat shock protein 70 (Hsp70) family expressed on the cell
surface. It is conveyed on the surface of C. albicans and undertakes an invasin upon the
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C. albicans [78]. Jianning reported that the pivotal role of Ssa1 in host cell invasion is
reflected in the declined ability of Ssa1 null mutants to induce in vitro uptake by epithe-
lial and endothelial cells themselves, and in mouse models of oropharyngeal candidiasis
and disseminated candidiasis, where the virulence of the mutants was obviously dimin-
ished [78]. In addition, mutation of Als3 and Ssa1 mutants can reduce the expression of
adhesin and invasin in epithelial cells and reduce the toxicity of C. albicans in a mouse
model of oropharyngeal candidiasis.

Natural products of fruit origin can inhibit C. albicans adhesion, such as tannins (6,
Figure 4) from blueberries and grapes [29], α-mangostin (7, Figure 4) from mangosteen [30],
and raspberry extracts [31]. Nerol (8, Figure 4), a natural monoterpene compound, from
the sweet orange of the Rutaceae family, was confirmed as a potential antifungal drug for
the treatment of C. albicans invasion [32]. Furthermore, Pulsatilla decoction, a classical
prescription in traditional Chinese medicine (TCM), was reported to have inhibitory effects
on C. albicans adhesi .
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2.2. Invasive Enzymes

C. albicans can secrete a variety of proteolytic enzymes conducive to invasions, such
as secretory aspartate proteases (Saps) and phospholipase (PL). These are two families of
extracellular C. albicans enzymes, some of which are related to virulence. The combined
effect of Saps and PL causes yeast mycelial phase transition and adhesion to damage the
host mucosa, promoting organism invasion into epithelial cells [79,80].

2.2.1. Secretory Aspartate Protease (Sap)

The Sap family is thought to have 10 members, each encoding Sap1–Sap10 protein.
Sap1–8 genes encode secretory proteases, and Sap9 and Sap10 genes encode membrane-
anchored proteases [81,82]. Studies have shown that Sap is one of the important virulence
factors of C. albicans and is essential for C. albicans adhesion, invasion, and pathogenicity.
The expression of Sap4 and Sap5 is related to the mycelial formation, which can promote the
hyphal formation. Sap9 and Sap10 enzymes enhance biofilm formation and are involved in
the maintenance of cell surface integrity in Candida spp. [83]. Since C. albicans often exist in
the shape of biofilms, the expression of Saps result in the formation of C. albicans biofilms
and increases their pathogenicity. The diversity of Saps in host tissues allows for the use of
different nitrogen sources in host development [84]. Therefore, the existence and expression
of the Sap gene family endow Candida spp. with some adaptive advantages, especially
under the selective pressure of antifungal compounds. Biofilm-associated C. albicans shows
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reduced sensitivity to both certain antifungal drugs and the killing effect of the host immune
system [85]. Kumar et al. found that disruption of the gene encoding Saps reduces the
ability of C. albicans to damage vaginal and oral epithelial cells, resulting reduced host
infection [86].

Studies have shown that Sap2 activity is stronger in itraconazole-resistant than in
itraconazole-sensitive strains, suggesting that Sap2 may help to improve the virulence and
pathogenicity of itraconazole-resistant C. albicans strains [87]. According to the survey, many
people with candidiasis have the habit of smoking. Alanazi et al. conducted an interesting
experiment to explore whether smoking affected candidiasis. The results showed that
both nicotine-free and nicotine rich e-cigarettes increased the expression of different Sap
genes, including Sap2, Sap3, and Sap9, which bring about the growth and virulence of
C. albicans. Furthermore, e-cigarettes with or without nicotine increased the growth and
mycelial length of C. albicans. Exposure to e-cigarettes attributes to the overgrowth and
virulence gene expression of C. albicans, which may lead to oral candidiasis in individuals
carrying and using e-cigarettes [88].

2.2.2. Phospholipase (PL)

The research on the pathogenicity of PL in C. albicans has increased in recent years. It
has been confirmed that PL plays an important role in the pathogenic process. PL produced
by C. albicans can increase the permeability and damage the integrity of the cell membrane
through the decomposition of host cell membrane phospholipids, which then promotes
the invasion of C. albicans. The PL family includes different subclasses: PLA, PLB, PLC,
and PLD [89]. PLB is a secretory glycoprotein with hydrolase and phospholipase acylase
activity, which is optimal at pH 6.0. PLB plays a role in the early stages of C. albicans host
invasion, including in adhesion, invasion, and injury to epithelial cells. However, in the
animal model of candidiasis, only PLB1 has been proved to be necessary for virulence [90].
Studies have shown that the virulence of C. albicans is significantly weakened by ring
breaking of the PLB1 gene and restored through its reintroduction [91,92]. Thus, PLB1
plays a key role in host cell adhesion and invasion. In a mouse model of systemic infection,
PLB1 and PLB5 mutations have been shown to attenuate C. albicans toxicity [93].

Phloretin (9, Figure 5) is a dihydrochalcone flavonoid derived from apples, pears and
strawberries and is famous for its powerful antioxidant, anti-cancer, and anti-inflammatory
properties [34–36]. Phloretin can suppress pathogenicity and virulence factors of C. albicans
both in vivo and in vitro [94]. Shim et al. found that phloretin comes out antifungal ac-
tivity confront some plant pathogenic fungi in vitro [95]. Phloretin shows the minimum
inhibitory concentration (MIC) against C. albicans is 74.55 µg/mL [94]. Na Liu et al. re-
ported that phloretin exerts through inhibition biofilm formation and inhibition of yeast
hyphae transition by downregulation of hypha-associated genes, including enhanced ad-
herence to polystyrene 1, the extent of cell elongation gene 1, Hwp1, and Als3. Phloretin
represses the secretion of proteases and phospholipases by decreasing the expression of
protease-encoding genes Sap1, Sap2, and PLB1. Furthermore, the in vivo antifungal activ-
ity of phloretin was supported by reversal of the enhanced lesion severity, inflammatory
infiltration, and the increased colony-forming unit counts caused by C. albicans of tongue
tissues in oral candidiasis mice.

Lepidine B (10, Figure 5) and lepidine E (11, Figure 5) [37], natural products derived
from edible vegetables, Lepidium sativum seeds, have a certain effect on phospholipase
and inhibit its production. Origanum vulgare, a vanilla plant, is often used in cooking,
including in the preparation of sauces and the seasoning of pizza in Europe and the United
States. The essential oil of O. vulgare causes significant reductions in the production of the
phospholipases by C. albicans strains [38]. The methanolic extract of Juglans regia root was
found to severely affect Candida spp. growth and hydrolytic enzyme secretions [39]. An
acetone/water (7:3, v/v) crude extract of Eugenia uniflora, an ornamental and edible fruit in
Brazil, can not only impair the secretion of phospholipase and proteases but also affect the
transition from yeast to hyphae [40].
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2.3. Biofilm Formation

Ergosterol is a specific component of fungal biofilms, a feature regarded as a critical
factor in the high level of resistance of Candida spp. to conventional antimycotic agents [96]
Therefore, ergosterol is often used as a target for azoles. Biofilm formation is a continuous
process, including yeast cell adhesion to the substrate, yeast cell proliferation, mycelial
cell formation on biofilm, accumulation of extracellular matrix materials, and the final
dissemination of yeast cells from biofilm [97]. Drug resistance caused by the biofilm
formation of C. albicans is among the most vital reasons for the failure of antifungal therapy.

Azole antifungals cause drug resistance by affecting ergosterol production and gene
and protein expression [98]. Studies have found that Hwp1 and Als3 are connection
with the formation of C. albicans biofilm. Deng et al. discussed that the Als3 gene is
differentially expressed in suspended antifungal drug-sensitive C. albicans cells. Expression
of the Als3 gene was higher in C. albicans with biofilm formation than without. The study
also confirmed that the high Als3 gene expression group had a higher rate of biofilm
development than the low Als3 gene expression group [99]. Deng et al. pointed out
that C. albicans with biofilm formation had stronger resistance to FLZ, voriconazole, and
itraconazole but maintained sensitivity to caspofungin (CAS) and micafungin in vitro and
in vivo [99]. It can be seen that biofilm formation, as a virulence factor of C. albicans, is a
very important determinant for the drug resistance of C. albicans. In-depth research on
C. albicans biofilm formation will help to guide the prevention and treatment using clinical
antifungal agents. on the biofilm formation of C. albicans will help to guide the prevention
and treatment.

C. albicans can rapidly develop resistance to antifungal drugs through various mecha-
nisms, including through mutation of the Erg11 gene involved in the ergosterol biosynthesis
pathway. In addition, some studies reported amino acid substitution and frameshift muta-
tions prevent the combination of drugs with target enzymes [100]. These mutations prevent
drug binding and inactivate ergosterol [100]. Drug resistance does not affect virulence,
and an increase in ergosterol does not translate into increased resistance to cell surface
damaging agents because it may also be affected by other factors such as chitin and glu-
can concentrations [101]. FLZ resistance is linked with increased ergosterol content in
the plasma membrane. AmB targets ergosterol on the cell membrane and exhibits high
fungicidal activity [101]. Pyridoxine, known as vitamin B6 (12, Figure 6), is a small natural
product isolated from fruit and endolichenic fungus [41], some are derived from vegetables.
Pyridoxine has been previously reported to exhibit excellent antifungal activity against
C. albicans by interfering with the ergosterol synthesis with its MIC of 1.6 µg/mL [102].
5,6,8-Trihydroxy-7,4′dimethoxyflavone (13, Figure 6), separated from Dodonaea viscosa var
angustifolia, has the ability to inhibit ergosterol synthesis and the production of hyphae and
biofilm in C. albicans [42]. Nortriptyline (NOR) (2) belongs to the group of tricyclic drugs,
which can inhibit the formation of biofilm and hyphae and can effectively kill cells in a
mature biofilm of C. albicans. C. albicans GRACETM mutant and Haplo defect analysis was
used to identify the potential targets of NOR and screened in parallel with AmB, CAS, and
FLZ. The results showed that NOR can be used as a new antibacterial drug and has great
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potential to be used in an infection model in vivo. The combined application of NOR and
AmB could increase the antifungal activity by 3–4 times than a single agent [22–24].
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Magnolol (14, Figure 6) and honokiol (15, Figure 6) prevent biofilm formation in
C. albicans by the Ras1/cAMP/Efg1 pathway [43]. Luteolin (16, Figure 6), an interest-
ing naturally occurring flavonoid substance obtained from vegetables, fruits, and certain
medicinal plants like Mentha spicate and perilla, blocks biofilm formation and inhibits
the adhesion of C. albicans at 16 µg/mL [44]. In addition, resveratrol (17, Figure 6) from
grapes and other foods and pterostilbene (18, Figure 6) from Vitis rupestris have been
shown to inhibit the formation of biofilms and destroy preformed biofilms [45]. Sola-
margine (19, Figure 6), a steroidal glycoaloid derived from Solanum mammosum, has been
shown to be the most active compound against C. albicans in vitro [46]. Magnoflorine (20,
Figure 6) [47] and Rosmarinus officinalis extract [48] both have a pronounced antibiofilm ef-
fect. R. officinalis, a spice used in steaks, potatoes and other dishes, as well as grilled
products. Adenophora triphylla var. japonica extract [49], lemongrass extract [50], and
myricetin (21, Figure 6) [51] from Solanum scabrum can inhibit the formation of biofilms to a
certain extent.

2.4. Phenotypic Transformation

C. albicans is a single-cell, yeast-like fungus that can form biofilms with a thickness
of about 25 µm. It is a biphasic fungus with morphological diversity. There are several
growth forms in terms of cell shape, such as yeast phase, pseudohyphae, and hyphae
(Figure 7), and different forms of cells can be converted to each other [103]. During invasion,
C. albicans exists in the form of yeast, while during parasitic or bloodborne transmission,
C. albicans exists in the form of mycelium. This morphological transformation is controlled
by protein products of specific C. albicans genes, which guide spores into germ tubes or
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mycelium and then promote adhesion. The morphological transformation between yeast
and hyphae plays an essential role in the virulence of C. albicans [20]. It can detect various
extracellular stimuli and trigger the adaptive transition from yeast phase to mycelium
phase by transmitting signal molecules in a step-by-step manner through the intracellular
signal transduction system. Yeast hyphal phase morphological transformation, a typical
morphological transformation system, is closely related to the adhesion and invasiveness
of C. albicans. The ability of C. albicans to transition between yeast and hyphal development
when stimulated by a special host environment influence its invasiveness. Experiments
reveal that mycelial C. albicans has a better capacity for adhesion and invasion of the host
and escape the host immune system response, whereas yeast C. albicans has little or very
little pathogenicity.
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At present, the consensus resulting from research on the morphological transformation
of C. albicans is that the extensive and in-depth signaling pathways mainly include the cyclic
adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway, mitogen-
activated protein kinase (MAPK) signaling pathway, Rim101-mediated pH signal pathway,
and Tup1-mediated negative regulation signaling pathway [104].

The transition between yeast and invasive hyphae is central to virulence [65], pheno-
typic transformation is often accompanied by changes in some virulence factors, such as
mycelial specific genes Hwp1 and Als3, and is closely related to the hydrolysis of C. albicans.
Because adhesion and pathogenicity are closely related, mycelia adhere to host cell surfaces
more easily than yeast phase cells.

Furthermore, some natural products such as oleuropein (22, Figure 8), which is derived
from Syringa reticulata, can regulate the morphological transformation of C. albicans [52].
Paeonia lactiflora can not only used for ornamental purposes, but also used to make flower
cakes or flower teas in China, Japanese and other countries. Paeonia lactiflora ethanol
extract shows a good inhibitory effect on biofilm formation by impeding cell adhesion via
downregulation of the protein expression levels of Als3, Hwp1, Sap1, and Ece1, obstructing
the morphological transition from pseudohyphal to hyphal filaments [53].

2.5. Contact Sensing and Thigmotropism

Environmental conditions such as low oxygen environment, nutritional deficiency,
and osmotic pressure changes have a very important impact on fungi growth, with contact
sensing being a very important environmental signal. By contacting the material surface
fungi can understand and adapt to changes in the surrounding environment, triggering
the formation of C. albicans biofilm. In addition, contact sensing of C. albicans will also lead
to the formation and growth of invasive hyphae, and fungi then invade human tissues
and blood, grow, and reproduce, resulting in pathological changes and pathophysiological
processes of tissue damage, organ dysfunction, and inflammatory response.
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Thigmotropism means that human pathogenic fungi such as C. albicans reposition the
long axis of a hypha to adapt to the potential surface morphology. Although most of the
hyphae of C. albicans in tissues are randomly distributed, many in vivo experiments have
shown that hyphae are distributed along or perpendicular to the stratum corneum in the
epidermal keratosis layer. This contact sensing of hyphae determines the arrangement
of hyphae on the stratum corneum microsurface, and it has also been determined that
they more easily adhere to host cells compared with yeast type cells. Brand et al. found
that the nematicity of C. albicans hyphae is controled by calcium channel proteins Cch1
and Mid1 [105], which is closely correlated with the morphology, environmental stress
responses, and pathogenicity of C. albicans. Hyphae can find the damaged surface of epithe-
lium and endothelium and penetrate the host tissue due to contact orientation. Although
contact sensing and thigmotropism are not the main virulence factors of C. albicans and
there are relatively few studies on contact sensing and thigmotropism, they actually have a
greater impact on the growth of fungi and deserve further investigation.

2.6. Signaling Pathways Related to Mycelial Formation

The fungus C. albicans, like all living organisms, is constantly responding to changes
in the environmental conditions. Signaling pathways, which generate appropriate intra-
cellular signaling activity by sensing external changes, lead to genetic and physiological
changes, complete cellular responses, and thus adapt to environmental changes. Multiple
stimuli that act through multiple complex signal transduction pathways can trigger hyphal
formation [20]. The hyphal form is the pathogenic form of C. albicans. At present, it has
been confirmed that there are several phenotypic conversion signal transduction pathways
in C. albicans that respond to different environmental signals. The most common two are
the MAPK pathway [106–108] and the cAMP/PKA pathway [109,110].

2.6.1. MAPK Signal Pathway

MAPK pathways are important pathways in eukaryotic signal transduction networks.
The MAPK signaling pathway includes three kinases, namely MAP kinase (MAPK), MAPK
kinase (MEK), and MEK kinase (MKKK) [111]. After the cells are stimulated, MAPK is
activated through the progressive phosphorylation of MKK and MKKK. Four different
MAPK signal transduction pathways have been found in mammalian cells: the ERK1/2
pathway regulates cell growth and differentiation, the JNK and p38 MAPK pathway play
an important role in stress responses such as inflammation and apoptosis, and the ERK5
pathway is involved in angiogenesis [111]. MAPK signaling pathways widely exist in many
immune cells, such as macrophages, dendritic cells, neutrophils, T cells, and B cells. As an
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important signaling pathway in cell defense systems, the MAPK signaling pathway is an
important target for bacterial pathogen destruction [112].

Toenjes et al. screened five small molecules and found that these compounds can
inhibit the transformation of C. albicans yeast to mycelium in response to carbon limita-
tion [113,114]. These known compounds are inhibitors of protein kinase, protein phos-
phatase, Ras signaling pathway, G protein-coupled receptor, calcium homeostasis, nitric
oxide, and guanylate cyclase signaling, and apoptosis in mammalian cells [20].

2.6.2. cAMP/PKA Signaling Pathway

Hyphal formation, morphological transformation, biofilm formation, sterol synthesis,
glycolysis, and other biological and metabolic processes are very important for the growth,
reproduction, and pathogenicity of C. albicans [115,116]. These processes are regulated
by multiple signal pathways, of which the cAMP/PKA pathway (Figure 9) is a widely
studied and widely used pathway in the regulation of morphological transformation [117].
It plays a key regulatory role in the process of C. albicans morphological transformation.
Ras protein is a highly conserved GTPase (small GTPase) protein 1 in eukaryotes, which is
located upstream of the Ras/cAMP/PKA signal transduction pathway [118]. Ras, which
belongs to the small G protein family has two forms: GTP binding activated state and
GDP binding inactive state. When it is in the activated state, it can activate downstream
effector molecules. The conversion between the two depends on the GTPase activity of Ras
itself [119].
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C. albicans contains two Ras proteins called Ras1 and Ras2. Ras1 protein is necessary
for C. albicans mycelial growth and virulence. It was found that the mycelial development
defect and virulence of the strains with Ras1 gene knockout were significantly reduced [120].
It was further supplemented with cAMP or protein kinase components in the overexpres-
sion MAPK pathway. It was found that the mycelial development defect of the strains with
Ras1 gene deletion could be reversed, which confirms that Ras1 regulates the downstream
cAMP/PKA and MAPK signal transduction pathway to complete cell signal transduc-
tion [121]. In addition, the latest research shows that in Ras1-deficient bacteria, there is a
reduction in ribosomal biosynthesis mediated by Torc1, resulting in the increased tolerance
of the strain to AmB [122].

cAMP is an important second messenger molecule in organisms. cAMP activates
PKA (cAMP-dependent protein kinase) to phosphorylate the target protein and produce
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subsequent effects. Finally, cAMP is hydrolyzed into 5′-AMP by phosphodiesterase (Pde),
including Pde2, and inactivated. During the budding process of C. albicans, the high
expression of Pde2 can antagonize the cAMP synthesis activated by Srv2 and inhibit
the formation of mycelium. In bacteria with Pde2 deletion, high levels of cAMP and
extraordinary growth of mycelium were observed, but the state of extraordinary mycelium
growth and nonmycelial state both lacked virulence [123]. Moreover, the study confirmed
that the intracellular cAMP levels of the Pde2 gene knockout strain were significantly
increased, and the constitutively activated cAMP signaling pathway regulates filamentous
mycelial growth and toxicity [124]. Deficiency of Pde2 leads to reduce mycelial growth and
virulence in a mouse model of systemic infection [125].

PKA is also known as cAMP-dependent protein kinase A, since its activation is
dependent on cAMP. When its levels increase, cAMP binds to the regulatory subunit of
PKA to change the conformation and release the catalytic subunit to activate PKA. The
regulatory subunit of PKA in C. albicans is encoded by Bcy1, and the catalytic subunit is
encoded by Tpk 1 and Tpk 2, respectively [126].

Efg1 (enhanced filamentous growth 1) is a class of APSES proteins that mediate
cAMP/PKA signal transduction pathway encoded by Efg1 (enhanced filamentous growth).
Efg1, as a positive regulator of yeast mycelial morphogenesis, is mostly relies on the
Ras/cAMP/PKA signal pathway [127].

Studies have shown that Efg1 gene knockout strains have defective mycelial forma-
tion and decreased mycelial specific gene expression under the action of most mycelium-
inducing factors such as serum, indicating that Efg1 plays a very important part in regulat-
ing the mycelial growth of C. albicans [128]. The combination of 6,7,4′-O-triacetylxanthin
(TA) (23, Figure 10) and FLZ had a strong synergistic inhibitory effect on the biofilm forma-
tion of drug-resistant C. albicans [54]. TA combined with FLZ extended the survival rate
and reduced tissue invasion in mice infected C. albicans. The combination of TA and FLZ
also strongly prevented the yeast mycelial transformation of C. albicans and immensely
decreased the expression of Ras/cAMP/PKA signal pathway concerned genes (Ras1 and
Efg1) and mycelial related genes (Hwp1 and Ece1). The results showed that TA allianced
with FLZ inhibited hyphal and biofilm-formation by Ras/cAMP/PKA signal pathway,
thereby reducing the infectivity and drug resistance of C. albicans [54].

Foods 2022, 11, x FOR PEER REVIEW 16 of 23 
 

 

defect and virulence of the strains with Ras1 gene knockout were significantly reduced 

[120]. It was further supplemented with cAMP or protein kinase components in the over-

expression MAPK pathway. It was found that the mycelial development defect of the 

strains with Ras1 gene deletion could be reversed, which confirms that Ras1 regulates the 

downstream cAMP/PKA and MAPK signal transduction pathway to complete cell signal 

transduction [121]. In addition, the latest research shows that in Ras1-deficient bacteria, 

there is a reduction in ribosomal biosynthesis mediated by Torc1, resulting in the in-

creased tolerance of the strain to AmB [122]. 

cAMP is an important second messenger molecule in organisms. cAMP activates 

PKA (cAMP-dependent protein kinase) to phosphorylate the target protein and produce 

subsequent effects. Finally, cAMP is hydrolyzed into 5′-AMP by phosphodiesterase (Pde), 

including Pde2, and inactivated. During the budding process of C. albicans, the high ex-

pression of Pde2 can antagonize the cAMP synthesis activated by Srv2 and inhibit the 

formation of mycelium. In bacteria with Pde2 deletion, high levels of cAMP and extraor-

dinary growth of mycelium were observed, but the state of extraordinary mycelium 

growth and nonmycelial state both lacked virulence [123]. Moreover, the study confirmed 

that the intracellular cAMP levels of the Pde2 gene knockout strain were significantly in-

creased, and the constitutively activated cAMP signaling pathway regulates filamentous 

mycelial growth and toxicity [124]. Deficiency of Pde2 leads to reduce mycelial growth 

and virulence in a mouse model of systemic infection [125]. 

PKA is also known as cAMP-dependent protein kinase A, since its activation is de-

pendent on cAMP. When its levels increase, cAMP binds to the regulatory subunit of PKA 

to change the conformation and release the catalytic subunit to activate PKA. The regula-

tory subunit of PKA in C. albicans is encoded by Bcy1, and the catalytic subunit is encoded 

by Tpk 1 and Tpk 2, respectively [126]. 

Efg1 (enhanced filamentous growth 1) is a class of APSES proteins that mediate 

cAMP/PKA signal transduction pathway encoded by Efg1 (enhanced filamentous 

growth). Efg1, as a positive regulator of yeast mycelial morphogenesis, is mostly relies on 

the Ras/cAMP/PKA signal pathway [127]. 

Studies have shown that Efg1 gene knockout strains have defective mycelial for-

mation and decreased mycelial specific gene expression under the action of most myce-

lium-inducing factors such as serum, indicating that Efg1 plays a very important part in 

regulating the mycelial growth of C. albicans [128]. The combination of 6,7,4′-O-tri-

acetylxanthin (TA) (23, Figure 10) and FLZ had a strong synergistic inhibitory effect on 

the biofilm formation of drug-resistant C. albicans [54]. TA combined with FLZ extended 

the survival rate and reduced tissue invasion in mice infected C. albicans. The combination 

of TA and FLZ also strongly prevented the yeast mycelial transformation of C. albicans 

and immensely decreased the expression of Ras/cAMP/PKA signal pathway concerned 

genes (Ras1 and Efg1) and mycelial related genes (Hwp1 and Ece1). The results showed 

that TA allianced with FLZ inhibited hyphal and biofilm-formation by Ras/cAMP/PKA 

signal pathway, thereby reducing the infectivity and drug resistance of C. albicans [54]. 

 

Figure 10. Chemical structures of natural compounds targeting mycelial formation. Figure 10. Chemical structures of natural compounds targeting mycelial formation.

Tetrandrine (24, Figure 10), which is a bis-benzylisoquinoline alkaloid compound
extracted from several natural plant sources, covering Stephania tetrandra [55,56]. Tetran-
drine curbs biofilm formation by diminishing adhesion and morphological transition,
instead of inhibiting the growth of C. albicans. The mechanism of anti-biofilm may be in
connection with the Ras/cAMP pathway [129]. One study confirmed that a compound
from garlic extract, allicin (25, Figure 10), was also able to suppress hyphae formation in
C. albicans [57].

3. Other Drugs

In addition to FLZ, CAS, AmB and other drugs commonly used for the cure of can-
didiasis, studies in recent years have shown that a variety of drugs, including some natural
products, have a certain effect on C. albicans infection. Some natural products can act
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not only on a single virulence factor but also on several virulence factors of C. albicans
(Figure 11).
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Studies have shown that piperine (26, Figure 11) from pepper can regulate the mor-
phological transformation between yeast and mycelium by inhibiting mycelial extension
and converting from the mycelial phase into the yeast form without affecting the host [58].
Piperine markedly reduces the biofilm formation of C. albicans at at 32 µg/mL without
influencing the normal cellular and metabolic viability. Additionally, microscopic analysis
demonstrated that piperine effectively inhibited adherence of C. albicans to surfaces as well
as restricts the formation of hyphal in a dose-dependent manner [58]. It can be seen that
piperine has significant effects on a variety of virulence factors of C. albicans and could be
regarded as a candidate drug for the treatment of biofilm-related C. albicans infection [58].
Padma Hepaten from amla fruit and green tea from Camellia sinensis administration in a dose-
dependent manner, and synergistically inhibits the growth of C. albicans biofilm in vitro,
its ability to secrete exopolysaccharides, as well as the transformation of yeast into hypha
that is essential for the fungus virulence. Additionally, it also has an influence on the
expression of the Hwp1 and Als3 virulence-linked genes. Consequently, Padma Hepaten and
green tea may contribute to the fight against of the C. albicans infections and raising drug
resistance [59].

Recently, Kumar et al. found that decanoic acid (27, Figure 11) from animal fat can
effectively inhibit the transformation from yeast to hyphae, adhesion, and biofilm formation
of C. albicans but without hindering fungal growth. Gene expression analysis suggests that
decanoic acid may function by inhibiting Hwp1 and Efg1 as analogs of farnirol, a known
biofilm inhibitor [60]. In brief, decanoic acid inhibits the expression of Efg1, which is a
positive regulator of Hwp1 in C. albicans.

Roemerine (28, Figure 11) is derived from the fresh rattan stem of Fibraurea recisa and
some from the lotus leaf, which is used as beauty-slimming tea in our everyday life. Roe-
merine can inhibit the yeast-to-hyphae transition of C. albicans in a dose-dependent manner
and significantly inhibits the biofilm formation. The anti-biofilm mechanism may be related
to the cAMP pathway [61]. Morin (29, Figure 11), a flavonoid, which is found in several
medicinal plants, consisting of Maclura tinctoria, Maclura pomifera, and Psidium guajava,
that manifest extensive biological properties [62]. Morin treatment remarkably inhibits
the formation of C. albicans biofilm in a concentration-dependent manner. Besides, the
production of virulence factors, covering hyphal formation, phospholipase, protease and
invasion, were also significantly attenuated upon treatment with morin at its minimum
biofilm inhibitory concentration (MBIC) [130].

Berberine hydrochloride (BH, 3), an active constituent of Coptis chinensis and other
plants, has a wide range of antibacterial activities and can be used to treat Candida infection.
BH can inhibit the formation of germ tubes and hyphae, by regulating the MAPK pathway,
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and increase exposure of chitin and β-1,3-glucan. Especially, the upregulation of the core
genes Sln1, Ssk2, Hog1, and Pbs2 may make a difference in the expression of key downstream
factors correlated with germ tube and hyphal formation (Hwp1) and cell wall integrity (Chs3
and Gsc1). BH affects a quantity of biological processes in C. albicans, and may therefore be
an valid substitute to traditional azole antifungal agents [26].

Biatriosporin D (30, Figure 11), isolated from the endolichenic fungus Biatriospora spp.,
displays antivirulence activity by inhibiting the adhesion, hyphal morphogenesis, and
biofilm formation of C. albicans [63].

Solanum nigrum, a medicinal and edible plant, is edible in both berries and leaves.
Solasodine-3-O-β-D-glucopyranoside (SG, 31, Figure 11), a steroidal alkaloid glycoside,
separated from S. nigrum, which attenuates the virulence of C. albicans by inhibiting its
adhesion and the morphological transition. Additionally, SG observably subdues biofilm
formation and has killing activity against mature biofilm. Further research has shown that
inhibiting the Ras/cAMP/PKA signaling pathway and reducing the cAMP contents can
effectively reduce its bioactivity [64].

4. Perspectives and Conclusions

Natural products and their relevanted components have historically and regionally
been used to remedy of a good supply of diseases. Many medicinal and food homologous
natural products, such as fruits, vegetables, nuts, cooking spices and other agri-foods
have promising antifungal and other pharmacological activities. Nevertheless, in certain
circumstances, there is still a lack of scientific proof for these natural products that have
been used.

With the popularization and application of traditional single treatment drugs, people
are becoming increasingly inclined to develop new C. albicans treatment drugs or treatment
methods. Morphological conversion and hyphal formation are the two most important
virulence factors of C. albicans, and the research on natural products targeting these factors
is also the most extensive area of related research. However, due to the concept of targeted
therapy not long after the concept was proposed, most related drug research and develop-
ment has not officially entered the clinical stages, so the demand for traditional antifungal
drugs is still very high, and the development of targeted drugs is very urgent. Besides,
extracting pure compounds from natural sources is complicated and costly. It is important
and necessary to encourage organic chemists to find a synthetic strategy that avoids cum-
bersome purification steps to obtain pure compounds. Certain virulence factors, such as
contact sensing and thigmotropism, have a huge space for exploration as drug targets.

With the expansion of the population infected by Candida spp. and the enhancement
of drug resistance, targeting C. albicans virulence factor is a new research direction in
the fight against Candida spp., and at the same time, the research and development of
natural functional compounds especially natural products from food sources in the field
of candidiasis treatment is also expanding. They have a wide range of pharmacological
properties and fewer side effects and becoming a valuable research field [131,132]. Two-
drugs or multi-drug combination in the treatment process of C. albicans has also provided
surprises for the further development of antibacterial drugs, laying the foundation for the
clinical application of virulence factors as potential drug targets. The study of virulence
factors as potential drug targets have great influence on the treatment of C. albicans infection,
and more in-depth studies of the associated mechanisms of action and internal relationships
need to be further studied.
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